
Fast IR-Drop Prediction of Analog Circuits Using
Recurrent Synchronized GCN and Y-Net Model

Seunggyu Lee*, Daijoon Hyun†§, Younggwang Jung*, Gangmin Cho*, Youngsoo Shin*
*School of Electrical Engineering, KAIST, Daejeon 34141, Korea

†Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Korea

Abstract—IR-drop analysis of analog circuits is a challenge
because the current waveforms of target transistors, with con-
nection to VDD or VSS, are extracted through transistor-level
simulation, and the analysis itself, in particular dynamic one,
is computationally expensive. We introduce two ML models for
high-speed analysis. (1) Recurrent synchronized graph convolu-
tional network (RS-GCN) is used for quick prediction of current
waveforms. Each subcircuit is modeled with recurrent-GCN, in
which recurrent connection is for the analysis in discrete time
series. Recurrent-GCNs are synchronized to take account of
common connections including VDD, VSS, and the inputs and
outputs of subcircuits. Experiments show that RS-GCN takes
only 0.85% of SPICE runtime, while prediction error is 14%
on average. (2) Y-Net is applied for actual IR-drop analysis
of small layout partition, one by one. Pad location and PDN
resistance are provided as one 2D input of Y-Net; they are
encoded and go through GCNs to account for neighbor layout
partitions. Current map, derived from RS-GCN, becomes the
second input. Final IR-drop map is extracted from the decoder.
Experiments demonstrate that Y-Net, in conjunction with RS-
GCN for current extraction, takes 2.5% of runtime from popular
commercial solution with 15% prediction inaccuracy.

Index Terms— IR-drop analysis, analog circuit, RS-GCN,
Y-Net.

I. INTRODUCTION

Voltage drop caused by power distribution network (PDN)
distorts signals and thus degrades the performance of analog
circuits; for instance, IR-drop of 5% reduces the bandwidth
of phase-locked loop circuit by 25% [1]. It becomes more
important because IR-drop increases with technology scaling
down due to the higher resistance of copper interconnect and
the higher current density [2].

IR-drop analysis for analog circuits is very time-consuming.
A transistor-level simulation of the entire circuit is preceded
to characterize the current waveforms of transistors connected
to power or ground, called target transistors. PDN is then
modeled as a resistive network with current sources rep-
resenting the current waveforms (or their average values)
obtained by the simulation. The voltage drops at the target
transistors are calculated using modified nodal analysis [3],
where considering the actual switching of function cells may
take a lot of time. This entire process takes 16 hours for a
circuit with 57k transistors.

This work was supported by Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment (MSIT) (No. RS2022-00207425, Data-Driven Design Technology for AI
Semiconductor). The EDA tool was supported by the IC Design Education
Center (IDEC), Korea.

§Corresponding author

There have been prior works related to fast IR-drop analysis
for analog circuits. First, fast transistor-level simulation can
be used to characterize the current waveforms. It employs
various acceleration methods, such as table-based transistor
modeling [4], parasitic reduction [5], matrix partitioning [6],
and hierarchical simulation [7]. But, despite an accuracy loss
of more than 15%, the speed-up is only about 7 times. Next,
several machine learning (ML) models have been introduced to
predict IR-drop in digital circuits. In [8], XG-boost predicts the
voltage drop at a node by roughly calculating and considering
the effective resistance between the node, voltage sources, and
current sources in a local. U-Net receives the image maps of
flowing current, effective resistance to voltage sources, and
pad location for the local area and outputs an IR-drop map
for that area [9]. These methods are not suitable for analog
circuits using irregular PDN, where IR-drop can be affected
by distant components.

