
Ibrahim (Abe) M. Elfadel
Duane S. Boning · Xin Li Editors

Machine
Learning in
VLSI Computer-
Aided Design

Machine Learning in VLSI Computer-Aided
Design

Ibrahim (Abe) M. Elfadel • Duane S. Boning
Xin Li
Editors

Machine Learning in VLSI
Computer-Aided Design

123

Editors
Ibrahim (Abe) M. Elfadel
Department of Electrical
and Computer Engineering
and Center for Cyber Physical Systems
Khalifa University, Abu Dhabi, UAE

Duane S. Boning
Massachusetts Institute of Technology
Cambridge, MA, USA

Xin Li
Department of Electrical
and Computer Engineering
Duke University, Durham, NC, USA

ISBN 978-3-030-04665-1 ISBN 978-3-030-04666-8 (eBook)
https://doi.org/10.1007/978-3-030-04666-8

Library of Congress Control Number: 2019930838

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-04666-8

To Shaza, Adam, Ella, and Lily
Abe

To Peggy, Will, and Tom
Duane

To Karen and Thomas
Xin

Tell me and I forget.
Teach me and I remember.
Involve me and I learn.

Ben Franklin

Foreword

As an active branch of applied computer science, the field of VLSI computer-aided
design (VLSI CAD) has always been at the technological forefront in incorporating
cutting-edge algorithms in the software tools and methodologies that electronics
engineers have used to weave the digital fabric of our world.

This book amply demonstrates that in line with its historical track record, VLSI
CAD has also been at the leading edge in making good use of machine-learning
technologies to further automate the design, verification, and implementation of the
most advanced chips.

Machine learning and VLSI CAD have in common several main characteristics
that may have greatly facilitated their interlock. The first is that they are both
consumers of Big Data. In fact, Moore’s law has essentially guaranteed that chip
data grow exponentially big to the point that having tens of billions of transistors in
a chip is now so common and almost taken for granted. The second characteristic
that they have in common is a structured approach for controlling complexity. In
machine learning, this approach is most apparent in the use of layered networks
as inference and generalization engines. In VLSI CAD, complexity is controlled
through a well-defined abstraction hierarchy, going from the transistor and its
technology as raw data to the chip architecture as a model of processing and
computation. The third common characteristic of the two fields is their focus on
computational efficiency, be it to shorten turn-around time in chip design, as is the
case in VLSI CAD, or to promptly detect patterns in time series as is the case
in mission-critical cloud analytics. The fourth common characteristic is a focus
on automated optimization and synthesis that VLSI CAD has spearheaded, and
synthesis is now becoming an important trend for the design of neural networks
in machine learning as well.

It is therefore almost natural to think of VLSI CAD engineers as the original
data scientists who have been instrumental not only in dealing with big data in the
context of chip design but also in enabling the very chips that have ushered the Big
Data era and made it a social and business reality.

The various chapters of this timely and comprehensive book should give the
reader a thorough understanding of the degree to which machine learning methods

vii

viii Foreword

have percolated into the various layers of the chip design hierarchy. From lithogra-
phy and physical design to logic and system design, and from circuit performance
estimation to manufacturing yield prediction, VLSI CAD researchers have already
brought state-of-the-art algorithms from supervised, unsupervised, and statistical
learning to bear on pressing CAD problems such as hotspot detection, design-space
exploration, efficient test generation, and post-silicon measurement minimization.

Machine learning in VLSI CAD is expected to play an increasingly important
role not only in improving the quality of the models used in individual CAD tools
but also in enhancing the quality of chip designs that result from the execution of
entire CAD flows and methodologies.

As the semiconductor industry embraces the rising swell of cognitive systems
and edge intelligence, this book could serve as a harbinger and an example of the
osmosis that will exist between our cognitive structures and methods, on the one
hand, and the hardware architectures and technologies that will support them, on
the other.

The value proposition of automation is that it compresses schedules, reduces
costs, and eliminates human errors. In the case of VLSI CAD, the automation has
achieved not only these objectives but also the infinitely more important outcome
of a seamless implementation of a positive feedback loop whereby computers are
used to design more powerful computers. This positive feedback loop is the invisible
hand of Moore’s law.

As we transition from the computing era to the cognitive one, it behooves us
to remember the success story of VLSI CAD and to earnestly seek the help of the
invisible hand so that our future cognitive systems are used to design more powerful
cognitive systems. This book is very much aligned with this ongoing transition from
computing to cognition, and it is with deep pleasure that I recommend it to all those
who are actively engaged in this exciting transformation.

IBM T. J. Watson Research Center Dr. Ruchir Puri
Yorktown Heights, NY, USA IBM Fellow, IBM Watson
August 2018 CTO & Chief Architect

Acknowledgments

We would like to acknowledge and thank the many reviewers who have helped us
in getting this book to its present state by closely reading the early versions of its
chapters and sharing their valuable comments, through us, with the chapter authors.
Their inputs were instrumental in improving the overall quality of the entire book.
In alphabetical order, they are:

Bei Yu, Bowen Zhang, Christopher Lang, Haibao Chen, Handi Yu, Hector Gonzalez Diaz,
Hongge Chen, Jun Tao, Mark Po-Hung Lin, Nguyen Manh Cuong, Pingqiang Zhou, and
Renjian Pan

We also acknowledge the early LaTeX technical support we received from Shahzad
Muzaffar as well as the editorial advice and guidance Charles Glaser and the
Springer Team provided us with.

The first editor would like to acknowledge the IBM T. J. Watson Research Center,
Yorktown Heights, NY, for hosting him on his research leave in Summer 2018,
during which the composition of this book was finalized.

Of course, a book of such scope and relevance would not have been possible
without the timely contributions of all its authors. To them go our warmest thanks
and deepest gratitude.

Abu Dhabi, UAE Ibrahim (Abe) M. Elfadel
Cambridge, MA, USA Duane S. Boning
Durham, NC, USA Xin Li
August 2018

ix

Contents

1 A Preliminary Taxonomy for Machine Learning in VLSI CAD 1
Duane S. Boning, Ibrahim (Abe) M. Elfadel, and Xin Li
1.1 Machine Learning Taxonomy . 1
1.2 VLSI CAD Abstraction Levels . 5
1.3 Organization of This Book . 6
References . 15

Part I Machine Learning for Lithography and Physical Design

2 Machine Learning for Compact Lithographic Process Models 19
J. P. Shiely
2.1 Introduction . 19
2.2 The Lithographic Patterning Process . 20
2.3 Machine Learning of Compact Process Models 27
2.4 Neural Network Compact Patterning Models . 47
2.5 Conclusions . 66
References . 66

3 Machine Learning for Mask Synthesis . 69
Seongbo Shim, Suhyeong Choi, and Youngsoo Shin
3.1 Introduction . 69
3.2 Machine Learning-Guided OPC . 70
3.3 Machine Learning-Guided EPC . 78
3.4 Conclusions . 91
References . 92

4 Machine Learning in Physical Verification, Mask Synthesis,
and Physical Design . 95
Yibo Lin and David Z. Pan
4.1 Introduction . 95
4.2 Machine Learning in Physical Verification . 96
4.3 Machine Learning in Mask Synthesis. 101

xi

xii Contents

4.4 Machine Learning in Physical Design . 106
4.5 Conclusions . 112
References . 113

Part II Machine Learning for Manufacturing, Yield,
and Reliability

5 Gaussian Process-Based Wafer-Level Correlation Modeling
and Its Applications . 119
Constantinos Xanthopoulos, Ke Huang, Ali Ahmadi, Nathan Kupp,
John Carulli, Amit Nahar, Bob Orr, Michael Pass,
and Yiorgos Makris
5.1 Introduction . 119
5.2 Gaussian Process-Based Regression Models . 123
5.3 Applications . 145
5.4 Conclusions . 169
References . 172

6 Machine Learning Approaches for IC Manufacturing Yield
Enhancement . 175
Hongge Chen and Duane S. Boning
6.1 Introduction . 175
6.2 Background of the Manufacturing Process . 177
6.3 Preliminaries . 179
6.4 Learning Models . 185
6.5 Experimental Results . 191
6.6 Conclusions . 198
References . 199

7 Efficient Process Variation Characterization by Virtual Probe 201
Jun Tao, Wangyang Zhang, Xin Li, Frank Liu, Emrah Acar,
Rob A. Rutenbar, Ronald D. Blanton, and Xuan Zeng
7.1 Introduction . 201
7.2 Virtual Probe . 203
7.3 Implementation Details . 212
7.4 Applications of Virtual Probe . 219
7.5 Numerical Experiments. 221
7.6 Conclusions . 230
References . 230

8 Machine Learning for VLSI Chip Testing and Semiconductor
Manufacturing Process Monitoring and Improvement 233
Jinjun Xiong, Yada Zhu, and Jingrui He
8.1 Introduction . 233
8.2 Background . 234
8.3 Machine Learning for Chip Testing and Yield Optimization 236
8.4 Hierarchical Multitask Learning for Wafer Quality Prediction . . . 247

Contents xiii

8.5 Co-clustering Structural Temporal Data from
Semiconductor Manufacturing . 253

8.6 Conclusions . 261
References . 261

9 Machine Learning-Based Aging Analysis . 265
Arunkumar Vijayan, Krishnendu Chakrabarty, and Mehdi B. Tahoori
9.1 Introduction . 265
9.2 Negative Bias Temperature Instability . 267
9.3 Related Prior Work . 268
9.4 Proposed Technique . 271
9.5 Offline Correlation Analysis and Prediction Model Generation . . 271
9.6 Runtime Stress Monitoring . 280
9.7 Results . 281
9.8 Conclusions . 286
References . 287

Part III Machine Learning for Failure Modeling

10 Extreme Statistics in Memories . 293
Amith Singhee
10.1 Cell Failure Probability: An Extreme Statistic . 293
10.2 Extremes: Tails and maxima . 296
10.3 Analysis of Tails and Extreme Values . 300
10.4 Estimating the Tail: Learning the GPD Parameters from Data . . . 305
10.5 Statistical Blockade: Sampling Rare Events . 307
10.6 Conclusions . 321
References . 321

11 Fast Statistical Analysis Using Machine Learning . 323
Rouwaida Kanj, Rajiv V. Joshi, Lama Shaer, Ali Chehab,
and Maria Malik
11.1 Introduction: Logistic Regression-Based Importance

Sampling Methodology for Statistical Analysis of Memory
Design . 323

11.2 Monte Carlo, Importance Sampling, and Variance
Reduction Methods . 325

11.3 Logistic Regression . 329
11.4 Proposed Methodology . 333
11.5 Application to State-of-the-Art FinFET SRAM Design 338
11.6 Conclusions . 346
References . 346

12 Fast Statistical Analysis of Rare Circuit Failure Events 349
Jun Tao, Shupeng Sun, Xin Li, Hongzhou Liu, Kangsheng Luo,
Ben Gu, and Xuan Zeng
12.1 Introduction . 349

xiv Contents

12.2 Subset Simulation . 352
12.3 Scaled-Sigma Sampling . 362
12.4 Conclusions . 372
References . 372

13 Learning from Limited Data in VLSI CAD . 375
Li-C. Wang
13.1 Introduction . 375
13.2 Iterative Feature Search. 379
13.3 Assumptions in Machine Learning. 382
13.4 Traditional Machine Learning . 383
13.5 An Adjusted Machine Learning View . 386
13.6 A SAT-Based Implementation . 388
13.7 Incorporating Domain Knowledge . 396
13.8 Conclusions . 397
References . 398

Part IV Machine Learning for Analog Design

14 Large-Scale Circuit Performance Modeling by Bayesian
Model Fusion . 403
Jun Tao, Fa Wang, Paolo Cachecho, Wangyang Zhang, Shupeng Sun,
Xin Li, Rouwaida Kanj, Chenjie Gu, and Xuan Zeng
14.1 Introduction . 403
14.2 Pre-silicon Validation . 406
14.3 Post-silicon Tuning . 416
14.4 Conclusions . 420
References . 420

15 Sparse Relevance Kernel Machine-Based Performance
Dependency Analysis of Analog and Mixed-Signal Circuits 423
Honghuang Lin, Asad Khan, and Peng Li
15.1 Introduction . 423
15.2 Feature Kernel Weighting . 425
15.3 Sparse Relevance Kernel Machine . 431
15.4 Experiments . 437
15.5 Conclusions . 445
References . 445

16 SiLVR: Projection Pursuit for Response Surface Modeling 449
Amith Singhee
16.1 Motivation . 449
16.2 Prevailing Response Surface Models . 451
16.3 Latent Variables and Ridge Functions . 455
16.4 Approximation using ridge functions . 460
16.5 Projection Pursuit Regression . 464
16.6 SiLVR . 473

