An Island Style Multi-Objective Evolutionary Framework for
Synthesis of Memristor-Aided Logic

Umar Afzaal
School of EE, KAIST
Daejeon, Korea

engr.umarafzal@gmail.com
ABSTRACT

The optimal in-memory mapping onto memristor crossbars in-
volves competing design goals: minimizing crossbar utilization,
reducing delay, and achieving an even layout. Existing heuristic
algorithms struggle to address these objectives simultaneously,
often yielding suboptimal solutions. This paper introduces an auto-
matic design solution to optimize multiple objectives concurrently.
Specifically, it proposes an island-style evolutionary algorithm for
multi-objective optimization of in-memory mapping. This algo-
rithm produces a set of solutions, corresponding to Pareto points.
Each point can be stored in a library of mapping solutions, which
can be chosen when corresponding design is re-used as a macro.
Experimental evaluation on IWLS benchmarks demonstrates the
effectiveness of this approach in addressing multiple design objec-
tives efficiently.

KEYWORDS
Memristor-aided logic, logic synthesis, evolutionary algorithm

ACM Reference Format:

Umar Afzaal, Seunggyu Lee, and Youngsoo Shin. 2025. An Island Style
Multi-Objective Evolutionary Framework for Synthesis of Memristor-Aided
Logic. In 30th Asia and South Pacific Design Automation Conference (ASPDAC
'25), January 20-23, 2025, Tokyo, Japan. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3658617.3697579

1 INTRODUCTION

The bottleneck in von Neumann computing systems stems from the
imbalance between CPU and memory speed improvements. Tradi-
tionally, CPU speeds doubled annually, whereas memory speeds
only did so every decade. Consequently, compute units can execute
operations faster than memory units can load and store necessary
data, shifting the primary time and energy consumption away from
compute units. This problem is compounded by the limited band-
width of buses, which becomes particularly problematic during
large data transfers throttling application throughput and latency.
Thus, the cost of transferring data between memory and compute
units has emerged as the modern computing bottleneck. Note that
data transfer from the processor to memory also has high a energy

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPDAC 25, January 20-23, 2025, Tokyo, Japan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0635-6/25/01.

https://doi.org/10.1145/3658617.3697579

Seunggyu Lee
School of EE, KAIST
Daejeon, Korea

sg.lee@kaist.ac.kr

Youngsoo Shin
School of EE, KAIST
Daejeon, Korea
youngsoo@kaist.edu

(b)

Figure 1: (a) NOR and INV implementation with memristors using
MAGIC. (b) Parallel operations and copy operations.

cost, with DRAM access using a three order of magnitude more
energy than a 32-bit addition operation [2].

The idea of processing-in-memory (PIM) is to realize logic
operations directly in memory, decreasing data transfer needs.
PIM accelerates tasks that involve repetitive operations on large
datasets with heavy memory read/write activity. A prime example
is the training and inference of machine learning (ML) models,
which entails an enormous number of arithmetic operations such as
additions, multiplications, or convolutions, depending on the model.
In fact, the high energy demands of billion-parameter models have
already become a serious concern [6]. PIM is positioned as a key
solution going forward to meet the rising costs and performance
demands of large-scale ML models.

The solution is to leverage devices that inherently support
computation within memory arrays. Memristors which are the
focus of this paper, characterized by their non-volatile resistive
memory properties, stand out in this category. These two-terminal
devices offer two resistance states, which can be switched by
applying voltage, thereby reliably encoding logic 1 and 0 through
low and high resistance states, respectively. The scope of this
paper is the memristor-based logic design families proposed in
recent years. Among them, the two leading logic design styles are
IMPLY [4], which utilizes material implication operations with
two memristors and a resistor, and more recently MAGIC [5],
which constructs NOR/INVerter(INV) logic gates entirely from
memristors. MAGIC is particularly advantageous for requiring
only all-memristor crossbars and thus more suited for driving PIM
technology of the future.

Under the rules of MAGIC, to implement either an INV or a
NOR gate, each gate input and the output are stored in distinct
memristors. Input values are pre-stored as initial resistances of
the input memristors. As depicted in Figure 1(a), x1 and x2 are
the inputs to a NOR gate. The NOR output is produced in the

ASPDAC 25, January 20-23, 2025, Tokyo, Japan

memristor labelled g1. To prepare for computation, this memristor is
initialized with logic-1 by applying a voltage that sets its resistance
to Ron (low resistance). The NOR operation proceeds by applying
a gate voltage Vg to each input memristor and grounding the
output memristor. This operation switches the state of the output
memristor to logic-0 characterized Ropp (high resistance) if either
or both of the inputs held logic-1.