In this paper, we address fast IR-drop prediction of analog
circuits using two ML models. First, recurrent synchronized
graph convolutional network (RS-GCN) is introduced to pre-
dict the current waveforms at target transistors. GCN is
employed to consider the effects of connected components in
a subcircuit, and it is recurrently configured to predict the
current values over simulation time, called recurrent-GCN.
The common connections including VDD, VSS, and the inputs
and outputs of subcircuits are considered by synchronizing
recurrent-GCNs. Second, Y-Net model is applied to each
layout partition for IR-drop analysis, where the current wave-
forms obtained through RS-GCN are input in the form of a
two-dimensional map. The other input maps for pad location
and PDN resistance go through an encoder and multiple
GCNs to take into account the effective resistances from target
transistors to pads; this is much faster than calculating them
one by one. To consider the impact between layout partitions,
graph convolutions are performed on the features of adjacent
partitions, and IR-drop map is finally obtained from a decoder.

Our main contributions are summarized as follows.
• RS-GCN for current waveform prediction, which consid-

ers the continuity of current over time through recurrent-
GCN and the current flowing between subcircuits using
synchronize connection.

• Y-Net for IR-drop analysis, which takes account of the
impact of distant areas on IR-drop and extracts the fea-
tures of effective resistance through graph convolutions.

2024 Design, Automation & Test in Europe Conference (DATE 2024)	

 979-8-3503-4859-0/DATE24/© 2024 EDAA

	

(b)

VDD

VSS

P1 P2

N1 N2VIN+ VIN-

N3VB1

VDD

VSS

N4nc

nc

C1

R1

P3VB2

VIN+ VIN-

VB2P1

N1

N3

N2

P2 P3

N4VB1

VDD

(a)
VSS

nc

C1

R1

Subcircuit A Subcircuit B

Target vertex
Common

vertex

Fig. 1. (a) An example circuit with two subcircuits, and (b) graph model of
subcircuits.

The remainder of this paper is organized as follows. Sec-
tion II introduces RS-GCN, and its application to test circuits
is demonstrated. In Section III, we present Y-Net model, and
the experimental results are provided. Conclusions are drawn
in Section IV.

II. CURRENT WAVEFORM PREDICTION USING RS-GCN

In cell-based digital circuits, the current waveform of each
cell or even a block may be modeled beforehand or be
extracted from a library. This does not hold in analog circuits.
The current waveform of each transistor should be obtained
through transistor-level simulation before actual IR-drop anal-
ysis, which is impractical. Thus, a fast prediction of current
waveform for target transistors is performed through RS-GCN.

A. Graph Modeling and Input Matrices

Fig. 1 shows an example of graph modeling for a circuit
with two subcircuits, in which vertices correspond to circuit
components such as transistors, resistors, capacitors, VDD,
VSS, and bias voltages. In addition, a connection vertex is
introduced to indicate how and where subgraphs should be
connected (see nc). The transistors connected to VDD or VSS
are called target transistors and modeled by target vertices
(gray circles), while other transistors are marked as non-target
(white circles). The connection between the components is
represented by an edge. Note that there are common vertices
(bold circles) between the two subgraphs, such as VDD, VSS,
and nc in Fig. 1(b).

Each vertex is associated with a feature vector of 10
elements, representing length (ln) and width (wn) of nMOS,
those of pMOS, power voltage, ground voltage, bias volt-
age, resistance, capacitance, and a binary number indicating
whether it is a connection vertex. In the feature vector, only
the elements related to the vertex have non-zero values, and
the rest are set to 0; a vertex of nMOS, for example, has a
feature vector with all elements set to 0 except ln and wn.
For a subcircuit with N components, N feature vectors form

Ya[t1] GCN

Xa[t1] Aa

Ya[t2]
GCN

Xa[t2] Aa

Yb[t1] GCN

Xb[t1] Ab

Yb[t2]

Ib[t1]

FC1

Ia[t1]

FC1

Ib[t2]

FC1

Ia[t2]

FC1

GCN

Xb[t2] Ab

(a)

(b)

Synchronize

Graph convolution Synchronize

Ya[t3]

Yb[t3]
...

...

X

Y

WX

WY

H0 H5

Avg FC2 Avg FC2

Y*

...