Contents xv

16.7 Experimental Results . 488
16.8 Conclusions . 500
References . 501

17 Machine Learning-Based System Optimization and
Uncertainty Quantification for Integrated Systems . 505
Hakki M. Torun, Mourad Larbi, and Madhavan Swaminathan
17.1 Introduction . 505
17.2 Optimization Oriented Design Flow . 506
17.3 Black-Box Optimization . 507
17.4 Two-Stage Bayesian Optimization . 511
17.5 Co-optimization of Embedded Inductor and Integrated

Voltage Regulator . 519
17.6 Uncertainty Quantification . 526
17.7 Uncertainty Quantification of the IVR Efficiency 530
17.8 Conclusions . 534
References . 535

Part V Machine Learning for System Design and Optimization

18 SynTunSys: A Synthesis Parameter Autotuning System for
Optimizing High-Performance Processors . 539
Matthew M. Ziegler, Hung-Yi Liu, George Gristede, Bruce Owens,
Ricardo Nigaglioni, Jihye Kwon, and Luca P. Carloni
18.1 Introduction . 539
18.2 SynTunSys Architecture . 541
18.3 The SynTunSys Decision Engine . 548
18.4 SynTunSys Results . 553
18.5 SynTunSys Enhancements and Future Work . 559
18.6 Related Work . 568
18.7 Conclusions . 569
References . 569

19 Multicore Power and Thermal Proxies Using Least-Angle
Regression . 571
Rupesh Raj Karn and Ibrahim (Abe) M. Elfadel
19.1 Introduction . 571
19.2 Preliminaries . 573
19.3 Data Collection Platform . 579
19.4 Power Proxies . 581
19.5 Temperature Proxies . 586
19.6 Proxies Incorporating Sleep States . 591
19.7 Workload Signature . 594
19.8 Core Scaling and Thread Assignment . 598
19.9 Conclusions . 606
References . 607

xvi Contents

20 A Comparative Study of Assertion Mining Algorithms
in GoldMine . 609
Shobha Vasudevan, Lingyi Liu, and Samuel Hertz
20.1 Introduction . 609
20.2 Summary of Comparison of Assertion Generation

Algorithms in GoldMine . 614
20.3 The GoldMine Principle: Statistics Meet Static 616
20.4 Background on GoldMine . 617
20.5 Decision Tree-Based Learning . 621
20.6 Best-Gain Decision Forest Algorithm . 622
20.7 Coverage Guided Mining Algorithm. 628
20.8 PRISM Algorithm . 631
20.9 Experimental Results . 633
20.10 Conclusions . 642
References . 642

21 Energy-Efficient Design of Advanced Machine Learning
Hardware . 647
Muhammad Abdullah Hanif, Rehan Hafiz,
Muhammad Usama Javed, Semeen Rehman,
and Muhammad Shafique
21.1 Artificial Intelligence and Machine Learning . 647
21.2 Software and Co-design Optimizations . 652
21.3 Hardware-Level Techniques . 658
21.4 Error Resilience Analysis: DNN-Specific Approximations

for Low-Power Accelerators . 663
21.5 Energy-Efficient Hardware Accelerator Design

Methodology for Neural Networks . 668
21.6 Efficient Machine Learning Architectures: Challenges and

the Way Forward . 671
References . 675

Index . 679

Contributors

Emrah Acar IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Ali Ahmadi The University of Texas at Dallas, Richardson, TX, USA

Ronald D. Blanton Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA, USA

Duane S. Boning Massachusetts Institute of Technology, Cambridge, MA, USA

Paolo Cachecho Department of Electrical and Computer Engineering, American
University of Beirut, Beirut, Lebanon

Luca P. Carloni Department of Computer Science, Columbia University, New
York, NY, USA

John Carulli GLOBALFOUNDRIES, Malta, NY, USA

Krishnendu Chakrabarty Duke University, Durham, NC, USA

Ali Chehab Maroun Semaan Faculty of Engineering and Architecture, American
University of Beirut, Beirut, Lebanon

Hongge Chen Massachusetts Institute of Technology, Cambridge, MA, USA

Suhyeong Choi School of Electrical Engineering, KAIST, Daejeon, South Korea

Ibrahim (Abe) M. Elfadel Department of Electrical and Computer Engineering
and Center for Cyber Physical Systems, Khalifa University, Abu Dhabi, UAE

George Gristede IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Ben Gu Cadence Design Systems, Inc., Austin, TX, USA

Chenjie Gu Strategic CAD Labs, Intel Corporation, Hillsboro, OR, USA

Rehan Hafiz Information Technology University (ITU), Lahore, Pakistan

Muhammad Abdullah Hanif Vienna University of Technology (TU Wien),
Vienna, Austria

xvii

xviii Contributors

Jingrui He Arizona State University, Tempe, AZ, USA

Samuel Hertz Electrical and Computer Engineering Department, University of
Illinois at Urbana-Champaign, Champaign, IL, USA

Ke Huang San Diego State University, San Diego, CA, USA

Muhammad Usama Javed Information Technology University (ITU), Lahore,
Pakistan

Rajiv V. Joshi IBM TJ Watson Labs, Yorktown Heights, NY, USA

Rouwaida Kanj Maroun Semaan Faculty of Engineering and Architecture, Amer-
ican University of Beirut, Beirut, Lebanon

Department of Electrical and Computer Engineering, American University of
Beirut, Beirut, Lebanon

Rupesh Raj Karn Department of Electrical and Computer Engineering, Khalifa
University of Science and Technology, Abu Dhabi, United Arab Emirates

Asad Khan Texas Instruments, Dallas, TX, USA

Nathan Kupp Yale University, New Haven, CT, USA

Jihye Kwon Department of Computer Science, Columbia University, New York,
NY, USA

Mourad Larbi Georgia Institute of Technology, School of Electrical & Computer
Engineering, Atlanta, GA, USA

Peng Li Texas Instruments, Dallas, TX, USA

Xin Li Department of Electrical and Computer Engineering, Duke University,
Durham, NC, USA

Honghuang Lin Texas Instruments, Dallas, TX, USA

Yibo Lin University of Texas at Austin, Austin, TX, USA

Frank Liu IBM Research Laboratory, Austin, TX, USA

Hongzhou Liu Cadence Design Systems, Inc., Pittsburgh, PA, USA

Hung-Yi Liu Intel Technology and Manufacturing Group, Hillsboro, OR, USA

Lingyi Liu Electrical and Computer Engineering Department, University of Illi-
nois at Urbana-Champaign, Champaign, IL, USA

Kangsheng Luo Cadence Design Systems, Inc., Pittsburgh, PA, USA

Yiorgos Makris The University of Texas at Dallas, Richardson, TX, USA

Maria Malik George Mason University, Fairfax, VA, USA

Amit Nahar Texas Instruments, Dallas, TX, USA

Contributors xix

Ricardo Nigaglioni IBM Systems and Technology Group, Austin, TX, USA

Bob Orr Texas Instruments, Dallas, TX, USA

Bruce Owens IBM Systems and Technology Group, Rochester, MN, USA

David Z. Pan University of Texas at Austin, Austin, TX, USA

Michael Pass Texas Instruments, Dallas, TX, USA

Semeen Rehman Vienna University of Technology (TU Wien), Vienna, Austria

Rob A. Rutenbar Department of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, IL, USA

Lama Shaer Maroun Semaan Faculty of Engineering and Architecture, American
University of Beirut, Beirut, Lebanon

Muhammad Shafique Vienna University of Technology (TU Wien), Vienna,
Austria

J. P. Shiely Synopsys, Inc., Mountain View, CA, USA

Seongbo Shim Samsung Electronics, Hwasung, South Korea

Youngsoo Shin School of Electrical Engineering, KAIST, Daejeon, South Korea

Amith Singhee IBM Research, Bangalore, India

Shupeng Sun Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, PA, USA

Madhavan Swaminathan Georgia Institute of Technology, School of Electrical &
Computer Engineering, Atlanta, GA, USA

Mehdi B. Tahoori Karlsruhe Institute of Technology, Karlsruhe, Germany

Jun Tao State Key Laboratory of ASIC and System, School of Microelectronics,
Fudan University, Shanghai, China

Hakki M. Torun Georgia Institute of Technology, School of Electrical & Com-
puter Engineering, Atlanta, GA, USA

Shobha Vasudevan Electrical and Computer Engineering Department, University
of Illinois at Urbana-Champaign, Champaign, IL, USA

Arunkumar Vijayan Karlsruhe Institute of Technology, Karlsruhe, Germany

Fa Wang Department of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, PA, USA

Li-C. Wang Department of Electrical and Computer Engineering, University of
California, Santa Barbara, Santa Barbara, CA, USA

Constantinos Xanthopoulos The University of Texas at Dallas, Richardson, TX,
USA

xx Contributors

Jinjun Xiong IBM Thomas J. Watson Research Center, Yorktown Heights, NY,
USA

Xuan Zeng State Key Laboratory of ASIC and System, School of Microelectron-
ics, Fudan University, Shanghai, China

Wangyang Zhang Cadence Design Systems, Inc., Pittsburgh, PA, USA

Yada Zhu IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

Matthew M. Ziegler IBM T. J. Watson Research Center, Yorktown Heights, NY,
USA

About the Editors

Ibrahim (Abe) M. Elfadel is Professor of Electrical and Computer Engineering at
Khalifa University, Abu Dhabi, UAE. He is also affiliated with Khalifa University
Center for Cyber Phyiscal Systems. Since May 2014, he has been the Program
Manager of TwinLab MEMS, a joint collaboration with GLOBALFOUNDRIES and
the Singapore Institute of Microelectronics on micro-electromechanical systems.
Between May 2013 and May 2018, he was the founding co-director of the Abu
Dhabi Center of Excellence on Energy-Efficient Electronic Systems (ACE4S).
Between November 2012 and October 2015, he was the founding co-director of
Mubadala’s TwinLab 3DSC, a joint research center on 3D integrated circuits with
the Technical University of Dresden, Germany. He also headed the Masdar Institute
Center for Microsystems (iMicro) from November 2013 until March 2016. From
1996 to 2010, he was with the corporate CAD organizations at IBM Research
and the IBM Systems and Technology Group, Yorktown Heights, NY, where he
was involved in the research, development, and deployment of CAD tools and
methodologies for IBM’s high-end microprocessors. His current research interests
include IoT platform prototyping; IoT communications; energy-efficient edge and
cloud computing; power and thermal management of multicore processors; low-
power, embedded digital signal processing; 3D integration; and CAD for VLSI,
MEMS, and silicon photonics. Dr. Elfadel is the recipient of six Invention Achieve-
ment Awards, one Outstanding Technical Achievement Award, and one Research
Division Award, all from IBM, for his contributions in the area of VLSI CAD. He
is the inventor or co-inventor of 50 issued US patents with several more pending.
In 2014, he was the co-recipient of the D. O. Pederson Best Paper Award from the
IEEE Transactions on Computer-Aided Design for Integrated Circuits and Systems.
Most recently, he received (with Prof. Mohammed Ismail) the SRC Board of
Director Special Award for “pioneering semiconductor research in Abu Dhabi.” Dr.
Elfadel is the co-editor of two Springer books: 3D Stacked Chips: From Emerging
Processes to Heterogeneous Systems, 2016, and The IoT Physical Layer: Design
and Implementation, 2019. From 2009 to 2013, Dr. Elfadel served as an Associate
Editor of the IEEE Transactions on Computer-Aided Design. He is currently serving
as Associate Editor of the IEEE Transactions on VLSI Systems and on the editorial

xxi

xxii About the Editors

board of the Microelectronics Journal (Elsevier). Dr. Elfadel has also served on
the Technical Program Committees of several leading conferences, including DAC,
ICCAD, ASPDAC, DATE, ICCD, ICECS, and MWSCAS. Most recently, he was
the General Co-chair of the IFIP/IEEE 25th International Conference on Very Large
Scale Integration (VLSI-SoC 2017), Abu Dhabi, UAE. He received his Ph.D. from
MIT in 1993.