All memristors involved must be oriented either in a row or
column, with order being irrelevant. A key characteristic of MAGIC
is its ability to generate the same gate output across multiple
memristors within the same cycle. It's also feasible to compute
multiple gate outputs in the same clock cycle if all input memristors
of each gate are aligned, along with their corresponding output
memristors. This is illustrated in Figure 1(b), where outputs g1 and
g2 are eligible for single-cycle computation. Copying a value from
one memristor to another involves two INV operations, aptly called
a copy operation, which completes in two cycles. As demonstrated
in Figure 1(b), ¢3 is copied from (2, 0) to (2, 2). Please note that this
primer on MAGIC is not self-contained and readers are encouraged
to consult the original paper that introduced the MAGIC logic [5].

1.1 Motivational Example

‘o

A =gl Operations
; 3 gt oy
a3 --gl i, Operations .
‘ 3.{g1 (21)} 1.{a1 (0.2)} ?p{e’f"";;’
. 4.{g2 (2,0)} 2.{g2 (12)} -1a%.a
B g2 5.{g3 (2.2)} 3.{g3 (22)} 2 {03

(a) (b) (c) (d)

Figure 2: (a) Example NIG. Light yellow represents 2-input NOR
gate. (b) Mapping synthesized with [1]. (c) Alternate mapping (d) Yet
another mapping with reduced cycles.

Example 1: In the NOR-INV graph (NIG) illustrated in Fig-
ure 2(a), Gharpinde et al’s heuristic [1] places primary inputs (PIs)
in the first column, directs INV gates eastward, and NOR gates
southward whenever possible, as detailed in Algorithm 2 of their
article. This results in a 3 X 3 crossbar with 7 memristors used over
5 cycles for logic operations, as shown in Figure 2(b). In contrast,
the mapping in Figure 2(c) uses only 6 memristors and completes
operations in 3 cycles. This improvement is achieved by storing PI
value A in two memristors, avoiding the need to copy g1’s value
from (0,1) to (2,1). Additionally, Figure 2(d) presents a mapping
treating the INV gate as a NOR with one input tied to logic-0. This
approach uses 7 memristors but completes logic in just 2 cycles,
marking a 60% reduction in clock cycles compared to the initial 5
cycles.

In addressing the mapping problem, key decision variables in-
clude gate location, orientation, the number of gate instances on
the crossbar, and simultaneous gate output calculations. This prob-
lem is NP-complete, prompting various heuristic and optimiza-
tion approaches in literature. Similar to Gharpinde et al. [1], the

Umar Afzaal, Seunggyu Lee, and Youngsoo Shin

staircase-structure inspired mapping [9] aims to maximize parallel
operations and crossbar squareness with a heuristic. This latter
approach requires aligning copy operations for multiple gates, in-
troducing some copy overhead. In contrast, optimization methods,
such as the one described in [3], address latency through integer
linear programming (ILP). Although effective, this approach can be
time-consuming for larger circuits due to exhaustive exploration
of operation possibilities. To address this, [8] suggests employing
multiple ILPs by partitioning the netlist, although manual partition-
ing does not allow exploration of this region of the solution space.
Lastly, these approaches typically yield a single solution.

1.2 Article Contributions

Genetic algorithms (GAs) have historically achieved significant
success in various aspects of electronic design automation subject
to optimization. This work applies GAs to the problem of MAGIC
synthesis. The main contributions are summarized below:

e Optimization problem without manual partitions that en-
ables finding the optimal grouping of gates for parallel com-
putation, minimizing clock cycles.

e An algorithm that converts any invalid mapping to a legal
one, following MAGIC rules.

e A distributed evolutionary framework to automatically
map a NIG to a memristor crossbar, yielding a set of non-
dominated solutions.