Fig. 2. (a) RS-GCN architecture and (b) the structure of GCN block.

a feature matrix X ∈ RN×10, and the structure of the graph is
represented by adjacency matrix A, where rows and columns
indicate the vertices in the graph, and the entries (i, j) and (j,
i) are set to 1 if there is an edge between vertices i and j, 0
otherwise.

B. RS-GCN Model

Fig. 2(a) illustrates the architecture of RS-GCN for an
example circuit with two subcircuits. A recurrent-GCN, which
consists of multiple layers based on the time steps, is con-
structed for each subcircuit. In a layer, X, A, and recurrent
input Y are fed into GCN block, where Y in the first layer is
set to zero matrix. The GCN output is passed as a recurrent
input to the next layer, and at the same time, 10 feature values
of each target vertex go into a fully-connected (FC) layer FC1

to get the current value at a time step. The current value at
the next time step can be obtained from the output of FC1

in the next layer. In this way, the current waveform is finally
obtained from the current values at the entire time steps.

Fig. 2(b) shows the structure of GCN block. The input
feature H0 of the first graph convolutional layer (GCL) is
generated by

H0 = XWx +YWy, (1)

where Wx and Wy are the weight matrices for X and Y,
respectively. By graph convolution, the hidden state of l + 1
layer Hl+1 is determined by

Hl+1 = σ(D̂− 1
2 Â D̂− 1

2 Hl Wl
h), (2)

where Â is A plus identity matrix I. Â is normalized by
D̂− 1

2 Â D̂− 1
2 so that the entries of each row sum to one, where

D̂ corresponds to a diagonal vertex degree matrix of Â. σ(·) is
a LeakyReLU activation, and Wl

h is a hidden weight matrix of
l layer. After 5 graph convolutions, the common vertex features
are averaged for each element with the features passed through

TABLE I
CURRENT WAVEFORM ERROR AND RUNTIME OF RS-GCN AND

FAST-SPICE, WITH SPICE AS A REFERENCE

Circuits #TRs
(k)

SPICE Fast-SPICE RS-GCN
Time Error Time Error Time

sqrt 1.2 2601s 10% 587s 13% 18s
dac 2.6 3517s 12% 712s 14% 26s

voter 4.2 4475s 16% 852s 15% 35s
mem_pl 7.4 6502s 16% 941s 12% 66s

smult 11.5 8891s 19% 1042s 14% 83s
ram2k 13.8 11946s 22% 1452s 14% 101s
chip2 18.8 16299s 21% 2029s 15% 132s
Avg. 17% ×1/7 14% ×1/117

the synchronize connections and linearly transformed by FC2.
The output replaces the common vertex features in the matrix
of size N×10, which enters into GCL again. The process is
repeated 3 times.

C. Model Training

Total 20k sample designs are generated from 7 circuits,
where 70% of samples are used for training and the rest for
validation. To this end, for each circuit, operating voltage,
bias voltages, the lengths and widths of transistors, the sizes
of capacitors and resistors, and input voltage waveforms are
each scaled by one of the pre-determined ratios. The refer-
ence current waveforms of target transistors are obtained by
commercial tool [10].

We limit the maximum number of epochs to 500 and apply
early stopping with the patience of 5 epochs [11], where Adam
optimizer [12] is used with a learning rate of 0.001. The weight
values of RS-GCN are optimized such that a loss function L
is minimized. L is formulated by

L =
1

T

1

N

T∑
t=1

N∑
i=1

(Ii[t]− Îi[t])
2, (3)

where N is the number of target transistors in the circuit and T
is the number of time steps. Ii[t] and Îi[t] denote the predicted
current value and the actual current value of target transistor i
at time step t, respectively. We assume that the derivative of the
average function for the synchronization signal is zero. As a
result, RS-GCN is treated as multiple separate recurrent-GCNs
(imagine Fig. 2(a) without synchronize). In a recurrent-GCN,
weight values are shared across all time sequences. Thus, the
backpropagation through time algorithm [13] is adopted to
propagate error signals backward through time. The gradients
obtained by propagating to several recurrent-GCNs are then
averaged to update the weight values.