Duane S. Boning is the Clarence J. LeBel Professor in Electrical Engineering and
Professor of Electrical Engineering and Computer Science in the EECS Department
at MIT. He is affiliated with the MIT Microsystems Technology Laboratories and
serves as MTL Associate Director for Computation and CAD. From 2004 to 2011,
he served as Associate Head of the EECS Department at MIT, from 2011 through
2013 as Director/Faculty Lead of the MIT Skoltech Initiative, and from 2011 to 2018
as Director of the MIT/Masdar Institute Cooperative Program. He is currently the
Engineering Faculty Co-Director of the MIT Leaders for Global Operations (LGO)
program. Dr. Boning received his S.B. degrees in electrical engineering and in
computer science in 1984, and his S.M. and Ph.D. degrees in electrical engineering
in 1986 and 1991, respectively, all from the Massachusetts Institute of Technology.
He was an NSF Fellow from 1984 to 1989 and an Intel Graduate Fellow in 1990.
From 1991 to 1993 he was a Member Technical Staff at the Texas Instruments
Semiconductor Process and Design Center in Dallas, Texas, where he worked on
semiconductor process representation, process/device simulation tool integration,
and statistical modeling and optimization. Dr. Boning is a Fellow of the IEEE
and has served as Editor-in-Chief for the IEEE Transactions on Semiconductor
Manufacturing. He is a member of the IEEE, Electrochemical Society, Eta Kappa
Nu, Tau Beta Pi, Materials Research Society, Sigma Xi, and the Association of
Computing Machinery.

Xin Li received his Ph.D. degree in Electrical and Computer Engineering from
Carnegie Mellon University in 2005. He is currently a Professor in the ECE
Department at Duke University and is leading the Institute of Applied Physical
Sciences and Engineering and the Data Science Research Center at Duke Kunshan
University. His research interests include integrated circuit, signal processing, and
data analytics. Dr. Li is the Deputy Editor-in-Chief of IEEE TCAD. He was an
Associate Editor of IEEE TCAD, IEEE TBME, ACM TODAES, IEEE D& T, and IET
CPS. He was the General Chair of ISVLSI and FAC. He received the NSF CAREER
Award in 2012 and six Best Paper Awards from IEEE TCAD, DAC, ICCAD, and
ISIC. He is a Fellow of IEEE.

Chapter 1
A Preliminary Taxonomy for Machine
Learning in VLSI CAD

Duane S. Boning, Ibrahim (Abe) M. Elfadel, and Xin Li

Taxonomy is described sometimes as a science and sometimes
as an art, but really it is a battleground.

Bill Bryson

1.1 Machine Learning Taxonomy

Methods and approaches that fall under the broad description of machine learning
are continuing to develop and advance rapidly. A brief taxonomy of machine
learning methods is shown in Fig. 1.1. The categories in this tree-oriented taxonomy
are approximate; indeed, some methods (such as those involving dimensionality
reduction) arise within different portions of the taxonomy. But to help understand
the range of methods, this approximate high-level taxonomy enables us to highlight
a few key concepts and distinctions among these methods. Our purpose is not to
be tutorial in this introduction (rather, we defer to the individual chapters in this
book where key concepts are covered in each area of application). For the reader
interested in learning the fundamentals of machine learning, we recommend the
excellent textbooks such as Bishop [1], Murphy [2], Hastie et al. [3], and Vapnik [4].

D. S. Boning
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: boning@mit.edu

I. M. Elfadel (�)
Department of Electrical and Computer Engineering and Center for Cyber Physical Systems,
Khalifa University, Abu Dhabi, UAE
e-mail: ibrahim.elfadel@ku.ac.ae

X. Li
Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
e-mail: xinli.ece@duke.edu

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_1&domain=pdf
mailto:boning@mit.edu
mailto:ibrahim.elfadel@ku.ac.ae
mailto:xinli.ece@duke.edu
https://doi.org/10.1007/978-3-030-04666-8_1

2 D. S. Boning et al.

Unsupervised
Learning

Semisupervised
Learning

Supervised
Learning

clustering
dimensionality reduction

density estimation
kernel methods

classification
regression (parametric)

dimensionality
reduction

instance-based (nonparametric)

generative
(density estimation)
discriminative NN

deep
convolutional
recurrent

Bayesian
MCMC

PCA

OLS, MARS, …

sampling

active learning
reinforcement learning

search and optimization

transfer learning

Genetic
Algorithm
Bayesian
Optimization

logistic

latent variable
polynomial chaos

PCR, ridge regression,
discriminant analysis, …

sparse coding

Gaussian process

matrix completion

trees, random forest

k-means

online learning

SVM

adversarial learning

Fig. 1.1 Approximate high-level taxonomy of machine learning methods

1.1.1 Unsupervised, Supervised, and Semisupervised Learning

At the highest level, a distinction between types of machine learning methods
is often made with respect to the source of information used to drive learning.
Unsupervised learning refers to cases where only input data (i.e., independent
variables x) are available, rather than input–output pairs (i.e., independent and
dependent variables, (x, y)). The goal in unsupervised learning is to discover some
structure within the data. One such structure is the grouping of the data in different
(typically distinct) clusters. The k-means algorithm is a well-known clustering
approach, among many others [5]. A second type of unsupervised learning seeks
to discover simpler latent structures in the data, often in order to identify important
features or to achieve dimensionality reduction. A classic representative of such
methods is principal component analysis (PCA) [6].

In contrast, supervised learning methods are driven by input–output data. For
example, labels y for input instances x may be available, enabling learning of
models to support classification of new or different input instances. A wide range

1 A Preliminary Taxonomy for Machine Learning in VLSI CAD 3

of classification algorithms exist, from basic logistic regression (to identify the
probability of membership in some class, together with a decision threshold for
deciding or declaring such membership) to other methods such as support vector
machine (SVM) approaches [7]. Regression can be viewed as a supervised learning
approach, where discrete or continuous output values might be predicted, based on
a learned model using continuous or discrete input–output data. Many classical sta-
tistical learning methods are regression based, ranging from ordinary least squares
(OLS) regression to principal component regression (PCR), ridge regression, and
a variety of discriminant-based approaches. In contrast, iterative (e.g., gradient-
descent based) rather than regression-based learning methods have gained great
interest as efficiencies and computing capability have advanced. In particular, neural
network methods have gained enormous recent attention, extending multilayer
perceptron (MLP) structures to such approaches as deep neural networks (DNN),
convolutional neural networks (CNN), recurrent neural networks (RNN), and other
architectures.

An interesting area lies between the two extremes of unsupervised and supervised
learning. Semisupervised learning methods are those where only some fraction of
the available or potential input–output pairs are already available, and a substantial
part of the learning effort is to efficiently and effectively decide what new instances
of input–output pairs should be gathered. Some classical statistical learning methods
can be considered to fall in this area, including design of experiment (DoE), Monte
Carlo, and other sampling methods (deciding what set of data points, or next
data instance, should be obtained) in order to build input–output models, or to
estimate probability density models of inputs and/or outputs. A number of machine
learning approaches also fall under the broad semisupervised category. Of these,
reinforcement learning (RL) [8] is of increasing interest, in which the system seeks
to teach itself based on reward mechanisms and exploration policies, learning both
a model to predict results and a model for deciding best moves. Other versions of
semisupervised learning have evolved to address related problems. Online learning,
for example, seeks to continually update a learned model based on subsequent
or continually arriving new data points (selection of which is typically not under
the control of the online learning algorithm). Transfer or multi-task learning [9] is
another important goal in machine learning, whereby models are generalizable to
new scenarios or environments beyond that used to train the model, with limited (or
no) additional learning in the new environment. Finally, the broad area of search and
optimization can be considered to be a semisupervised learning problem, where the
method seeks to find the inputs that achieve one or more good outputs, and typically
must decide what next input–output pair to consider when that input–output pair
is not already available as a previously learned case. Interesting approaches for
such design space exploration include genetic and evolutionary algorithms [10] and
Bayesian optimization [11].

4 D. S. Boning et al.

1.1.2 Parametric and Nonparametric Methods

Another useful distinction for categorizing and understanding the range of machine
learning methods is whether a learned model is parametric or nonparametric.
Parametric methods are those in which the model complexity is fixed, in the sense
that the model complexity does not depend on the number of training samples [2].
Note that the complexity of parametric models may still depend on the data, for
example, hyperparameters of the learning methods, or regularization approaches
that seek to maintain model simplicity based on the data, will often seek to
adapt or adjust the number of model parameters or model structure, based on the
observed or available training data. In contrast, however, nonparametric methods
generally depend on the number of training samples, in that the model complexity
typically grows as more training samples are included, whether or not the underlying
relationship is less or more complex. Several instance-based nonparametric learning
methods are well-known, such a k-NN (k-nearest neighbors), where decisions about
membership may be based on nearness (using some distance measure) to previous
or learned examples [12].

1.1.3 Discriminative Versus Generative Methods

A third broad characterization of machine learning methods is to consider whether
they are discriminative or generative [13]. A discriminative model seeks to directly
learn the probability density model for the output y given the input x, i.e., to
learn p(y|x). In contrast, a generative approach learns the joint pdf p(x, y) and/or
the probability of the input conditioned on the observed output, p(x|y), and
then uses that model to reason about p(y|x). Many models, particularly classical
neural network approaches such as MLPs, are discriminative in nature: the NN
adapts weights in order to make direct predictions of outputs y given inputs x.
Alternatively, Bayesian approaches embody the indirect or generative approach,
where learned models enable one to directly infer what inputs might have been
responsible for an observed output (and to then indirectly infer outputs given an
input). Bayesian approaches are also a type of density estimation method, which
seek to learn the probability density of inputs and/or outputs. Density estimation
methods are of interest in unsupervised scenarios as well (e.g., where one would
learn the statistical properties of just an input data set, p(x), from which one might
be able to estimate, for example, the probability of extremal or low probability
events (e.g., failures)).

An interesting emerging machine learning approach that blends generative and
discriminative learners together are generative adversarial methods. Among these,
generative adversarial networks (GANs) have received substantial recent attention,
as a semisupervised learning method [14]. In a GAN, a discriminative model
(e.g., a NN predicting an output, such as a classification label) is initially trained

1 A Preliminary Taxonomy for Machine Learning in VLSI CAD 5

on available labeled data. Similarly, a generative model capable of predicting or
generating an input based on a desired output is constructed from available training
data. The two models are then pitted against each other, where the generative model
seeks to generate a new or synthetic input that will “fool” the discriminative model,
while the discriminative model likewise continues to train based on its performance
in correctly classifying the output corresponding to the new input. Such methods
are interesting in being able to generate “realistic” synthetic inputs, such as images
corresponding to a set of desired output characteristics or labels.

1.2 VLSI CAD Abstraction Levels

The range of machine learning methods categorized briefly in the previous section
provides a rich reservoir of approaches for potential application to the problems and
challenges faced in VLSI design. Generally, VLSI CAD involves solving design
problems within or between the various design and abstraction levels, from system
design to chip fabrication and testing, as pictured in Fig. 1.2. Since the beginning of
VLSI CAD, and driven by the increasing complexity both across levels and within
each level of design, automatic simulation and generation/synthesis tools have been
developed. Typically, simulation tools seek to emulate or produce predictions about
performance at a “higher level” based on a “lower level” description of a design. In
contrast, synthesis or generators seek to find a lower level design that is optimal or
satisfactory with respect to some higher level requirements or goals.

Fig. 1.2 Abstraction and
physical levels in VLSI
design

Architectural
Design

Functional Design
and Logic Design

Circuit Design

Physical Design

Physical Verification
and Signoff

Fabrication

Packaging
and Testing

System
Specification

6 D. S. Boning et al.

Inherent in the VLSI CAD paradigm, then, are numerous models relating
inputs to outputs, or utilizing models of inputs. VLSI design also involves large
amounts of data and information, stemming in part from the billions of devices
or components that can be integrated into a chip. The conceptual connection and
attraction to machine learning methods is thus readily apparent. Fundamentally,
improved methods for modeling and predicting outputs corresponding to inputs
are of great interest at many levels of the VLSI CAD hierarchy. The increased
representational capacity of structures such as neural networks over predefined or
fixed parametric approximate models is one such attraction. A second area of great
interest are density estimation methods, including those that enable representation
of inherent variation or uncertainty in VLSI systems, arising from fabrication
variations or operating condition and environmental uncertainty (e.g., coverage of a
large combinatoric space of possible input signals). Such density models might then
serve as inputs to simulation or forward models, to enable generation and estimation
of output density distributions. Similarly, dimensionality reduction approaches that
identify important and key features and model the inter-relationships between large
parameter sets are of great interest.

In addition to the interest in discriminative or simulation-like machine learning
methods, it is clear that the generative or synthetic machine learning methods
have great potential for VLSI CAD. Similarly, VLSI design space exploration and
optimization problems correspond strongly to semisupervised machine learning
approaches. Rapid and efficient generation of a satisfactory design, where an enor-
mous number of design alternatives or parameters may be available, is fundamental
to many problems in VLSI design.

