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 Abstract— In curvilinear OPC, each pattern segment is assumed 
as a cubic Bézier curve, which is defined by two endpoints and 
two intermediate points. Iterative correction of the curves is very 
time consuming even with simple heuristic [1]. Two ML models 
are introduced for fast and accurate curve correction. An MLP is 
used to locate the new endpoints, while correction error (called 
VPE) from the previous iteration and a few PFT signals 
representing local light intensity are provided as inputs. VPE 
predictor is constructed with both target and mask patterns being 
modeled with nested GCNs; the output is average VPE. 
Intermediate points are identified while the VPE predictor is 
optimized with a goal of minimizing average VPE and violations 
of curvature constraints and geometric continuity constraints. The 
proposed OPC is compared to the reference [1]: the number of 
OPC iterations is reduced from 12 to 3 while final average VPE is 
reduced from 0.49nm to 0.44nm. 

I. INTRODUCTION 
Optical proximity correction (OPC) is iterative as shown in 

Figure 1. A layout polygon is divided into a number of line 
segments. In one iteration, each segment is shifted and 
lithography simulation is applied to predict a wafer contour, 
which is compared to a target while edge placement error (EPE) 
is measured. Iteration repeats until average (or maximum) EPE 
becomes small enough. 

Recently, curvilinear OPC has been actively studied for 
better OPC quality. Each segment is assumed as a curve instead 
of a line. A cubic Bézier curve is most popular representation; 
it is defined by two endpoints, a and d, and two intermediate 
points, b and c, as shown in Figure 2(a). The curve itself, 
indicated by a dotted shape, is given by: 

𝑃𝑃(𝑡𝑡) = 𝑎𝑎(1 − 𝑡𝑡)3 + 3𝑏𝑏(1 − 𝑡𝑡)2𝑡𝑡 + 3𝑐𝑐(1 − 𝑡𝑡)𝑡𝑡2 + 𝑑𝑑𝑡𝑡3, (1) 

with 0≤t≤1. 

A. Curvilinear OPC: Review 

The first step of correction is to move leading endpoints ais 
of all segments; note that trailing endpoint is shared with the 
leading endpoint of adjacent segment, e.g. di = ai+1 in Figure 
2(b). The amount of move is usually in proportion to EPE from 
previous iteration, similar to line segment move in Manhattan 
OPC. The second step, with new endpoints set, is to identify the 
position of intermediate points. This step is not trivial, and a 
simple heuristic has been applied [1]. The angle bisector of the 
angle formed by ai-1, ai, and ai+1 is identified; bi is positioned on 
a line 90° from the angle bisector with distance in proportion to 
𝑎𝑎𝚤𝚤𝑑𝑑𝚤𝚤�����; ci is positioned similarly.   

II. CURVILINEAR OPC WITH ML MODELS  
EPE is not a measure appropriate to curvilinear OPC; vertex 

placement error (VPE) is introduced in this paper instead. 
Segment correction as reviewed in Section I.A is not ideal. We 
apply machine learning (ML) models to both steps for more 
accurate correction, which ultimately helps reduce the OPC 
iterations. In particular, multi-layer perceptron (MLP) model is 
applied to the first step. VPE predictor is constructed with graph 
convolutional networks (GCNs); it allows intermediate points 
to be identified in a way that average VPE is minimized. 

A. VPE 

EPE has been used for conventional Manhattan OPC, in 
which error is measured between target line segment and 
corrected segment contour as illustrated in Figure 1. It is not a 
proper measure when both target- and printed-segments are 
assumed as curves. We introduce VPE as a new measure for 
curvilinear OPC. VPE is defined by the distance between the 
leading endpoint of the target and its closest corresponding 
point on the wafer contour.  

B. UPDATE OF BÉZIER CURVE ENDPOINTS 
In standard OPC, correction is based on EPE from previous 

iteration. A smarter approach is to inspect the neighbor patterns 
[2] of segment (in Manhattan OPC) or endpoint (in curvilinear 
OPC). We construct a simple MLP model, with 24 polar Fourier 
transform (PFT) signals and a VPE from previous iteration as 
inputs and a new coordinate of leading endpoint of Bézier curve 
as output. PFTs are popular quantities employed in light 
intensity calculation, and they represent printing quality of 
endpoint’s neighbors (within ambit distance) well.  

C. ML-GUIDED EXTRACTION OF BÉZIER CURVE INTERMEDIATE 
POINTS   
VPE predictor is constructed with nested GCNs. 

Intermediate points are identified while VPE predictor is 

Figure 1. OPC steps: (a) fragmentation; iteration of (b) correction and (c) 
lithography simulation with EPE calculation. 

Figure 2. (a) A cubic Bézier curve, (b) segment correction in curvilinear 
OPC and (c) a heuristic method to find intermediate points. 

 



   

optimized with a goal of minimizing estimated average VPE 
and violations of curvature constraints and geometric continuity 
constraints. VPE predictor is outlined in Figure 3. Each mask 
polygon is associated with a target polygon. Note that both are 
a set of curves, and the former is variable (i.e. endpoints are 
fixed after MLP runs but intermediate points are unknowns) and 
the latter is constant. 