D. Experimental Results

Experiments are carried out to assess RS-GCN model. A
set of test circuits is compiled from MCNC benchmarks [14],
and is listed in Table I in order of circuit complexity. Note
that these circuits have not been used to train the model. The
reference current waveforms at target transistors are extracted
through transistor-level simulation (SPICE) with industrial 28-
nm process design kit [10], and the associated runtime is given
in the third column.

W
av

ef
or

m
 p

re
di

ct
io

n
er

ro
r (

%
)

0

10

15

#Components of a subcircuit
0 30 120 150

5

60 90

dac (38 subcircuits)

ram2k (273 subcircuits)

chip2 (446 subcircuits)

Fig. 3. Current waveform prediction error per subcircuit.

1) Prediction Accuracy: RS-GCN as well as fast transistor-
level simulation (fast-SPICE) [15] are compared to SPICE in
error and runtime. Waveform error is the percentage mismatch
(in area-wise) with SPICE waveform as a reference; the error
value in Table I is the average over all the waveforms. RS-
GCN exhibits 14% error on average of all test circuits. Notably
this is smaller than 17% error from fast-SPICE. In addition,
fast-SPICE shows larger errors as the circuit size increases
due to more approximations from node reduction and matrix
partitioning [16]. The accuracy of RS-GCN is not directly
affected by the circuit size, but is affected by the number of
subcircuits and their complexities.

Fig. 3 shows the errors of waveform prediction according
to the number of subcircuit components. In three circuits,
dac, ram2k, and chip2, the error increases as the number
of components increases. For large subcircuits, the impact of
components on the current waveform may not be sufficiently
considered by a fixed number of GCLs. Also, the error in-
creases as the number of subcircuits increases. For subcircuits
with 40 components, the average error of chip2 is 3% and
5% greater than those of ram2k and dac, respectively. The
error increase comes from making a large number of feature
vectors at VDD or VSS into one vector by synchronization.
In RS-GCN, synchronization and recurrent structure are very
important in terms of prediction accuracy. On average of all
test circuits, removing synchronize connections increases the
error by 7.5%; replacing recurrent-GCN with a single GCN
increases the error by 4.4%.

2) Runtime: RS-GCN prediction is much faster than SPICE
as well as fast-SPICE. Specifically, on average of all test
circuits, its runtime is 1/117 of SPICE runtime while the
runtime of fast-SPICE is only 1/7 as presented in Table I.
Graph convolutions and the operations in FC layers take 56%
and 33% of the total RS-GCN runtime, respectively. The
runtime is proportional to circuit size because the number
of operations is dependent on the number of vertices in
subcircuits. For instance, the operations of graph convolution
are mostly performed on the product of input feature Hl and
weight matrix Wl

h, in which the row size of Hl is the number
of vertices in a subcircuit.

III. IR-DROP PREDICTION USING Y-NET

In analog circuits, the empty spaces in metal layers are filled
with PDN straps as much as possible to prevent IR-drop vio-

1024xL

1024

2048

L: # of all layers
 (= M+V+1)
M: # of metal layers
V: # of via layers

Resistance maps

Current map

IR-drop map

GCN3

IR-drop dec

Concat

256x256

M
V

GCN1+GCN2

PDN enc

PAD location map

256x256

Current enc.

256x256

…

…

Features from
other partitions

2048

1024xL
1024

2048

Features from
other partitions

Current enc

Fig. 4. Y-Net architecture for IR-drop prediction.

lations [17]. As a result, PDN is formed very irregularly, and
IR-drop is affected by the features even at distant locations.
However, the previous works [8], [9] only consider the input
features in a local area, and the IR-drop predictions are not
accurate for analog circuits. Thus, we propose Y-Net which
predicts IR-drop considering the impact between distant areas.