1.3 Organization of This Book

Given the combination of long-standing and rapidly emerging machine learning
methods summarized in Sect. 1.1, and given the many design challenges associated
with the VLSI abstraction hierarchy as noted in Sect. 1.2, our goal in this book is
to provide a representative (though certainly non-exhaustive) set of examples that
bridge the two. Here we overview the parts and chapters in the book, with reference
to the elements of the VLSI design and CAD hierarchy discussed above. For each
chapter, we highlight the CAD problem or challenge and note the kinds of machine
learning methods employed to address that challenge.

In total, the book comprises 21 chapters organized into an introduction, the
present chapter, and five parts that are meant to parallel five important domains
of VLSI design. These parts are:

• Part I: Machine Learning for Lithography and Physical Design, which covers
Chaps. 2–4.

• Part II: Machine Learning for Manufacturing, Yield, and Reliability, which
covers Chaps. 5–9.

1 A Preliminary Taxonomy for Machine Learning in VLSI CAD 7

• Part III: Machine Learning for Failure Modeling, which covers Chaps. 10–13.
• Part IV: Machine Learning for Analog Design, which covers Chaps. 14–17.
• Part V: Machine Learning for System Design and Optimization, which covers

Chaps. 18–21.

To help the reader navigate through these parts, we now provide a short description
of the content of each chapter.

1.3.1 Machine Learning for Lithography and Physical Design

One of the earliest areas of intersection between machine learning and VLSI CAD
has been at the physical design level. We begin in Part I with a focus on this
highly vibrant area, with a particular focus on lithography modeling, including
optical proximity correction (OPC) and etch proximity correction (EPC) problems.
Additional applications to other physical design problems are also discussed.

1.3.1.1 Shiely—Compact Lithographic Process Models

In Chap. 2, Shiely bridges the terminology and concepts in the two fields—
lithography compact modeling and machine learning—to highlight common con-
cepts and methods. The chapter then focuses on specific supervised learning
approaches leveraging physical simulation and machine learning to generate effi-
cient compact patterning models. In particular, approaches for identification of
relevant feature sets, construction of appropriate functional forms, and regular-
ization by way of hyperparameters are described, both for linear models and
for nonlinear neural network models for various components in the compact
lithographic modeling stack.

1.3.1.2 Shim et al.—Mask Synthesis

In Chap. 3, Shim et al. focus specifically on the mask synthesis problem. The
importance of learning parameters, preparation of the compact learning data set,
and methods to avoid over-fitting are discussed, with application to both optical
proximity correction (OPC) and etch proximity correction (EPC) of mask designs.

1.3.1.3 Lin and Pan—Physical Verification, Mask Synthesis, and Physical
Design

Building and expanding on the problem of mask synthesis, Lin and Pan in Chap. 4
explore the application of machine learning to additional problems in physical

8 D. S. Boning et al.

design and physical verification. In the case of physical verification, machine
learning approaches including feature extraction and deep neural network classi-
fication methods are applied for lithography hotspot detection. For mask synthesis,
supervised learning of improved models enables improvements in sub-resolution
assist feature (SRAF) generation and optical proximity correction. Finally, the
chapter notes that physical design often involves combinatorial problems. Examples
are presented where machine learning prediction and classification models are
used to advantage; these include datapath placement, clock optimization, and
lithography-friendly routing.

1.3.2 Machine Learning for Manufacturing, Yield, and
Reliability

A second major area where machine learning has been applied within VLSI CAD
is at the intersection between design and manufacturing, and between design and
reliability. In Part II, we present machine learning methods applied to efficient
measurement and modeling of variability arising in IC manufacturing, as well
as approaches employing machine learning to enhancement manufacturing yield.
Similarly, machine learning to support and improve consideration of reliability
issues during design are presented.

1.3.2.1 Xanthopoulos et al.—Gaussian Process for Wafer-Level
Correlations

The challenges of modeling variation in semiconductor fabrication include multiple
granularity levels with variation occurring both spatially and temporally, mani-
festing in within-die as well as die-to-die variation across the wafer, lots, and
facility. In Chap. 5, Xanthopoulos et al. review these modeling challenges, and
then develop and discuss the application of Gaussian process machine learning
techniques. Applications to test cost reduction, quality improvement, and yield
learning are presented.

1.3.2.2 Chen and Boning—Yield Enhancement

The enhancement of yield during fabrication, packaging, and test is of substantial
economic importance in IC design and production. The opportunities in using
machine learning for packaged memory chip yield enhancement are explored in
Chap. 6 by Chen and Boning. In manufacturing, substantial data is often available

1 A Preliminary Taxonomy for Machine Learning in VLSI CAD 9

for supervised learning of classifiers to predict downstream yield, based on available
upstream information such as electrical test data for each die prior to packaging.
Given a good classifier, die-stack packaged memory yield can be improved sub-
stantially. However, machine learning challenges limit this opportunity, including
class imbalance due to small numbers of failure training instances, and concept
drift in which learned models decay rapidly due to changes in the underlying
statistical model. Methods including boosting and online learning are employed and
demonstrated to achieve effective classifiers and yield improvement in the face of
these challenges.

1.3.2.3 Tao et al.—Virtual Probe

In Chap. 7, Tao et al. present the Virtual Probe as an efficient method for char-
acterizing spatial variation in semiconductor fabrication. The goal is to reduce
the number of measurements needed in order to capture or estimate spatially
correlated within-die or die-to-die variations. This requires a combination of
learning systematic components of that variation, while also recognizing that there
are stochastic elements to that variation (in that each wafer or chip may have a
different instantiation of systematic variation). The Virtual Probe utilizes a number
of machine learning methods to achieve these goals. First, efficient sampling
(semisupervised learning) methods are employed, in order to minimize the number
of measurements or training examples required. Second, dimensionality reduction
approaches are crucial; in Virtual Probe, compressed sensing methods, particularly
an efficient function basis using discrete cosine transform (DCT) approximation, are
leveraged. Finally, Bayesian learning is employed for the estimation of DCT model
coefficients. The Virtual Probe is demonstrated for three applications, including
wafer-level silicon characterization (for inter-die variations), chip-level silicon
characterization (for intra-die variation), and testing and self-healing of integrated
circuits.

1.3.2.4 Xiong et al.—Chip Testing

In Chap. 8, Xiong et al. consider the problem of process variation modeling and
VLSI chip testing. They point out that some existing machine learning approaches
are not necessarily well positioned to solve the problem of process monitoring and
improvement. Extensions to machine learning techniques that leverage temporal,
structural, and hierarchical properties are needed. Methods including partial corre-
lation extraction (with family/model selection), hierarchical multi-task learning, and
co-clustering of structural and temporal data are described, as steps toward meeting
these demands.

10 D. S. Boning et al.

1.3.2.5 Vijayan et al.—Aging Analysis

Device and circuit reliability is a key challenge in VLSI design, with well-known
problems including bias temperature instability (BTI) effects in which path delays
change over the lifetime of the circuit. In Chap. 9, Vijayan et al. consider this
problem, and propose a fine-grained workload-induced stress monitoring approach
utilizing machine learning techniques. In particular, regression-based support vector
machine (SVM) predictors are developed that utilize kernel methods to capture
nonlinear dependencies, producing an accurate classifier for this aging problem.
These are used in conjunction with space and time sampling of selective flip-flops
for runtime monitoring and mitigation of aging.

1.3.3 Machine Learning for Failure Modeling

Modeling of the probabilities of very rare events is important in a number of areas of
VLSI design, notably in estimating failure rates for large circuits such as SRAM and
other memories. The probabilities associated with the failure of any particular cell
are (hopefully, with good design) exceedingly small, but accuracy is important in
order to estimate aggregate circuit or system yield or reliability. In Part III, machine
learning approaches for modeling of such failures are presented.

1.3.3.1 Singhee—Extreme Statistics in Memories

One approach for modeling of extreme statistics in memories is presented in
Chap. 10 by Singhee. Here, extreme value theory methods are employed, including
order statistics and the generalized Pareto distribution (GPD) in order to learn
the tails of the distribution from the limited data in these tails. The approach is
demonstrated for cell and array failure probability estimation in large memories.

1.3.3.2 Kanj et al.—Fast Statistical Analysis Using Logistic Regression

Another approach for fast statistical yield analysis is presented by Kanj et al.
in Chap. 11. The approach leverages machine learning modeling and sampling
approaches. For modeling, logistic regression-based machine learning techniques
are used to model circuit response. Advanced sampling is developed using a
mixture importance sampling approach combining a uniform sampling stage and an
importance sampling stage. The approach is demonstrated for an industrial 14 nm
FinFET SRAM design.

1 A Preliminary Taxonomy for Machine Learning in VLSI CAD 11

1.3.3.3 Tao et al.—Fast Statistical Analysis of Rare Circuit Failures

In Chap. 12, Tao et al. address the challenge of analysis of rare circuit failures
with subset simulation (SUS) and scaled-sigma sampling (SSS) approaches. In
particular, the approach leverages machine learning methods related to hierarchical
and sequential conditional probability density estimation using Markov chain
Monte Carlo (MCMC) methods, with a modified Metropolis sampling approach.
The approach is shown to achieve improved accuracy in challenging scenarios,
particularly when the dimensionality of the variation space is more than a few
hundred.

1.3.3.4 Wang—Learning from Limited Data

Machine learning is sometimes confused with “big data” analytics. In many cases,
the availability of enormous data sets does indeed enable machine learning models
and algorithms. But in many cases, including cases arising in VLSI CAD, a different
machine learning challenge is present—“small” or limited data availability. In
Chap. 13, Wang considers this challenge and notes the limitations of using tradi-
tional machine learning problem formulations. The chapter proposes an alternative
perspective based on an iterative feature search process, a form of semisupervised
learning. The approach is demonstrated on two verification and test examples.
The first is identification of important signal names for functional verification; the
proposed iterative feature search approach is able to text mine design specification
documents for this identification. A second example focuses on reduction of trim
count based on chip hot tests.

1.3.4 Machine Learning for Analog Design

Analog design is a particularly challenging layer in the VLSI design hierarchy, and
thus of particular interest for the development and application of machine learning.
In Part IV, approaches are presented for modeling, validation, and optimization of
analog designs that leverage advances in machine learning.

1.3.4.1 Tao et al.—Bayesian Model Fusion

An important aspect of circuit design is pre-silicon validation and also post-silicon
tuning of circuit models, particularly to account for large-scale process variations.
In Chap. 14, Tao et al. highlight the challenges associated with validation and tuning
in order to minimize simulation and/or measurement cost. Bayesian model fusion
(BMF) is detailed as an approach to reuse simulation and/or measurements from

12 D. S. Boning et al.

early stages of design or fabrication, in order to minimize the amount of data needed
to update or tune models at later stages. The approach is demonstrated for several
industrial circuit design examples.

1.3.4.2 Lin et al.—Sparse Relevance Kernel Machine

The design of analog and mixed signal (AMS) circuits is a well-known challenge,
particularly demanding in the need for highly accurate models in order to support
optimization, verification, and failure diagnosis. In Chap. 15, Lin et al. propose a
novel approach based on Bayesian learning, referred to as a sparse relevance kernel
machine (SRKM). The approach combines support vector machine (SVM) and
relevance methods, in order to build reliable classification models with a limited
number of simulation runs. The approach is demonstrated for the design of AMS
circuits, including a low-dropout regulator and a built-in self-test charge-pump
phase-locked loop circuit.

1.3.4.3 Singhee—Projection Pursuit with SiLVR

Modeling challenges in the functional, logic, and circuit design layers in the VLSI
CAD hierarchy have often benefited from simplified or approximate models utiliz-
ing response surface modeling (RSM), typically generated from more expensive and
intensive simulation at a lower level of abstraction. Traditionally, linear regression
approaches with low order polynomial (e.g., linear or quadratic) models have
been employed. Enriched by machine learning, the space of model alternatives
has expanded dramatically. In particular, alternative basis sets and model building
blocks, coupled to effective training algorithms, enable efficient compact models
that can substantially reduce model error. Chapter 16 by Singhee notes the limitation
of conventional RSM, and reviews advanced methods of latent variable regression
(LVR) and projection pursuit regression (PPR). These are combined in SiLVR,
with advantages not only in model accuracy, but also in feature identification and
interpretability that helps provide insight to the designer. The approach enables
modeling of scenarios with large numbers of input variables (as arise in variation
analysis problems), as demonstrated in the chapter on a range of digital and analog
circuit design problems including master–slave flip-flop design, two-stage RC-
compensated opamp design, and bandgap voltage reference design.