2 PROPOSED METHOD

We define the optimization problem by allowing only one instance
per each gate output in the NIG. This fixes the number of decision
variables subject to genetic operators. However, more than one
instance of a gate may be required on the crossbar as well as the PIs
for realizing a legal MAGIC circuit. To which end, for evaluation,
this partial mapping is legalized by means of another algorithm
presented in Section 2.3. Thus, decision variables are not subject to
any constraints allowing any arrangement of all gate instances on
the crossbar. The complete flow is shown in Figure 3.

N —
H V.
Mappers £ &

Island 1 l Island 2l BandN |
(Initalize Pop) [Iniialize Pop | (Initiaize Pop |
¥ ¥ : v
—l>[Crossover] —b[Crossover J _____ [Crossover]ﬂ—
) ¥ ! ¥
[Mutation] [Mutation] ______ [Mutation]
¥ ¥ 3

[Shared Pool: Distributed Evaluation

. J
| selection][Selection |
¥ ¥ i

—[Candidate Migraion _]—

Figure 3: Overall flow of the proposed method.

The GA is implemented as an island model with multiple
populations. Populations can be initialized with seeds acquired from

An Island Style Multi-Objective Evolutionary Framework for Synthesis of Memristor-Aided Logic

different heuristic mappers. To obtain a valid seed, the mapping
should first be stripped to one instance per gate carefully. Seeding
is optional and can be used if it encourages faster convergence
to optimal solutions. The selection and variation operators are
standard NSGA-II operators. For migration, a typical ring topology
is employed where the number of emigrants is determined by the
mig_rate hyperparameter while migration interval is controlled by
mig_interval.

2.1 Point Mutation

Candidate gl&

My

g& Q&
HC
P Y |y Y

(a) (b) (c)

Figure 4: (a) Target mapping. (b) Gate relocation. (c) Gate swapping.

Mutation is conducted as follows: a random number of gates is
selected from a Levy distribution L. For each gate gy, a random
decision is made between relocating it in the same row or the same
column, allowing the gate to move only in orthogonal steps. The
step size is also chosen from the Levy distribution L. If the new
location is vacant, the gate is simply moved there. However, if the
new location already contains a gate gy, then a swap occurs between
the two gates. Both of these scenarios are illustrated in Figure 4.
The number of candidates to mutate in a population is determined
by the hyperparameter mutpb.

2.2 Crossover

Parent A Child A Child B

Qi& gi&{

Parent B

g& gl&
PEEEY”
ZIEr IR T

Figure 5: Showcasing the crossover operation.

_giﬁ

£d

During crossover, two parents combine to create two new
children with shared genetic material. Let’s denote the set of gates
mapped onto the set of memristors M (the crossbar) of size m X n
as G, then g;j € G for 0 < i < m,0 < j < nrepresents a gate
mapped at the i'" row and j* column. Then, the following two
conditions are applied to extract genetic material for crossover:

Vg e G| (loc(g) e M1) A (loc(g) € Mz = free) (1)
Vg e G| (loc(g) € Mz) A (loc(g) € My = free) 2)

Referring to M; as the set of memristors for the first parent
and vice versa, from each parent, extract gates that, at the same
locations in the other parent are free (i.e., free is a memristor onto
which no gate output has been mapped). Applying to the example
shown in Figure 5, these set of gates are extracted for each parent:

ASPDAC 25, January 20-23, 2025, Tokyo, Japan

for ParentA : {g1:(0,1)} {g3:(2,0)}

for ParentB : {g1:(0,2)} {¢g2:(1,0)}
The gates’ locations are exchanged such that gate g1 from
ParentA, initially at (0, 1), receives the location of ParentB’s last
gate, g2, making g1 at (1,0) for the first child. Each gate adopts the

location of the corresponding gate from the other parent in reverse
order. The resulting children are given as:

ChildA : {g1:(1,0)} {g2:(2,2)} {43 :(0,2)}
ChildB : {g1:(2,0)} {g2:(0,1)} {g3:(2,2)}

2.3 Mapping Completion Algorithm

To evaluate a candidate’s quality based on memristor utilization,
crossbar size, and clock cycles, the gate placement obtained from
genetic operators undergoes the following steps to convert it into a
valid MAGIC circuit. These steps will be demonstrated by solving
Example 2, where the NIG is shown in Figure 6 and the mapping is
completed as depicted in Figure 7.

SR

\/ &
X2 ‘92 . L970
x3 \.‘- - -_.v-gsz

g3

Figure 6: NIG for Example 2.