A. Input Maps

Y-Net receives three types of input maps: pad location map,
resistance map, and current map. They are extracted from each
partition of corresponding layer, where a map consists of 256
pixels × 256 pixels and a pixel corresponds to a grid of 0.9
um × 0.9 um in the layout.

• Pad location map: the locations of power or ground pads
are specified in the map in such a way that the pixels
corresponding to the centers of pads contain 1 and the
other pixels are assigned 0.

• Resistance map: the resistance value of the physical
component (metal or via) constructing PDN is assigned
to each pixel in proportion to the grid area overlapped by
the component. This map is generated for metal and via
layers.

• Current map: the amount of current flowing through a
target transistor is assigned to each pixel in proportion
to the grid area overlapping the active region of the
transistor.

B. Y-Net Architecture

Fig. 4 shows the architecture of Y-Net, which consists of
two encoders, three GCNs, and a decoder.

1) Encoder: A pad location map and resistance maps
individually go through PDN encoder while a current map
is given to current encoder. PDN encoder and current encoder
have the same structure as illustrated in Fig. 5(a), but their
weights are trained differently. The encoders consist of 6
convolutional layers with 3×3 kernels and 2×2 stride. Each
convolution doubles the number of channels and reduces the
width and height of the map by half, which is followed by

2048

256x256

4x4x2048

Zero
padding

0 0
0 00 0

0 00 0
0 0

8x8x512
16x16x128

...

(b)

(a)

1x1x2048

256x256x1
128x128x2

...
1024Input

map FC
1024

Flatten

4x4x64

Convolution

Deconvolution

Reshape

Fig. 5. Structures of (a) encoder and (b) decoder.

GCN1 GCN2

P: # of partitions

M

V
1

1024
P Concat

Fig. 6. Single stage of serial GCN.

batch normalization and LeakyReLU activation. The output
of convolutional layers is flattened and goes through an FC
layer to generate a feature vector with 1024 values.

2) Serial GCN (GCN1+GCN2): Fig. 6 illustrates a single
stage of serial GCN which consists of GCN1 and GCN2 in
series; this is repeated 3 times in serial GCN. The outputs of
PDN encoder for all partitions form the stacked matrices of
size 1024×L×P , where L is the number of all PDN layers
and P is the number of partitions. Only the features for metal
layers are provided to GCN1, and its outputs are concatenated
with the features of pad and via layers to be fed into GCN2.
Metal layer features among the outputs of GCN2 go into GCN1

of the second stage, and the same process is repeated.
Both GCNs consist of 5 GCLs, and graph convolution is

performed as in Eq. (2) for each layer with weight matrices of
size 1024×1024. The graph modelings of GCN1 and GCN2

are illustrated in Fig. 7(b) and (c), respectively. For GCN1,
each partition of metal layers is modeled as a vertex, and
the vertices of partitions adjacent in the routing direction are
connected by an undirected edge. In the adjacency matrix, two
entries (i, j) and (j, i) are set to 1 if the vertices i and j are
connected, 0 otherwise. The input of GCN1 is reshaped to the
feature matrix of size MP×1024, where M is the number of
metal layers. For GCN2, the partitions of all PDN layers are
modeled by vertices and a directed edge connects a vertex to
another one that is placed at the same location of the lower
layer. In the adjacency matrix, an entry (i, j) is set to 1 if
an edge connects vertices i and j. The feature matrix of size
LP×1024 consists of the features of all PDN layers.

3) GCN3: From the output of serial GCN, only M1 layer
features for the partition are selected, and they are concate-
nated with current features to generate a vector with 2048
values. It is fed into GCN3 together with concatenated feature

M2

M1

V1

PAD

Mx

(b) (c)

...