1.3.4.4 Torun et al.—Integrated Voltage Regulator Optimization and
Uncertainty Quantification

As noted in Sect. 1.2, identification and modeling of complex input–output rela-
tionships together with the optimization (or synthesis) of a good design using such
models is fundamental to many problems in VLSI CAD. One such example is

1 A Preliminary Taxonomy for Machine Learning in VLSI CAD 13

the design of voltage regulation architectures and circuits, as presented by Torun
et al. in Chap. 17. The approach developed in this chapter seeks efficient joint
optimization and model construction, by focusing design exploration and prediction
only in regions where the optimal design might reside, and to drive the system to that
optimum. A number of machine learning techniques are employed toward this end.
A key method is two-stage Bayesian optimization (TSBO) to direct the tuning and
optimization of the integrated voltage regulator. A second challenge addressed in
the chapter is uncertainty quantification (UQ), in order to ensure that the fabricated
design will satisfy electrical requirements in the face of manufacturing variations.
Here polynomial chaos expansions together with importance sampling are utilized
for both probability density estimation and sensitivity analysis of the design.

1.3.5 Machine Learning for System Design and Optimization

At the very highest level, the goal of VLSI design is to find an overall system design
solution that meets a complex set of (often competing) performance objectives.
In Part V, machine learning approaches for system design and optimization are
presented. While this book focuses on machine learning for CAD, it is important
for the reader to also be aware of the principles, needs, and opportunities for design
of novel machine learning hardware architectures; concepts related to machine
learning hardware design are presented in the closing chapter.

1.3.5.1 Ziegler et al.—SynTunSys

System designs are generated by exploration of an enormously complicated design
space resulting from both the layering of the design hierarchy and the large number
of options, alternatives, and smaller optimization problems within or across each
level. Given this large and complex design space, human designers are increasingly
challenged to explore and obtain good solutions in a time- and computation-efficient
manner. In Chap. 18, Ziegler et al. present SynTunSys, a synthesis parameter
auto-tuning system for optimizing high-performance processors. Intelligent search
strategies, together with parallel computing, are used to manage the design space
exploration process. The system develops and utilizes semisupervised learning
methods, including genetic algorithms that address the large number of discrete
design alternatives, synthesis and tool parameter selection, and design goal tradeoffs
to be explored. The system has been employed successfully for optimizing multiple
IBM high-performance server chips. Future opportunities for additional intelligent
automation research are also highlighted in this chapter.

14 D. S. Boning et al.

1.3.5.2 Karn and Elfadel—Multicore Power and Thermal Proxies

A challenge in the management of multicore processors is effective estimation
of power and thermal implications of workload decisions. Various performance
counters can be used as proxies; these are typically trained using traditional linear
regression techniques. In Chap. 19, Karn and Elfadel consider least angle regression
alternatives in order to develop power and thermal proxies, and identify proxy
signatures to categorize the workload. The algorithms are demonstrated for real-
time multicore power and performance management.

1.3.5.3 Vasudevan et al.—GoldMine for RTL Assertion Generation

Effective and efficient test coverage is a well-known challenge within the VLSI
design hierarchy, as pictured in Fig. 1.2. In Chap. 20, Vasudevan et al. present
algorithms in the GoldMine system for the automatic generation of assertions for
RTL designs. The system leverages machine learning design space exploration
methods. A best gain decision forest (BGDF) algorithm that uses static analysis and
a novel coverage guided association mining method are presented and compared to
existing decision tree and other algorithms.

1.3.5.4 Hanif et al.—Machine Learning Architectures and Hardware
Design

Machine learning is not only transforming VLSI CAD tools and techniques, but
is also driving the need for novel hardware architectures that can directly and
more efficiently execute machine learning tasks. Hardware for machine learning,
particularly deep learning, is thus itself an enormous and fast moving area of
research and development. Chapter 21 by Hanif et al. provides a brief overview
of the most prominent techniques that have been used so far for the design of
energy efficient accelerators, and makes the connection between machine learning
algorithms and alternative architectures. The chapter also highlights the challenges
and research roadmap for future development of adaptable and energy-efficient
hardware accelerators for machine learning.

1.3.6 Other Work and Outlook

The area of machine learning for VLSI CAD is fast evolving. While this book
seeks to provide a relevant cross-section of such contributions, the reader should
understand and be aware that a great deal of other outstanding work has been
produced and is underway. In terms of industrial design enablement and practice,
most of the major CAD providers have already begun to incorporate machine

1 A Preliminary Taxonomy for Machine Learning in VLSI CAD 15

learning to great advantage in individual tools, or across parts of the design flow.
On the research front, many additional machine learning approaches, and many
additional design challenges, are being explored. For example, application of matrix
completion to VLSI manufacturing and CAD has received recent attention [15].
Other examples include application of Bayesian learning to statistical compact
modeling [16, 17] and statistical library characterization [18]. Opportunities for
application to statistical timing analysis tool miscorrelation have been noted by
Kahng [19], as well as opportunities for prediction and optimization of other
physical design problems. The need, and opportunity, for machine learning to
help bridge the design cost gap has also been highlighted by Kahng [20]. Large-
scale research centers, such as the Center for Advanced Electronics through
Machine Learning (CAEML) [21], are also emerging to accelerate advances both
in CAD tools and in the exploration and development of relevant machine learning
technologies. The future for machine learning and VLSI CAD is exciting, indeed.

References

1. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006)
2. K.P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, 2012)
3. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, 2nd edn. (Springer, New York, 2009)
4. V.N. Vapnik, Statistical Learning Theory (Wiley, New York, 1998)
5. A.K. Jain, Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666

(2010)
6. I.T. Jolliffe, Principal Component Analysis, 2nd edn. (Springer, New York, 2002)
7. V. Vapnik, S. Golowich, A. Smola, Support vector method for function approximation,

regression estimation, and signal processing, in Advances in Neural Information Processing
Systems (1997), pp. 281–287

8. L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: a survey. J. Artif. Intell.
Res. 4, 237–285 (1996)

9. S. Thrun, L. Pratt (eds.), Learning to Learn (Springer, New York, 1998)
10. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1996)
11. B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. de Freitas, Taking the human out of the

loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)
12. G. Chen, D. Shah, Explaining the success of nearest neighbor methods in prediction. Trends

Mach. Learn. 10(5–6), 337–588 (2018)
13. A.Y. Ng, M.J. Jordan, On discriminative vs. generative classifiers: a comparison of logistic

regression and naive Bayes, in Advances in Neural Information Processing Systems, vol. 14
(2002), pp. 841–848

14. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
Y. Bengio, Generative adversarial nets, in Advances in Neural Information Processing Systems
(2014), pp. 2672–2680

15. H. Chen, D. Boning, Z. Zhang, Efficient spatial variation characterization via matrix comple-
tion, in IEEE/ACM Workshop on Variability Modeling and Characterization (VMC), Nov 2016

16. L. Yu, S. Saxena, C. Hess, I.M. Elfadel, D.A. Antoniadis, D.S. Boning, Compact model
parameter extraction using Bayesian inference, incomplete new measurements, and optimal
bias selection. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(7), 1138–1150 (2016)

16 D. S. Boning et al.

17. L. Yu, S. Saxena, C. Hess, I.M. Elfadel, D.A. Antoniadis, D.S. Boning, Remembrance of
transistors past: compact model parameter extraction using Bayesian inference and incomplete
new measurements, in 51st ACM/EDAC/IEEE Design Automation Conference (DAC 2014),
San Francisco, CA, June 2014

18. L. Yu, S. Saxena, C. Hess, I.M. Elfadel, D.A. Antoniadis, D.S. Boning, Statistical library
characterization using belief propagation across multiple technology nodes, in 2015 Design,
Automation Test in Europe Conference Exhibition (DATE), Grenoble, March 2015, pp. 1383–
1388

19. A.B. Kahng, Machine learning applications in physical design: recent results and directions, in
International Symposium on Physical Design (ISPD), March 2018, pp. 68–73

20. A.B. Kahng, New directions for learning-based IC design tools and methodologies, in Asia and
South Pacific Design Automation Conference (ASP-DAC), Jan 2018, pp. 4015-410

21. Center for Advanced Electronics through Machine Learning (CAEML), referenced Aug 2018.
https://publish.illinois.edu/advancedelectronics/

https://publish.illinois.edu/advancedelectronics/

Part I
Machine Learning for Lithography and

Physical Design

The Crystal Palace, and all its splendid contents, owe their
existence to tools as the physical means—to intellect as the
guiding power.

Charles Babbage

Chapter 2
Machine Learning for Compact
Lithographic Process Models

J. P. Shiely

2.1 Introduction

Deep within any modern IC production line flow is an obscure but widespread
technology that is an intersection of nano-fabrication and machine learning called
computational lithography. This technology uses massive-scale high-performance
computing, detailed knowledge of nanometer-scale physics, statistics, signal pro-
cessing, and electron microscopy to implement a software-driven control loop.
By specifying the shapes on photomasks, computational lithography software
effectively directs the writing of multilayered patterns, subsequently etched and
deposited, on the surfaces of silicon wafers. The GPUs used for today’s deep
learning training, as well as the CPUs in the cloud or in cell phones, would
not be manufacturable without this technology that, at its core, is a machine
learning application trained with electron-microscopic images. Despite the intimate
connections between machine learning and the field of computational lithography
since its earliest incarnations as model-based OPC, most of the practitioners of
these arts have developed their work in parallel with little awareness of their
interdependencies. As computational lithography experts have developed their
own terminology and advanced their own techniques and tools, machine learning
techniques have matured and extended their reach across many application domains.

The purpose of this chapter is to bring the communities of nano-fabrication
and machine learning together by examining tasks of shared interest to both
communities. This may be an awkward introduction for both parties. The risk
this chapter runs is that it will include information both too elementary for one
camp and too advanced for the other. However, there is a strong motivation for

J. P. Shiely (�)
Synopsys, Inc., Mountain View, CA, USA
e-mail: shiely@synopsys.com

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_2&domain=pdf
mailto:shiely@synopsys.com
https://doi.org/10.1007/978-3-030-04666-8_2

20 J. P. Shiely

both communities to attempt to bridge the current divides, which are primarily
related to terminology and awareness. Machine learning techniques have now
been successfully applied to many domains, bringing to each new community its
terminology as well as its techniques. The widespread adoption of words like
“inference” or phrases like “supervised learning” in multiple fields from health care
to advertising to robotics is evidence that machine learning advances are helping
to establish a cross-disciplinary lingua franca that describes the construction of
predictive models or surrogate functions. Translating computational lithography
into the terminology of machine learning will, it is hoped, assist its practitioners to
adopt a wider range of machine learning techniques adopted from other fields. For
machine learning practitioners, on the other hand, this chapter will primarily make
them familiar with an obscure but fascinating field (computational lithography)
that stands to benefit enormously from recent advances in supervised learning. For
these readers, the chapter hopes to spotlight some of the greatest opportunities for
improving computational lithography with new machine learning techniques.

Keeping in mind two potentially very different audiences, and intending to serve
as a bridge between two communities, this chapter is organized as follows: In
the first section, to explain the domain of computational lithography, with key
references, and enable a machine learning researcher to understand the problem
being solved and develop intuition for how their skills could be applied; in the
second section, to describe the state of the art of computational lithography practice
in the current more widely used terminology of “the machine learning community”;
and, in the last section, to highlight where these two disciplines can strive forward
together to achieve higher-quality outcomes with reduced computational cost.

2.2 The Lithographic Patterning Process

The lithographic patterning process is not a familiar topic for most machine learning
researchers, but it has been essential to enable the growth in raw processing power
of the chips that have made deep learning cost-effective and practical. A familiar
concept to most technologists is Moore’s law [33], which predicts a rate of increase
in the number of devices on integrated circuits (ICs) over time. In this section, we
will explain how the lithographic patterning process facilitated Moore’s law and, as
a consequence, the current advances in the cost-effectiveness of machine learning
and artificial intelligence. We will then provide a description of the lithographic
patterning process, sufficient to understand its relationship to machine learning.

2.2.1 Importance of Lithographic Patterning Process to the
Economics of Computing

Moore’s law is an economic observation that there will be financial and performance
benefits for reducing the size of the semiconductor devices that compose ICs. As

2 Machine Learning for Compact Lithographic Process Models 21

observed by Dennard et al. [10], the reduction in the size of the semiconductor
devices provides multiple reinforcing benefits. First, the smaller devices do not need
to exert as much effort to switch their state from on to off, because their state can
be determined by a smaller electron charge. The action of a smaller device can be
accomplished by less current. The movement of less charge in a device allows it
to change state more quickly. Reducing the size of devices therefore improves their
primary performance criteria: power consumption and speed.