2.3.1 Find Aligned Gates. In the first step, gates aligned in rows
and columns are grouped. For each row i, let’s denote the set of
columns with gates mapped onto memristors as H;j. Similarly, for
each column j, let’s denote the set of rows with gates mapped onto
memristors as V;. The conditions for H; and V; can be expressed
as:

Hj={M;; # free}V0< j<n (3)
Vi={M;; # free}V0<i<m (4)
Conditions 3 and 4 are applied to each row i and each column j,
respectively to obtain all groups of aligned gates. For the Example 2
shown in Figure 7(a), applying this step yields the set of all groups
S:
S:1{94.9597} {92.93,96} {91}
{97} 195,96} {91, 92} {93, 94}

We observe that some groups (e.g., {g1} and {¢g7}) are subsets of
other groups ({g1, g2} and {g4, g5, g7}), and redundant groups are
not allowed. To find such groups, the condition can be expressed
as:

VXeS | (YCXVY=X)A(X2£Y) (5)

Or for every group X in S, Y is either a subset of X or equal to X.
If the condition is met, Y is removed from S. As a result, S is given
as:

S : {g4,95,97} {92. 3, g6} {g5. g6} {g1. g2} {93, 94}

ASPDAC 25, January 20-23, 2025, Tokyo, Japan

5155

Umar Afzaal, Seunggyu Lee, and Youngsoo Shin

0 1 2 3 4 5

e o
gi& g@ gi& g@

Sl B |
PP

(a)

) t4: {g3, g4}
g7y 91 FI1ey x X1 t5: {g5, g6}
%Sg @ t6: {g7}

(©)

Figure 7: (a) Mapping obtained from genetic operators. (b) Mapping completion algorithm showcase. (c) Legal MAGIC mapping.

2.3.2 Resolve Data Dependency. If two gates, denoted as gx and
gy, are connected sequentially within the same path, they cannot
operate simultaneously due to data dependency. This implies that
the output of one gate must be calculated and propagated before
the output of the other gate can be determined. This condition can
be expressed as:

V(gx,9y) € G | (g9x € path(gy) V gy € path(gx)) (6)

The term path(gx) (or path(gy)) denotes the route from any

primary input to gate gy (or gy). Applying this step to the output
calculated in step 1, further divides the groups as:

S : {g4} {g5} {97} {96} {92 93} {95. 96} {g1, 92} {93, 94}

After applying condition 6, some gates may form redundancy
with others when disconnected from their group. Thus, condition
5 is reapplied.

S : {97} {92.93} {95.96} {91, 92} {43, 94}

2.3.3 Find Directions. A direction is assigned to each gate gin G
denoted as D(g) as follows:

EAST if fanin(g) : EAST
WEST if fanin(g) : WEST
NORTH if fanin(g) : NORTH
SOUTH if fanin(g) : SOUTH v
(fanin(g)[0] v fanin(g)[1]) : NORTH
EAST otherwise

D(g) =

g is directed EAST if the fanins are located eastward relative to
g's location, and similarly for every case. If one of the fanins of g is
located southward but the other one is located northward relative to
g, then a default direction of SOUTH is assigned. In all other cases, the
default direction to assign is EAST. After determining gate directions,
only gates with matching directions can form groups; otherwise,
they are disconnected from the group. Note that condition 5 is also
reapplied after this step to eliminate redundancies. Applying these
conditions to the output of step 2 makes no change as the directions
of all gates are computed EAST; hence, S remains unchanged:

S : {97} {92.93} {95.96} {91, 92} {43, 94}

2.3.4 Resolve Conflicts. There may arise situations where a gate
g belongs to multiple groups in S. However, it’s necessary for
each gate to belong to only one group. To identify such gates, the
condition can be expressed as:

V(X,Y)eS | (geXNY) A (X£Y) 8)

To resolve conflicting gates, we establish criteria to determine
which group it remains in and from which it is removed. The
simplest criterion is to group it with the set that contains the most
number of gates.