(a)

PDN strap

Via

Vertex Edge

Fig. 7. Graph modeling for GCN1 and GCN2 in Y-Net: (a) the example of
given PDN layers and graph modelings for (b) GCN1 and (c) GCN2.

vectors from other partitions, which constructs a feature matrix
of size P×2048. In graph modeling, each partition is modeled
as a vertex, and the vertices of partitions that are adjacent in
the layout are connected by an edge. The adjacency matrix of
size P×P represents the connection of vertices in the graph;
if vertices i and j are connected, two entries (i, j) and (j, i)
are set to 1. GCN3 consists of 5 GCLs, where each graph
convolution is performed the same as Eq. (2) with the weight
matrices of size 2048×2048. The graph convolutions are
repeatedly performed to consider the impact between distant
partitions on IR-drop.

4) Decoder: The output of GCN3 is divided into P feature
vectors of size 2048, and each vector is individually fed into
IR-drop decoder. Fig. 5(b) shows the structure of decoder.
The vector is reshaped to 1×1×2048, and zeros are added
to generate 4×4×2048 maps, where a pixel value is copied to
four pixels in 4×4 map as illustrated in the figure. It then goes
through 6 deconvolutional layers with 4×4 kernels and 2×2
stride, and batch normalization and LeakyReLU activation
are performed after every deconvolution. This deconvolution
increases the map size twice for every layer and gradually
decreases the number of channels according to the number
of kernels. The decoder outputs an IR-drop map for each
partition, and those maps are combined to generate one IR-
drop map of the entire circuit layout.

C. Model Training

The sample designs, used for RS-GCN in Section II-C, are
physically implemented for training Y-Net, and the reference
IR-drop values at the power pins of each design are obtained
from a commercial tool [18]. We use the mean squared error
of IR-drop prediction as a loss function, which is represented
by

Loss =
1

P

1

N

P∑
j=1

N∑
i=1

(V j
i [t]− V̂ j

i [t])
2, (4)

where N is the number of pixels in output map, V j
i [t] is the

predicted IR-drop of pixel i on partition j at time step t, and
V̂ j
i [t] is the actual IR-drop. The weights of Y-Net are updated

every 16 samples to minimize the loss function. To this end,
the backpropagation algorithm is used to calculate the gradient
of the loss function with respect to the weights, where the
derivatives of the features from other partitions are set to zeros.

TABLE II
COMPARISON OF VARIOUS IR-DROP ANALYSIS METHODS USING ML

MODELS, SUCH AS XG-BOOST [8], U-NET [9], AND Y-NET

Circuits XG-boost [8] U-Net [9] Y-Net
MAPE Time MAPE Time MAPE Time

sqrt 30% 12s 20% 121s 11% 35s
dac 30% 21s 20% 267s 12% 55s

voter 29% 32s 21% 446s 12% 77s
mem_pl 31% 55s 20% 711s 11% 145s

smult 31% 78s 20% 965s 11% 184s
ram2k 32% 101s 20% 1372s 12% 268s
chip2 32% 132s 20% 2350s 12% 471s
Avg. 31% ×1/32 20% ×1/2 11% ×1/11

Y-Net is trained with Adam optimizer at a learning rate of
0.001. The maximum number of epochs is set to 500, and
early stopping is used with the patience of 5 epochs.

D. Experimental Results

Experiments are carried out on the analog circuits employed
in Section II-D. Regular PDN synthesis is performed inde-
pendently with signal routing, and they are merged in such
a way that the straps near metal routings are removed to
avoid design rule violations [17]. For these designs, IR-drop
analysis is performed through Y-Net over 10 ns period with
1 ps time step, which is the same condition as the current
waveform simulation. Reference IR-drop values are obtained
from a commercial solution (Totem) [18].

1) Assessment of Y-Net: In Table II, the accuracy and
runtime of Y-Net are compared with those of the previous
works, XG-boost [8] and U-Net [9]. The three models use the
same reference current waveforms as input and their predicted
IR-drops are compared with the reference IR-drop values. XG-
boost uses a simple approximation of the effective resistance
for feature extraction, which greatly reduces runtime, but at
the cost of 31% loss of accuracy as listed in columns 2-3. On
the other hand, U-Net shows better accuracy with the MAPE
of 20%, which comes from the utilization of U-Net model and
the accurate calculation of effective resistance. In this work,
the resistive network of PDN is simplified to a circuit with
equivalent resistances between M1 power pins and V1 power
vias and those between the power vias and power pads. The
effective resistance is then calculated in the equivalent circuit.
Even though the total amount of computation is reduced,
the runtime is not significantly reduced because test circuits
contain a lot of V1 power vias.