At the same time, shrinking device size has reduced the cost per device, because
more can be manufactured on the same silicon substrate area. Of course, the
devices cannot be shrunk to the point where they no longer function. It is equally
important that devices not shrink to the point where the probability of successfully
manufacturing the integrated circuits (ICs) constructed from them is significantly
reduced. When devices are shrunk beyond the point where they can be reliably
manufactured, the yield of functional chips on the wafer drops and the economic
incentives for shrinking the device disappear.

The critical limiting point of Moore’s law, therefore, has for many years been the
tradeoff point where further reduction in device size no longer leads to economic
advantage for a manufacturer. The consequence and motivation of lithographic
patterning process technology research and development has been to push the
tradeoff point to smaller, cheaper, faster devices over time. As this progress has
proceeded, integrated circuits offering higher memory capacity, higher execution
parallelism, higher speed, and lower power have become widely available at low
cost, enabling current advances in machine learning and artificial intelligence.

2.2.2 Representation of the Lithographic Patterning Process

A complete description of the lithographic patterning process is provided elsewhere
and beyond the scope of this work [28, 47]. However, to understand how to apply
machine learning technology to improve patterning technology, it is necessary to
have a modular understanding of the basic stages that, in sequence, compose a
patterning process. This section describes the stages of a patterning step sufficiently
to understand the concept of patterning as a communication process that transmits
an image from one stage to another [37].

A patterning process is an operation to transform the surface of a silicon wafer.
The process can be additive, in which case new material is added to the wafer
substrate, or it can be subtractive, in which case material is removed. A process
that adds material to the wafer substrate is called a deposition, and a process that
removes material is called an etch.

In order to construct ICs it is necessary to control which regions of the wafer
substrate are modified by deposition or etching. This control is achieved by a process
called photolithography. The stages of the photolithography process are represented
in Table 2.1.

22 J. P. Shiely

Table 2.1 Patterning process stages

Stage Input Physical mechanism Outputs

Mask fm :
L →M

A fracture tool receives a
layout L ∈ {0, 1}2 and
converts it into
instructions for a
mask-writing tool

A mask-writing tool
receives instructions to
direct an electron beam
to deliver energy in
selected regions and
doses onto a photoresist
film deposited on a mask
blank. After
development, the
photoresist selectively
protects regions of the
mask blank. The mask is
etched and materials are
removed from the mask
blank in regions
unprotected by
photoresist

The mask writer
produces, after etch, a
photomask M which has
been partitioned by the
etch process into a
discrete number of
region types

Image fi :
M → I

An exposure tool
receives a photomask
M ∈ {0, ..N}2

The exposure tool
illuminates the
photomask, and the
photomask diffracts the
light. A projection lens
collects a subset of the
diffracted orders and
forms an image within a
thin photoresist layer on
the surface of a silicon
wafer

The exposure tool
projects light onto the
wafer surface, depositing
energy in a
three-dimensional
distribution I within the
light-sensitive
photoresist

Resist fr :
I → R

A series of photoresist
processing tools receives
the wafer, which has
been exposed to light
energy in a
three-dimensional
distribution I ∈ R

3

The photoresist
processing tools submit
the photoresist-coated
wafer to various thermal
and chemical treatments

The photoresist will
dissolve during the
development process at a
rate that depends on the
amount of energy
received. The process
partitions the wafer
substrate into R,
defining a region
protected by the
photoresist and a region
that is unprotected

Etch fi :
R → E

An etch reactor receives
a wafer that is partially
masked by a film of
photoresist, in a pattern
defined by R ∈ {0, 1}2
or R ∈ {0, 1}3

The etch reactor
bombards the wafer with
etching particles that
react with the unmasked
regions on the surface of
the wafer substrate

The etching particles
remove material from the
unmasked regions,
transferring a pattern I
into the wafer substrate

2 Machine Learning for Compact Lithographic Process Models 23

Generically, each stage of a patterning process can be considered a mapping from
one representation of the transmitted message to another. For example,

B = fB(A) (2.1)

represents a stage as a transfer function fB : A → B, where A is the input
distribution and B is the transmitted distribution. Distributions can be either two-
dimensional or three-dimensional, and discrete-valued or real-valued.

For simplification, we will describe only subtractive patterning processes, which
begin with a designed layout and end with an etched wafer substrate. Using the
transfer function concept, we can represent the patterning process as sequence of
pattern transforms:

• The mask stage, fm, which communicates the polygon shapes L in a design
layout to a distribution of shapes on the photomask M .

• The image stage, fi , which communicates the shapes on the photomask M into
an image I distributed within the thin resist film on the wafer surface.

• The resist stage, fr , which transforms the image distribution I into a distribu-
tion of shapes representing regions protected by the developed photoresist.

• The etch stage, fe, which transforms the shapes of regions protected by
photoresist R into the final etched shapes transmitted into the wafer substrate.

We will now discuss each pattern transform in more detail.

2.2.2.1 Mask Transfer Function

The mask transfer function fm is the first stage in the patterning process. Pho-
tomasks are manufactured with their own lithographic process, beginning with a
design layout and a mask blank, and ending with an etched photomask. A mask
blank is an unpatterned photomask. Photoresist is applied uniformly to the surface
of the mask blank. The pattern is transmitted into the photoresist using a mask writer.
The mask writer reads a file representing the layout L and precisely controls the
deflection of electron beams to deliver a patterned distribution of energy into the
photoresist on the mask blank surface. The resist is processed and developed, which
renders some regions of the mask blank exposed and other regions protected by
the photoresist film. Finally, a pattern is etched into the mask through the regions
unprotected by the resist.

The input to this stage is the layout L ∈ {0, 1}2, a two-dimensional discrete
distribution that indicates which regions on the mask should be etched and which
should not. The mask manufacturing stage is represented as the transfer function
fm. The output of this stage is a two-dimensional discrete distribution M ∈ {0, 1}
representing a partition of the mask into regions that have been etched and those that
have not. In an ideal mask manufacturing process, the communication of the layout
to the mask would be perfect and L would be perfectly reproduced in M . However,
the electron beam, although very high resolution, still has a resolution limit that

24 J. P. Shiely

serves as a low-pass filter and prevents corners from being accurately transmitted to
the mask [7]. The photoresist and etch processes are also not ideal [21]. The mask
transfer function fm captures the nonidealities introduced by this process, which
result in a photomask that is not a perfect reproduction of the design.

2.2.2.2 Imaging Transfer Function

The image transfer function fi represents the mask diffraction and projection
processes. This stage achieves the transmission of the photomask pattern M in the
form of an image I distributed through the volume of the photoresist. Astonishing
progress in this stage has been, since the 1970s, one of the key enablers of IC
miniaturization.

The input to the image transfer function fi is the photomask M . Although a
single mask transfer function can only partition the photomask into two regions,
it is possible that a photomask has been constructed from multiple mask transfer
functions. For example, some photomasks use three or more regions to engineer
interference effects that improve the image contrast [25]. For simplicity, we will
only discuss binary masks in this chapter.

The imaging transfer function represents the most complicated and costly portion
of the IC manufacturing process. It depends on three elements: an exposure tool, a
silicon wafer substrate, and a photoresist film sitting atop the wafer substrate.

The exposure tool transmits light from its illuminator through the photomask,
which diffracts the light. A portion of the diffracted light is collected by the exposure
tool’s projection lenses or mirrors, which reduce the size of the pattern and transmit
it to the thin photoresist layer that lies atop the silicon wafer substrate.

The output of the image transfer function is a three-dimensional distribution of
energy delivered, in varying doses, into volume of the photoresist. We represent this
energy distribution as I ∈ R

3.

When the patterns on the photomask have dimensions that are relatively large
compared to the wavelength of the illumination, the image transmitted through the
projection system to the wafer looks like a projected shadow of the photomask
pattern. However, when the photomask feature sizes approach the wavelength of
the light provided by the illuminator, then the projected image will less faithfully
resemble the pattern on the photomask. Such a system is called “diffraction-limited,”
belonging to a class that includes microscopes, telescopes, and cameras. The physics
of diffraction-limited systems are well-understood [1, 19] and can even account for
reflections and standing waves within the thin film of the resist [52]. Commercial
software tools are available to simulate the transmission of photomask images and
can achieve the task with very high accuracy.

It is possible to observe the input to the image transfer function, the photomask
M , using a scanning electron microscope (SEM). The SEM produces a two-
dimensional image from which, with some image processing, a representation of
M can be directly extracted [41]. It is also possible to observe the output image
distribution I of the image transfer function using an Aerial Image Measurement

2 Machine Learning for Compact Lithographic Process Models 25

System (AIMS) [16]. It is therefore technically possible to collect both the input data
and output data from this transfer function and to train a system, using a supervised
learning process.

2.2.2.3 Resist Transfer Function

The resist transfer function fr represents a series of chemical and thermal process
steps that convert the three-dimensional image distribution I within the photoresist
into a binary partition R. For many applications, the partition is considered two
dimensional, R ∈ {0, 1}2, indicating the regions of the wafer plane that are
protected, or not protected, by the photoresist. However, it is more physically
complete to consider the partition in three dimensions, R ∈ {0, 1}3, enclosing
the volume of the photoresist, since the height of the remaining photoresist is not
constant over the wafer surface. This can sometimes be important for patterning
since thin photoresist may not be sufficient to protect the substrate during etch.

Unlike the image transfer function, which can be derived from electromagnetic
first principles, the resist transfer function represents several physical processes that
are still not fully understood. The most common formulations of the resist transfer
function [27, 30] rely on several parameters that must be inferred indirectly. The
transfer function wraps together several processes, including: the initial response
of the photoresist when it is exposed to energy from the projection transfer
function, which induces chemical and mechanical changes in the film; thermal
processes including diffusion and reaction of species in the resist; and selective
removal of the resist during development, rendering some regions of the substrate
accessible to the etch process and other regions masked. Each of these processes has
several variants, and the manufacturers of photoresists do not operate from a first-
principles understanding that connects the chemical composition of their materials
to certain outcomes. Modifications to the resist chemistry can break models without
warning [38] and take many years to fix [13].

The input to the resist transfer function is the distribution of the deposited image
I which is observable using an AIMS tool [16]. The output of the transfer function
is observable from multiple methods including scanning electron microscopes
(SEM), atomic force microscopes (AFM), and focused ion beams (FIBs). AFM
and FIB measurements are more accurate for capturing resist profile and three-
dimensional information, but they are also expensive compared to SEMs. On the
other hand, when using an SEM to measure photoresist, several artifacts and
calibration issues must be considered [4, 40] to correctly interpret the results. The
most common SEM measurements capture the image parallel to the wafer surface,
or “top-down,” and it is not possible to see some of the three-dimensional structure
of the resist. SEM measurements of photoresist structures also typically include a
significant amount of noise, and it is difficult to reduce the noise without introducing
other measurement problems.

The SEM measurements considered to be most precise are extracted from simple
one-dimensional test structures. This is partly because a single two-dimensional

26 J. P. Shiely

image of a one-dimensional test structure can be averaged along the length of
the line to reduce noise. Another factor in favor of one-dimensional structure
measurements is the simplified alignment of symmetric one-dimensional SEM
images with the original design layout data.

Determining a resist transfer function is quite different from determining the
image transfer function: the physical theory is not comprehensive, and complete
accurate measurements are difficult to acquire. The earliest incarnations of resist
transfer function models were hand-crafted tables that documented the combined
effects of the image and resist transfer functions in systematically distorting the pat-
tern. Eventually, the construction of the rules from these tables was automated [36].

As devices continued to shrink, the rules tables became more complicated to
design and to populate. Model-based OPC proposed a continuous-valued represen-
tation of the image and resist transfer functions [45], learning a “behavioral model”
from measured data using linear regression on empirically tuned features. This
practice became standard for the OPC and computational lithography industry [8],
remains the dominant technology, and will be discussed in detail in Sect. 2.3.

While the resist transfer function is currently implemented using a linear
regression model and learning from SEM image data, there are two significant
opportunities for newer machine learning methods to advance beyond the state of
the art. First, linear regression models are highly dependent on well-engineered
input features. Designing new features, or even merely selecting which features
to use, is an art rather than a science. The potential of deep neural networks
to learn input feature representations offers the possibility of automating this
expensive task, improving productivity. Second, deep learning techniques offer
greater representational capacity and are likely more capable of effectively utilizing
two-dimensional SEM contour data than conventional linear models. We will
examine these possibilities in Sect. 2.4.3.