X = X|:geX
argmax X] : g)

If g exists in multiple groups with equal lengths, it is paired in
a way that avoids disconnecting its group members from other
groups. For instance, in set S of Example 2, g2 is part of {g1, g2} and
{92, g3}, while g3 is part of {g2, g3} and {g3, g4}. If we decide to
group g2 with g3 in {¢2, g3} then two groups {g1, g2} and {¢3, g4}
would need to be let go. Thus, the preferred choice is to let go of
{g2, g3}, making the other two groups feasible. Then, S is given as:

S:{g7} {95, 96} {91, 92} {93, 94}

After this step, each group contains gates that are not shared
with any other group.

2.3.5 Relocate Gates. Gate outputs that are not bound in a group
are relocated on the crossbar to eliminate unnecessary operations.
The condition can be expressed as:

VXeS | (XCPO A |X|=1 A aligned(fanin(g)[0],

fanin(g)[1]) A -aligned(g, fanin(g)))

Alternatively, for every group X in S such that it contains a single
gate g, and X is either a subset of or equal to the set of POs denoted
by PO, and the fanins(g) are aligned on the crossbar, whether in
rows or columns, but g is not aligned with its fanins. Applying
condition 10 to Example 2, the gate g7 is identified as a potential
candidate that can be relocated to align with its inputs g5 and g6 in
column 1 as shown in Figure 7(b).

(10)

2.3.6 Map Copy Operations. If a gate gy, has gate gy as fanin but
the two are not aligned in either rows or columns. Then gy is copied
according to Algorithm 1 to align with g, while considering the

directional constraints. The condition can be expressed as:

V(gx.gy) € G | (fanin(gy) = gx A —-aﬁgﬂe‘f(gx,gy}} (11)

Applying condition X to Example 2, g1 is identified as a candidate
since it serves as a fanin to g4, is not aligned, and is bound in a
group with g2. Therefore, its value must be copied from location
(2,3) to row 0, aligning it with g4. This alignment should occur in
the same row as per the directional constraints obtained for g4 in
step 3. If Algorithm 1 fails to find a 2-hop path, then an empty row
(column) is added to the crossbar and the algorithm is retried. Note
that Algorithm 1 applies when row alignment is required; the same
algorithm can be adapted and applied for column alignment.

An Island Style Multi-Objective Evolutionary Framework for Synthesis of Memristor-Aided Logic

Algorithm 1 Find_two_hop_path

Input: Crossbar M, starting coordinate start_coord, target row tgt_row
Output: 2-hop path from start_coord to tgt_row

1: num_rows, num_cols « Dimensions of M

2: memo +«— Empty dictionary

3: function caN_Hop(curr, preuv, steps_left)

4: if Memoized result exists then
5: return it
6: if curr reaches target in steps_left steps then
7 return path
8: if No steps left then
9: return failure
10: Extract row, col from curr
11: for valid neighbors r, ¢ do & Up/down or left/right moves
12: Recursively call neighbor, updating memo on success
13: Update memo and return failure

14: Call can_uov({start_coord, None, 2)
15: if successful then

16: return path

17: else

18: return failure

2.3.7 Cleanup. In the final step, any rows or columns containing
only free memristors are deleted. For instance, in Figure 7(b),
columns 0 and 2 are removed, as depicted in Figure 7(c).

After completing the aforementioned steps, the mapping is
prepared for evaluation. The number of utilized memristors and
crossbar dimensions are counted, while the required clock cycles

are calculated using the following formula:

Cycles = No. of groups + No. of loner gates

+ (2 x No. of copy ops) (12)

3 EXPERIMENTS

3.1 Experimental Setup

We have studied the performance of our algorithm on 8 bench-
marks from IWLS-93, with plans to investigate more in a long-
format article. The profiles of these benchmarks obtained from the
Berkeley-ABC system formatted as Name: I/O (NIG Nodes) are
listed below:

5xpl: 7/10(131), misex1: 8/7(81),
b12 - 15/9(94), misex2: 25/18(159),
clip: 9/5(133), rd73: 7/3(157),
cordic: 23/2(93), inc: 7/9(149)

The selection is influenced by the fact that the proposed
algorithm is computationally intensive; hence, it is reasonably
scalable. According to our preliminary testing, it should be able to
easily optimize mapping of circuits up to 8- or 16-bit compressors
and 8-bit multipliers within reasonable run times, making it ideal for
the design of MAC units, convolution filters, and other frequently
used arithmetic circuits in DNNs. In addition, with seeded initial
conditions, it is anticipated to be widely scalable. Nonetheless,
further investigation is still needed to establish the upper bounds on
its scalability with greater accuracy and confidence. In our efforts
to provide a thorough analysis, we observe that this benchmark
size could be considered smaller than ideal. This limitation is
primarily due to constraints on space and resources inherent to this
article. Nevertheless, we have made considerable efforts to select

ASPDAC 25, January 20-23, 2025, Tokyo, Japan

representative benchmarks that provide meaningful insights into
the proposed methodology.