The proposed model, Y-Net, achieves the MAPE of 11%,
9% smaller than U-Net, as shown in column 6. This is because,
unlike other methods, Y-Net takes into account the effect
on IR-drop between distant areas through GCN3. If GCN3

is removed from Y-Net, the MAPE increases to 19%. The
effectiveness of serial GCN is also identified by replacing it
with other models; the average error goes up by 9% if we use
an FC instead while replacing serial GCN with a single GCN
increases the error by 5%. Y-Net performs accurate predictions
even when PDN is highly irregular. We create irregular PDNs
for a circuit (b18) by randomly removing PDN straps, and the
three ML models are used to predict IR-drop for those PDNs.

IR
-d

ro
p

er
ro

r (
%

)

10

20

30

Strap removal ratio (%)
0

0
15 30

U-Net

Y-Net

45

XG-boost

Fig. 8. The IR-drop errors of XG-boost, U-Net, and Y-Net according to the
randomly removed strap ratio, i.e. the irregularity of PDN.

R
un

tim
e

(s
)

5 10 15

chip2

The number of partitions
0

0

smult ram2k

voter

mem_pl
dacsqrt

20

200

400

Fig. 9. Correlation between the runtime of Y-Net and the number of partitions.

As a result, as shown in Fig. 8, the prediction errors of XG-
boost and U-Net increase as PDN becomes more irregular,
while Y-Net always maintains similar accuracy.

The runtime of Y-Net is reduced by a factor of 11 (see
column 7), which is achieved by embedding the effective
resistance feature through serial GCN rather than directly
calculating it. The runtime of Y-Net is largely affected by
the number of partitions. The number of rows of input feature
matrix for GCN is proportional to the number of partitions,
and for each partition, encoding and decoding operations are
carried out. Accordingly, the linear relationship between the
runtime of Y-Net and the number of partitions is shown in
Fig. 9.

2) Y-Net with RS-GCN: Table III shows the MAPE and the
runtime of Y-Net with RS-GCN (RS-GCN+Y-Net) in columns
5-6, and they are compared with the results of a commer-
cial solution, Totem with fast-SPICE (Fast-SPICE+Totem),
listed in columns 3-4. The MAPEs of the two methods are
calculated by the comparison with reference IR-drop values
(SPICE+Totem). On average for all test circuits, RS-GCN+Y-
Net shows an error of 15%, which is almost the same with
Fast-SPICE+Totem; in case of maximum error, RS-GCN+Y-
Net is better at 17% than Fast-SPICE+Totem at 19%. In
terms of runtime, RS-GCN+Y-Net is 40 times faster than the
reference method, and exhibits 14 times speed-up compared
to Fast-SPICE+Totem. On average, in the prediction of RS-
GCN+Y-Net, feature map extraction and IR-drop prediction of
Y-Net take 21% and 49% of the total runtime, respectively.
The remaining runtime is spent on the graph modeling of
subcircuits and current waveform prediction through RS-GCN.

IV. CONCLUSION

We have addressed fast IR-drop analysis for analog circuits.
RS-GCN is introduced to extract the current waveforms at the

TABLE III
COMPARISON OF IR-DROP ANALYSIS BETWEEN COMMERCIAL TOOLS

(FAST-SPICE+TOTEM) AND THE PROPOSED MODELS (RS-GCN+Y-NET)