2.2.2.4 Etch Transfer Function

Following the selective masking of regions of the substrate surface by the resist
transfer function, the wafer is etched. The etch transfer function fe represents this
stage, which is achieved inside of a tool called an etch reactor. The input to the etch
process is the silicon wafer substrate masked by a photoresist pattern represented
by R. The etch attacks both the photoresist and the unmasked substrate, but the
photoresist ideally protects regions of the substrate such that the etch transfers the
desired pattern into the unprotected regions. The output of the etch process is the
final result of the patterning process, E ∈ {0, 1}2, which partitions the wafer surface
into regions that have been etched or not-etched.

The etch process is more complicated and less well understood than the
photoresist process. Modern plasma etches use highly engineered chemistries to
etch with high selectivity (meaning that the etch rate is faster for some materials than
others) as well as anisotropy (meaning that the etch occurs faster in some direction
than in others.) Well-controlled etch processes are critical for enabling high-aspect

2 Machine Learning for Compact Lithographic Process Models 27

ratio memories, interconnects, and finFET transistor technologies [42]. An etch
process is also usually a sequence of processes with very different chemistries.

TCAD topography simulation tools provide the capability of modeling etch
processes but they are computationally expensive. Also, some etch effects have very
long influence ranges on the range of many microns and are not easily integrated into
device-level topography simulation.

It is relatively easier to get accurate measurements of the post-etch contour E
using an SEM, compared to measurement of photoresist, because the substrate
material is usually more stable and interacts less with the measurement process. It
is usually sufficient, for large-area computational lithography, for an etch model to
predict the two-dimensional contour of the etched regions of the substrate. In some
situations, it is desirable to predict the sidewall angles of the etched apertures, which
may influence the reliability of interconnections between the layers in a device.

Compact etch models have long been used in production for etch proximity
correction [5]. The models are linear regressions trained on line and space widths
extracted from SEM images of simple test structures [46]. Sometimes, the etch
and resist processes are combined together, for the purpose of modeling, into one
function, called a “lumped model.”

2.2.3 Summary

A patterning process communicates two-dimensional information onto the surface
of a silicon wafer through a series of stages, including mask-making, lithographic
projection, photoresist processing, and etching. The stages represent substantially
different physical processes. Some of the stages, like optical projection, operate with
well-understood physical mechanisms, whereas others, like resist and etch, must be
learned from empirical data. A schematic of the patterning process and its stages is
shown in Fig. 2.1.

The key point of this section is that, although the patterning process is a
composite of several different mechanisms that are physically diverse, it can be
represented as a sequence of transfer functions. Abstracting the patterning process
in this way prepares us to discuss how models of patterning can be constructed and
trained, which will be the subject of the next section.

2.3 Machine Learning of Compact Process Models

In the previous section, we described the lithographic patterning process as a
series of transfer functions, mapping from a layout to a photomask, then to a
projected image, next into a patterned mask of photoresist, and finally into an etched
pattern that has altered the structure of the silicon wafer surface. We also described
the inputs, outputs, and physical mechanisms of each of these transfer functions.

28 J. P. Shiely

Layout L

Mask M

Image I

Resist R

Etch E

fm

fi

fr

fe

Fig. 2.1 The lithography patterning process is a communication process, transmitting the shapes
of a layer in an IC design, represented by the layout L , to etched patterns on the silicon wafer
substrate, represented by E . The communication process may be further decomposed into a series
of transfer functions: fm representing the communication of the two-dimensional layout onto a
planar photomask M , fi the transmission of energy into a three-dimensional volume on the surface
of a silicon wafer in a distribution represented by I , fr the distribution R of photoresist on the
wafer surface after development, and E the distribution of the pattern etched into the silicon wafer
surface resulting from etch transfer function fe

Although the physical mechanisms for each stage are diverse, abstracting each stage
into similar image-to-image transforms enables us to describe a common procedure
for training models to represent these stages.

In this section, we will describe a procedure for training a compact process
model (CPM), a particular kind of model of the lithographic patterning process.
CPMs are used to estimate the outcomes of patterning processes for IC designs.
Applications of CPMs include design-for-manufacturing, mask synthesis, and
lithography verification.

Lithographic patterning processes are also modeled by a category of tools called
rigorous or TCAD simulators. These tools apply the best available physical theories
to the task of making models that are interpretable in terms of causes. They
can provide insight and also can predict outcomes prior to the existence of real
implementations of patterning processes, for example during the early phases of
technology development. CPMs, however, have very different requirements and
purpose from rigorous simulators: they must be capable of simulating the entire chip
area with a practical computational budget, they are built using real measured data
from manufacturing processes, and they must capture behaviors for which physical
understanding may be lacking.

2 Machine Learning for Compact Lithographic Process Models 29

This section describes a typical procedure for training CPMs. The intention is to
reinterpret this procedure, which has developed as its own specialty since the late
1990s, using the more widely understood terminology of machine learning. This
translation should help assist cross-disciplinary learning between these two fields.

The section is broken into two parts: first, we formally describe the CPM machine
learning problem statement; then, we examine the components of the supervised
learning procedure which trains most industrial CPMs currently in service.

2.3.1 The Compact Process Model Machine Learning Problem
Statement

Our starting point for terminology will be to apply to CPMs the definition of
machine learning provided by Mitchell [31]:

Definition: A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as measured
by P , improves with experience E.

In this section, we will define the tasks T that CPMs accomplish, the performance
metrics P by which they are graded, and the nature of the available training data that
provides the experience E to the learner.

2.3.1.1 The Compact Process Model Task

The most common task for a CPM is

• Task T : Infer from mask layout data L the pattern transferred to the substrate
by a patterning process.

Figure 2.2 illustrates the role of a CPM in context and clarifies the task it
performs. It shows the relationship between a design target D , a mask layout L ,
and the pattern transferred to the wafer, either the resist or etch contours, R or E .
We have already described the patterning process in Sect. 2.2 as the communication
to the silicon substrate of a two-dimensional layout, representing a single layer in
the design of an integrated circuit.

When training a CPM, the task T is usually to begin with an input layout L that
has been generated by a mask synthesis process such as optical proximity correction
(OPC) and reticle enhancement. Mask synthesis usually also uses a CPM, so this
procedure is potentially recursive, with each iteration using a more refined CPM to
generate the layout used for training the next iteration. There are strong economic
incentives to complete the learning and converge to a good CPM in as few iterations
as possible, however.

In practice, the layout L may be generated using an approximated CPM, which
could be mostly optical and use a resist model that has been calibrated on a previous

30 J. P. Shiely

Design Target D

Mask Synthesis Process
(OPC, RET)

Mask Layout L

Lithography Process

Resist or Etch Contours, E or R

Lithography Verification
(LRC)

(mask,image,resist,etch)

Fig. 2.2 The task of the CPM is shaped by the lithographic process, mask synthesis applications
and lithography verification. The intention of the lithographer is to communicate the information in
the design target D onto the wafer. The task of the CPM is to play the role of a virtual lithography
process, and infer the resist or etch contours R or E from the layout L . The layout will be
generated by a mask synthesis process such as OPC or RET so as to counteract the systematic
distortions of the lithography process and improve the correspondence between the design target
and the wafer result, which will be evaluated during lithography rule check (LRC)

Table 2.2 Compact process
model tasks

Task description Mapping

Resist contour model L ∈ {0, 1}2 → R ∈ {0, 1}2
3D resist model L ∈ {0, 1}2 → R ∈ {0, 1}3
Etch contour model L ∈ {0, 1}2 → E ∈ {0, 1}2
Etch bias model R ∈ {0, 1}2 → E ∈ {0, 1}2

similar process. In some cases, the test layout may be generated from the design
target using a simple rules-based correction. For a small enough test set of well-
chosen test structures, it is also possible to use a rigorous TCAD lithography
simulator to perform the mask synthesis that generates the input layout L .

Once the layout data L has been determined, the task is to infer the pattern
transferred to the silicon wafer substrate. It is most common to map from layout L
to photoresist contour R. Historically, the lithography teams that build CPMs have
prioritized modeling the photoresist pattern. Although the most important outcome
of the lithography process is the distribution of the etch contour E , the mapping from
R to E has been handled separately using a rules-based correction, etch process
adjustments, or sometimes an additional staged correction with a model that maps
directly from the photoresist contour to the etch contour, R → E .

In summary, the task that a CPM may perform depends on the needs of the
application that will utilize it. The most common types of CPM tasks are shown
in Table 2.2: a resist contour model maps from a layout to a two-dimensional
boundary between regions masked and not-masked by the resist; a 3D resist model
from layout to a three-dimensional boundary between the inside and the outside of
the photoresist film; an etch contour model from the layout to the two-dimensional
boundary between regions etched and not-etched; and an etch bias model from the
resist contour to the etch contour, without reference to the original layout.

2 Machine Learning for Compact Lithographic Process Models 31

Of the tasks in Table 2.2, the most common is the resist contour model, which
will be the focus of the remainder of this section. However, the concepts apply to
the other tasks, with proper adjustments of the input and output data in the training
set.

It is typical in industrial applications to measure the photoresist contour R
using a top-down SEM image which is then analyzed to find a two-dimensional
boundary of the transferred pattern. In practice, the top-down SEM does not
capture all of the information about the pattern transfer. Some work on CPMs
has demonstrated benefits in modeling the three-dimensional characteristics of
the resist [49]. Motivations include the potential for resist undercut that cannot
be observed by top-down SEM, and the impact of shallowly sloped sidewalls or
excessive resist thickness on the etch pattern transfer. But, the most common task
required for a CPM is prediction of the two-dimensional contour boundary of the
transferred pattern.

2.3.1.2 The CPM Training Experience

We define the CPM experience as:

• Experience E: Test pattern {input, output} training data pairs including mask
layout polygon inputs and SEM image outputs.

The specific nature of the input or the output in the training data is determined by the
CPM task. In this section, we will describe the data experienced during the training
of a CPM that models a resist contour.

The input to a resist contour CPM is always a mask layout L . For the common
case of a binary photomask, we can consider the input as partitioning a two-
dimensional plane into two different mask regions, each with different optical
characteristics. In a real manufacturing environment, a photomask will be imaged
several times over the surface of the wafer. We will consider only a single mask
exposure on a single region of the wafer. There is a one-to-one mapping between
each point on the photomask and each point on the wafer.

Following fabrication of the test structures, a printed feature is observed in the
vicinity of a calibration gauge, as illustrated in Fig. 2.3. The distance between edges
of the mask layout intersected by the gauge is the mask critical distance, or mask
CD. The distance between observed edges of the printed feature is the printed
critical dimension, or printed CD. The displacement of an observed edge from
its corresponding mask edge is the edge placement error, or EPE. The difference
between the mask CD and the printed CD is the CD error. These CD error
measurements, extracted from scanning electron microscope measurements, are the
raw input to the training process. The task of the model during training is usually to
predict the CD error or EPE for every gauge in the training set.

As is typical of most machine learning problems, the greatest challenge lies in
acquiring high-quality examples of the desired output values, also called “labeled
data.” Because it is costly to gather measurements, a smaller dataset that contains

32 J. P. Shiely

Mask Layout Printed Feature

Calibration Gauge

Printed

Critical

Distance (CD)

Mask

Critical

Distance

(CD)

Edge Placement

Error (EPE)

CD Error =

Printed CD - Mask CD

Fig. 2.3 The data experienced by the CPM during the training process is illustrated. The input
is the mask layout, a set of polygons representing the features on the photomask. Following
fabrication of the test structures, a printed feature is observed in the vicinity of a calibration
gauge. The distance between edges of the mask layout intersected by the gauge is the mask critical
distance, or mask CD. The distance between observed edges of the printed feature is the printed
critical dimension, or printed CD. The displacement of an observed edge from its corresponding
mask edge is the edge placement error, or EPE. The difference between the mask CD and the
printed CD is the CD error

sufficient information is preferred. Historically, datasets begin with sample sizes in
the range of hundreds, and trended into the low thousands over the years.

In addition to cost, there are significant technical challenges in acquiring accurate
data from the SEM measurement process, which impact the lower bound of
unavoidable error for the CPM. To understand these accuracy limitations, we will
briefly describe the operation of the SEM. The direct output of the SEM tool is a
two-dimensional matrix of measurements of electron scattering off of the structures
on the surface of the silicon wafer, resembling an image. The raw data are processed
to infer the printed features.

There are many subtleties that must be considered to accurately interpret this
data [4], and we shall only discuss a few of the more prominent. One source of
uncertainty in interpreting the SEM images is the inherently stochastic nature of the
electron scattering that forms the image, which introduces noise. This uncertainty
can be partly mitigated through repeated measurements. For one-dimensional test
structures, a single SEM image provides several directly comparable measurements,
and the noise can be averaged out.