Each polygon is modeled with a polygon graph, where a 
vertex is associated with leading endpoints (of both target and 
mask); two vertices are connected if their endpoints are 
neighbors, with edge weight being assigned by a custom MLP. 
The graph is processed by GCN to yield a polygon feature. 

The whole layout consisting of a number of polygons is now 
modeled with a layout graph. Each vertex corresponds to a 
polygon while polygon feature is associated with it. Two 
vertices are connected if minimum distance (m) between 
corresponding polygons is within ambit distance; edge weight 
is harmonic mean of m and maximum distance (M). The layout 
graph is processed by another GCN to yield the average VPE.  

In curvilinear masks, maximum curvature is limited [3] and 
geometric continuity should be satisfied for mask 
manufacturability. Curvature constraint can be formulated by: 

𝜅𝜅 = �
𝑑𝑑𝑃𝑃′(𝑠𝑠)
𝑑𝑑𝑠𝑠

� =
|𝑃𝑃′(𝑡𝑡) × 𝑃𝑃′′(𝑡𝑡)|

|𝑃𝑃′(𝑡𝑡)|3 < 𝜅𝜅𝑡𝑡ℎ, (2) 

where 𝜅𝜅 is curvature and 𝜅𝜅𝑡𝑡ℎ is threshold value. For geometric 
continuity constraint, tangent vector of the (i-1)th curve and the 
ith curve should be parallel at ai. From the differentiation of 
Bézier curve equation, it is formulated as 𝑐𝑐𝚤𝚤−1𝑎𝑎𝚤𝚤�����������⃗  and 𝑎𝑎𝚤𝚤𝑏𝑏𝚤𝚤�������⃗  being 
parallel (i.e., cross product of these vectors should be zero). The 
loss function of the VPE predictor is now given by: 

𝐿𝐿 = 𝑉𝑉𝑃𝑃𝑉𝑉 + 𝜆𝜆1 ⋅ 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏, 𝑐𝑐) + 𝜆𝜆2 ⋅ 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐(𝑏𝑏, 𝑐𝑐), (3) 

where λ1  and λ2  are coefficients that penalty violations of 
constraints, 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑚𝑚𝑎𝑎𝑚𝑚 (0, 𝜅𝜅 − 𝜅𝜅𝑡𝑡ℎ) and 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐 =
∑ |𝑐𝑐𝚤𝚤−1𝑎𝑎𝚤𝚤�����������⃗  × 𝑎𝑎𝚤𝚤𝑏𝑏𝚤𝚤�������⃗ |𝑐𝑐 .  

 Intermediate points are identified while L is minimized. 
Gradient descent method is applied to update b and c until L 
converges to its minimum value.  

𝑏𝑏𝑐𝑐𝑐𝑐𝑛𝑛 = 𝑏𝑏𝑐𝑐𝑜𝑜𝑜𝑜 − 𝜂𝜂 ⋅ 𝛻𝛻𝑏𝑏𝐿𝐿, (4) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 − 𝜂𝜂 ⋅ 𝛻𝛻𝑐𝑐𝐿𝐿, (5) 

where 𝜂𝜂  is learning rate, 𝛻𝛻𝑏𝑏𝐿𝐿  and 𝛻𝛻𝑐𝑐𝐿𝐿  denote gradients of 𝐿𝐿 
with respect to b and c, respectively. Backpropagation is 
performed over VPE predictor to compute the gradients. 

III. EXPERIMENTS 
Experiments are performed while ArF lithography with 

193nm wavelength is assumed. The training dataset is from a 
5um × 5um M1 layout [4], which consists of approximately 1k 
segments; three other layouts with the same size are used for 
testing. The curvilinear OPC described in Section I.A [1] serves 
as a reference; maximum OPC iteration is set to 15 and target 
average VPE is set to 0.5nm, so OPC terminates if either is 
reached. 

The proposed OPC (triangles) is compared to the reference 
(circles) as shown in Figure 4. The number of iterations is 
substantially reduced from 12 to 3, since curve correction 
through two ML models is much more accurate than that in the 
reference. Decrease in actual OPC runtime is less substantial 
(from 200 min. to 60 min.) due to extra time required for 
optimizing VPE predictor to find intermediate points. Final 
average VPE is also reduced, from 0.49nm to 0.44nm. 

The proposed OPC consists of two ML models, MLP and 
VPE predictor. We mix the proposed OPC with the reference to 
understand the benefit of each model; in particular, MLP is used 
to find endpoints and the heuristic illustrated through Figure 
2(c) are used to determine the intermediate points. This OPC 
(boxes in Figure 4) lies between the proposed and the reference, 
as we expect. This suggests that the proposed OPC, in fact, 
benefits from both ML models.  

IV. SUMMARY 
A new curvilinear OPC method has been addressed. It relies 

on two ML models, MLP and VPE predictor, for accurate curve 
correction. In particular, MLP inspects the neighbors of 
endpoints (through PFT signals) so it identifies new endpoints 
more efficiently while neighbor patterns are taken into account. 
Intermediate points are located while VPE predictor is 
optimized with a goal of minimizing average VPE and 
violations of curvature and geometric continuity constraints. 
Experiments have shown substantial reduction in the number of 
OPC iterations (from 12 to 3) while VPE is also reduced.  
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Figure 3. VPE predictor. 

Figure 4. Comparison of three curvilinear OPC methods in average VPE and 
the number of OPC iterations. 
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