Circuits
SPICE
+Totem

Fast-SPICE
+Totem

RS-GCN
+Y-Net

Time MAPE Time MAPE Time
sqrt 49m 10% 15m 15% 1m
dac 68m 12% 22m 15% 1m

voter 93m 14% 33m 16% 2m
mem_pl 138m 15% 46m 13% 4m

smult 188m 17% 57m 15% 4m
ram2k 255m 19% 80m 15% 6m
chip2 346m 18% 108m 16% 10m
Avg. 15% ×1/3 15% ×1/40

transistors connected to power or ground. PDN is modeled as
a resistive network with the current sources derived from RS-
GCN, and IR-drop analysis is then performed using Y-Net.
Experimental results show that RS-GCN is 17× faster than
fast-SPICE with 3% better accuracy. Y-Net, in conjunction
with RS-GCN for current extraction, takes 2.5% of runtime
from popular commercial solution with 15% prediction inac-
curacy.

REFERENCES
[1] M.-H. Chou and S.-I. Liu, “A type-I PLL with foreground loop band-

width calibration,” IEEE Trans. on Circuits and Systems II, vol. 68,
no. 4, pp. 1103–1107, Apr. 2021.

[2] A. Ajami, K. Banerjee, A. Mehrotra, and M. Pedram, “Analysis of IR-
drop scaling with implications for deep submicron P/G network designs,”
in Proc. Int. Symp. on Quality Electronic Design, Mar. 2003, pp. 35–40.

[3] C.-W. Ho, A. Ruehli, and P. Brennan, “The modified nodal approach
to network analysis,” IEEE Trans. on Circuits and Syst., vol. 22, pp.
504–509, Jun. 1975.

[4] A. Rofougaran and A. A. Abidi, “A table lookup FET model for accurate
analog circuit simulation,” IEEE Trans. on Comput.-Aided Design Integr.
Circuits Syst., vol. 12, no. 2, pp. 324–335, Feb. 1993.

[5] J. Rommes and W. H. A. Schilders, “Efficient methods for large resistor
networks,” IEEE Trans. on Comput.-Aided Design Integr. Circuits Syst.,
vol. 29, no. 1, pp. 28–39, Jan. 2010.

[6] K. J. Kerns, M. Bhattacharya, S. Rudnaya, and K. Gullapalli, “Au-
tomatic, hierarchy-independent partitioning method for transistor-level
circuit simulation,” U.S. Patent 0 030 665, Jan. 29, 2009.

[7] K. J. Kerns and Z. Peng, “SPICE optimized for arrays,” U.S. Patent 7
324 363, Jan. 29, 2008.

[8] C.-H. Pao, A.-Y. Su, and Y.-M. Lee, “XGBIR: an XGBoost-based IR
drop predictor for power delivery network,” in Proc. Design, Automation
& Test in Europe, Mar. 2020, pp. 1307–1310.

[9] Y. Kwon, G. Jung, D. Hyun, and Y. Shin, “Dynamic IR drop prediction
using image-to-image translation neural network,” in Proc. Int. Symp.
on Circuits and Systems, May 2021, pp. 1–5.

[10] “HSPICE User Guide,” Synopsys, Sep. 2008.
[11] G. Montavon, G. Orr, and K.-R. Müller, Neural Networks: Tricks of the

Trade. Berlin, Germany: Springer, 2012, pp. 55–69.
[12] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,”

arXiv:1412.6980 [cs.LG], Dec. 2014.
[13] T. Mikolov et al., “Extensions of recurrent neural network language

model,” in Proc. Int. Conf. on Acoustics, Speech and Signal Processing,
May 2011, pp. 5528–5531.

[14] MCNC benchmarks, Accessed: Dec. 22, 2022. [Online]. Available:
http://www.intusoft.com/benchmarks.htm

[15] “FineSim User Guide,” Synopsys, Jul. 2012.
[16] P. Li, L. M. Silveira, and P. Feldmann, Simulation and Verification of

Electronic and Biological Systems. Berlin, Germany: Springer, 2011,
pp. 23–42.

[17] G. Balsdon, “Filling vacant areas of an integrated circuit design,” U.S.
Patent 8 458 636, Jun. 4, 2013.

[18] “Totem User Guide,” Ansys, Apr. 2018.