The experiments are set up as follows. Evolution is implemented
as a multi-objective optimization problem, focusing on solution
time cycles and memristor count. Evolution halts after a predefined
amount of time (12 hours in this case). We did not aid the
convergence through seeding, rather, we used random initial
conditions for the solutions where one instance per gate output
in the NIG is randomly placed on the crossbar. This allows us
to investigate the exploratory and convergence potential of the
proposed method when starting with random solutions. With
this setup, we conducted 5 independent runs on each benchmark,
collected data on Pareto fronts for each run and tracked the
best minimum value of each objective across all populations
in each generation for convergence analysis. The application
code was implemented to utilize multiple processes controlled
by n_process facilitating parallel evaluation of solution fitnesses
across all populations. These experiments were conducted on a
Linux machine with 64GB of memory and an AMD EPYC 64-core
processor. The hyperparameter values for the genetic algorithm
(GA) were adopted from standard literature:

n_process : 32, cxpb: 0.7,
n_pops : 50, mutpb : 0.3,
n_ind : 50, mig_rate: 0.1,

mig_interval : 10

3.2 Results and Discussion
The goal of the algorithm is to maximally minimize latency (Cycles)

and memristor utilization on crossbar (#Mem). Pareto fronts ob-
tained from five independent runs for each benchmark are depicted
in Figure 8. The solutions are visualized as scatter plots, with each
run represented by distinct colors. It is important to note that the
objectives, Cycles and #Mem, are simultaneously minimized. While
a reduction in one objective generally corresponds to a decrease
in the other, this relationship is neither strictly inverse nor linear,
as demonstrated in Example 1 above. Figure 8 illustrates the con-
sistent performance achieved by the proposed approach. Minimal
deviations are observed across all independent runs, indicating
robustness in the generated Pareto fronts.

We compare our results with those presented in [7], which
utilizes a Simulated Annealing-based approach. Our evaluation
assesses the effectiveness of our problem formulation and island-
style Genetic Algorithm (GA) against their single-population
approach. Unlike our multi-objective island0-style GA approach
yielding multiple results, their method yields a single result, with a
cost function designed to handle one objective at a time. For the
same benchmark, their result is plotted as a red triangle in Figure 8.
The Pareto fronts from all five runs consistently dominate those of
[7] across all benchmarks, highlighting the superior optimization
capability of the proposed method. The figure axes are scaled
to emphasize details, consistently positioning the competition’s
marker in the upper right corner.

We also monitored the solutions achieving the best (minimum)
values for Cycles and #Mem objectives across all populations in
each run. The convergence curves for all benchmarks are depicted

ASPDAC 25, January 20-23, 2025, Tokyo, Japan

Umar Afzaal, Seunggyu Lee, and Youngsoo Shin

Sxpl bl12 elip cordic
N A = A a
. 135 1€
s 238
114
0 130 +s 230
n: - -
0 Fd g » P
: : 125 x : . PR
220
Fati] -
120 ™ g .
215
s “l m . we| g ::
. L) . %
.\‘ " . 13 210 By “
" . L]
o . w’- . BT S e, o et . ..
210 15 220 25 30 235 a0 245 40 145 120 135 160 165 n ;1 240 243 30 233 280 145]?ﬂ 155 160 185
e #am #Mem WM
ne migexl misex w73
240
64 'y A A 2182 'Y
140
- 237 260
paly
260 234 158 -
136 . . 156 L]
20
il . i 184 g - L] H 154
Ex ERER . Zam &
o e 225 % =l
-
e X ., 128 5 . N - 4 48) %
. » L.‘:)
=0 ﬁ\’. ema e %-‘g A .. e w .
48 Fens 124 DAl b s ‘s . e . ..
64 67 7 73 276 2739 282 140 142 144 146 140 10 ._J‘E 134 136 261 264 267 70 213 6 279 ar 285 288 255 FET) 201 204 FUEd 270 27 T 279
wMem #Mem #Mem e
A FRef @ Runl @ FunZ @ Run3 e FAund @ Runs
Figure 8: All Pareto efficient solutions from 5 test runs for each benchmark.
[388}— clip TS cordic .
b
s 202
g b L [8 -
E = | 5 = 142)
= o - (=} =
o k-] b=
B g g g
E £ E
g § £ ¥
¥ S * &
L

Time [hrs)

’ ﬂmelinus) ’
i 11 ; : misexl

inc

#Mem and Cycles
#Mem and Cycles
g

" Time ihrs) Time ihrs)

ﬂmelinlsP ’
73

1ime‘(n rs} '
misex?

wMem and Cycles
#Mem and Cycles

" Time thrs)

Time (hrsl

=== #Mem

——- Cytles |

Figure 9: Convergence curves from 5 test run for each benchmark.

in Figure 9. Initial objective values and the minimum values near the
end of each run are annotated in the figure. We observe significant
improvements in both objectives typically occurring within the first
hour of each run, as indicated by sharp declines in the early curves.
Subsequently, optimization progresses steadily but less aggressively.
The figure illustrates minimal deviations in convergence curves
among independent runs across all benchmarks, demonstrating
consistency in the algorithm’s performance.

4 CONCLUSION

We have addressed the problem of in-memory mapping onto
memristor crossbars. An automatic design method was proposed to
handle multiple objectives and produce a set of non-dominated
points. The proposed algorithm underwent evaluation using a
subset of IWLS benchmarks. Experimental results demonstrate

the algorithm’s exploratory capability and consistent performance
across multiple independent runs for each benchmark. Future
endeavors include expanding evaluations to encompass larger
circuits to accurately gauge the algorithm’s scalability limits.
Additionally, extended runs on arithmetic circuits are planned to
compile a reusable macro database.

5 ACKNOWLEDGMENT

This work was supported in part by the Institute of Information and
communications Technology Planning and Evaluation (II'TP) grant
funded by the Korea Government (MSIT) through Logic Synthesis
for NVM-based PIM Computing Architecture under Grant 2022-0-
00971. The EDA tool was supported by the IC Design Education
Center (IDEC), Korea.

An Island Style Multi-Objective Evolutionary Framework for Synthesis of Memristor-Aided Logic

REFERENCES

[1]
[2]
[3]

[4]
[5]

Rahul Gharpinde et al. 2018. A scalable in-memory logic synthesis approach using
memristor crossbar. IEEE Trans. on VLSI Systems 26, 2 (Feb. 2018), 355-366.
Song Han et al. 2016. EIE: Efficient inference engine on compressed deep neural
network. ACM SIGARCH Computer Architecture News 44, 3 (June 2016), 243-254.
Rotem Ben Hur et al. 2017. SIMPLE MAGIC: Synthesis and in-memory mapping
of logic execution for memristor-aided logic. In Proc. Int. Conf. on Computer-Aided
Design. 225-232.

Shahar Kvatinsky et al. 2011. Memristor-based IMPLY logic design procedure. In
Proc. Int. Conf. on Computer Design. 142-147.

Shahar Kvatinsky et al. 2014. MAGIC—memristor-aided logic. IEEE Trans. on
Circuits and Systems IT 61, 11 (Nov. 2014), 895-899.

[6] Lauren Leffer. 2023.

[7

[8

]

]

ASPDAC 25, January 20-23, 2025, Tokyo, Japan

The AI boom could use a shocking amount of elec-
tricity. https://www.scientificamerican.com/article/the-ai-boom-could-use-a-
shocking-amount-of-electricity/. [Online; accessed 03-April-2024].
Phrangboklang L Thangkhiew and Kamalika Datta. 2018. Scalable in-memory
mapping of Boolean functions in memristive crossbar array using simulated
annealing. jJournal of Systems Architecture 89 (Sept. 2018), 49-59.

Zhenhua Zhu et al. 2019. A general logic synthesis framework for memristor-based
logic design. In Proc. Int. Conf. on Computer-Aided Design. 1-8.

[9] Alwin Zulehner et al. 2019. A staircase structure for scalable and efficient synthesis

of memristor-aided logic. In Proc. Asia and South Pacific Design Automation Conf.
237-242.