Accurately mapping from the design layout graphics to the SEM measurement
can also be difficult. To infer the position of the measured contour R in relation to
the coordinate space of layout L , it is necessary to possess an accurate coordinate
mapping relationship, including the position, scale, rotation, and several other
transform variables. Most of the test structures are designed so that these variables
can be determined in a straightforward fashion. For example, if the test pattern
is symmetric, and the lithography process preserves symmetry, then this reduces
the likelihood of placement error. Also, if the test pattern has a clearly identifiable
pitch, which is common for one-dimensional structures, then an accurate overlay of
the SEM image to the design coordinates is more easily achieved. However, these

2 Machine Learning for Compact Lithographic Process Models 33

considerations can be overly restrictive for ensuring that the test patterns used in the
training dataset are sufficiently representative of the test conditions, and can lead to
overfitting.

Another complication for interpreting SEM images of photoresist is the inter-
action between the energetic electrons in the electron beam, and the chemicals
and polymers in the photoresist. The electrons deliver energy into the photoresist,
inducing chemical reactions that cause the resist to shrink and lose volume. Also,
the electrons may accumulate on the substrate and induce a charge that interferes
with the measurement process.

With these measurement limitations in mind, it has become common to populate
the training dataset with samples that measure CDs of simple symmetric one-
dimensional features, which introduce the lowest unavoidable error. The training
dataset is then usually supplemented with samples of CDs measured from sym-
metric two-dimensional test structures. The population size of the two-dimensional
dataset samples will be related to the type of geometries that are being com-
municated by the given lithographic process. For example, training datasets for
lithography processes that print patterns of holes will include more two-dimensional
samples, compared to training datasets for lithography processes that print lines.

Because the samples in the dataset are collected from test structures that
are designed to reduce measurement error, they do not completely represent the
distribution of shapes that will be encountered in a real layout. In order to determine
the degree of overfitting that may have been introduced during CPM training, it is
common to hold out a subset of samples in a separate “dev” dataset.

The dev dataset will include additional samples from one-dimensional and two-
dimensional symmetric test structures to detect overfitting and will also introduce
new test structures that are representative of real designs. They may be derived from
critically important cells, or from patterns that are known to be very sensitive, such
as those that have previously caused hotspots. These “design-based” test structures
can be compared manually or automatically on a contour-to-contour basis and used
to ensure that the model has not overfit on the training dataset.

It is also possible to inspect the contour prediction of the CPM on design-based
test structures and identify specific regions where the model has underfit, due to a
lack of sufficiently general samples during the training process. This may inform a
better selection of test structures for a future CPM training exercise.

Examples of symmetric one-dimensional, symmetric two-dimensional, and
design-based test structures are shown in Fig. 2.4.

2.3.1.3 CPM Performance Metrics

We describe the CPM performance metric as:

• Performance P : Correspondence between the boundary of the patterned region
as measured and as modeled.

34 J. P. Shiely

Symmetric one-dimensional Symmetric two-dimensional Design-based

Fig. 2.4 Three different categories of test structures that are used to generate sample data, which
supplies the experience necessary for the CPM to learn the behavior of the lithography process.
The symmetric one-dimensional test structures produce sample data with the smallest unavoidable
measurement uncertainty, and typically have made up the large bulk of training datasets. Symmetric
two-dimensional test structures are also used to generate samples for the training dataset, in
increasing proportions if the lithography process is intended to communicate hole-shaped patterns.
These structures have larger uncertainty because it is more difficult to reduce noise through
averaging. Design-based test structures can introduce more unavoidable error in the training set
due to uncertainties in the placement or scale. Design-based test structures are more often used in
the dev set rather than the training set, and are very valuable for detecting overfitting, or for helping
to identify gaps in the training dataset

Table 2.3 CPM performance metrics

Metric Description Symbol

1D CD RMSE Root-mean-square error of difference between predicted
and measured CDs for samples from one-dimensional
test structures

P1D,RMSE

2D CD RMSE Root-mean-square error of difference between predicted
and measured CDs for samples from two-dimensional
test structures

P2D,RMSE

Absolute anchor
gauge CD error

Absolute value of the largest prediction error for one or
more gauges designated as anchors, which are preferred
by the modeler to have the smallest error

Panchor

Absolute CD error
range

Sum of the largest positive-valued prediction error and
the absolute value of the largest negative prediction error

Prange

Several different implementations for achieving this performance metric are consid-
ered during the training process, as shown in Table 2.3.

The simplest and most common method of comparison is to evaluate the root-
mean-square error (RMSE) of the CDs predicted by the model y′ and the CDs from
the corresponding structures extracted from the SEM measurement y, as provided
in the equation:

RMSE =
√
Σni=1(y

′
i − yi)2
n

. (2.2)

Because of the difference in unavoidable error associated with the measurement of
two-dimensional test structures compared with one-dimensional, the two popula-
tions of gauges are often considered separately.

2 Machine Learning for Compact Lithographic Process Models 35

For integrated circuit manufacturing, there are often particular configurations
of shapes on the input layout L that are of paramount performance due to their
frequency of appearance and their functional role in the device. A particular spacing
distance between neighboring lines, for example, may serve as a key characteristic
of a particular lithography process. For these structures, it is very important that the
bias in the model be minimized. To assist in reducing bias on selected features, it
is common to specify a metric of maximum absolute prediction error on a small
number of the so-called anchor gauges.

Finally, it is common to make the absolute range of the model prediction error
a performance metric. Evaluating performance by the absolute range can have two
effects: first, the role of the hardest-to-fit samples in the dataset is magnified, inviting
further attention. It may be that the point is an outlier or mislabeled, for example,
and this can be assessed on a sample-by-sample basis after an initial CPM has been
generated. A model that keeps the worst-case CD prediction error below 2 nm may
be preferred over a model with a low RMSE but a maximum CD prediction error of
5 nm. Using the range as a metric during training allows the error to redistribute over
the dataset so as to reduce the worst-case error, and can be interpreted as a kind of
tolerance band of allowable error. There are many variants on this kind of tolerance
band metric, and one interesting example is an asymmetric error range band. By
this technique, the training can encourage the CPM to bias its prediction error
systematically in a particular direction where it might be more easily mitigated in
manufacturing. For example, a metric could be evaluated on line-ends to encourage
the model to systematically predict lines longer than they are actually printed, rather
than risk a mis-prediction that will shorten the line and lead to electrical connectivity
failure.

2.3.1.4 Summary of CPM Problem Statement

In summary, we have provided the following machine learning problem statement
for CPMs:

• Task T : Infer the measurement of the pattern transferred to the substrate by a
patterning process.

• Performance P : Correspondence between the boundary of the patterned region
as measured and as modeled.

• Experience E: Test pattern data pairs including mask layout polygon inputs and
SEM image outputs representing the same structures.

In the next section, we will discuss how this problem statement can be resolved
using the supervised learning methodology.

36 J. P. Shiely

2.3.2 Supervised Learning of a CPM

Previously, we described the CPM machine learning problem statement. We now
describe in detail a widely used implementation which resolves the CPM problem
statement using the supervised learning procedure. Supervised learning may be
defined as:

Supervised Learning: the machine learning task of inferring a function from a set of
training examples, where each example is a pair consisting of an input object and a desired
output value.

The supervised learning procedure provides a recipe for resolving the CPM machine
learning problem, with the following ingredients [17]:

• A Dataset
• A Cost Function
• An Optimization Procedure
• A Model

The recipe, and the communication between the ingredients, is represented in
the schematic Fig. 2.5. The dataset is a collection of paired data: a collection
of input examples x and, for each, an associated output example y. The model
infers an output y′ when it receives input x. A cost function is used to evaluate
the fitness of the model in predicting y′, relative to the provided example outputs
y. An optimization procedure finds the values of the model parameters θ and
feature-generation parameters φ that minimize the cost function. Feature-generation

Dataset Optimization
Procedure

Model

Cost
Function

Fig. 2.5 The supervised learning process may be abstracted into a common recipe with the
following ingredients: a dataset, a cost function, an optimization procedure, and a model. The
dataset provides training examples, which are pairs of inputs x and desired outcomes y. The
model receives an input x and predicts y′, and is parameterized by learned variables θ and
hyperparameters φ. The cost function C is some metric of the difference between the model result
y′ and the target value y from the dataset. The optimization procedure seeks to find the values of θ
and φ that minimize the cost function C. The specific implementations for each of the ingredients
may be considered separately and replaced individually, although an optimized solution often must
consider the combined effects

2 Machine Learning for Compact Lithographic Process Models 37

parameters are not usually included in descriptions of supervised learning but are
important for CPMs and will be discussed in Sect. 2.3.2.2.

In this section, we will describe each of these ingredients, in relation to training
CPMs, in detail. We will initially limit our description to CPMs that use the linear
regression model form, because the models are currently the most widespread in
industry and the easiest to describe. In Sect. 2.4, we will replace the linear regression
ingredient with a variety of other model forms, but much of the other supervised
learning framework discussed in this section will remain relevant even when newer
model forms are adopted.

2.3.2.1 CPM Model Form

The linear regression model form is the most common currently in use for
constructing CPMs. The model form is given by the equation:

y′ = θT x. (2.3)

Each model input is represented as a vector of numbers x, and each model output is
represented by a vector of values y′. The values of elements composing the vector
θ are determined during the model training process. In Eq. (2.3), we have chosen
the convention that the first element x0 in x is equal to 1, which means that the
first element θ0 in θ is equal to the model bias, denoted as b in some alternative
formulations of the linear regression model. The other elements of θ serve as
weights that determine the relative magnitude of contribution from each of the
features in x, sometimes denoted by a weight vector w in alternative formulations.

It is surprising that such a simple model form can represent a process as
complicated as lithographic patterning. Much of the complexity of CPMs that
enables them to mimic nonlinear behaviors with a simple linear model lies in the
feature-generating functions that produce the vector x from the original raw pattern
input, as well as the interpretation of the output vector y′. We will discuss input
representation and output interpretation of the dataset in Sect. 2.3.2.2.

2.3.2.2 CPM Supervised Learning Dataset

We have previously discussed the training data experienced by the learning algo-
rithm, in the form of an input/output pair, and the task as inferring from the mask
layout the resist or etch boundary contour (L → $R or L → $E), or inferring the
etch from the resist boundary contour (R → E). We have also indicated that the
model form is a linear regression.

The linear regression model form takes, as input, a vector of scalar values. For a
CPM, we need to convert the input representation from a layout or contour, usually
represented as collections of polygons, into a vector of values that is consumable
by the linear regression. The output of a linear regression is a single scalar value.

38 J. P. Shiely

We also must, therefore, explain how the output can be interpreted to reconstruct
the desired outcome of the task, the resist or etch contours. We will now explain
how the polygon inputs are represented to the model, and how the model outputs
are interpreted to reconstruct polygon contours.

Input Feature Generation

We consider the task of inferring the resist field R from the input layout L .
Specifically, we want to know whether a specific observation point R on the resist
field is within, or without, the boundary of the photoresist. We can consider the
possible outcomes of the inference at R to be either inside or outside.

We further assume that data influencing the outcome at R will be the region
of the layout L within the vicinity of an observation point L that corresponds, in
the layout coordinate space, to the location of the observation point R in the resist
coordinate space. Further, we define the “vicinity of L” as a region enclosed by a
circle of radius AL, which we will call the layout ambit.

To determine whether R is inside or outside the photoresist contour boundary,
we provide as input the layout graphics within ambit of the corresponding point L
on the layout, as shown in Fig. 2.6.

The input to the linear regression model must be a vector of real-valued elements,
x, not a circular region of polygons clipped near the vicinity of L. We will call each
of these elements a feature of L. Every i-th element xi in x is created by a feature-
generating function gi(L) that operates on the region of L within ambit AL of
observation point L, so that:

xi = gi(L). (2.4)

For simplicity, we consider an idealized case, where the mask transfer function
tm and the image transfer function ti have been determined, and it is possible to
observe the intermediate result of the projected image I :

I = fi
(
fm

(
L

))
, (2.5)

and I ∈ R
2. Every observation point L on the mask layout L as well as on the

resist image R now maps to a corresponding point I in the image field I . Rather
than extracting features from the raw polygons of the layout, we will train the CPM
with features extracted from the projection image. We may then represent the feature
vector x as a function of feature generator operating on I rather than L:

xi = gi(I). (2.6)

An example of a feature that could be extracted from I at observation point
I could be the value of I itself at that location, or xi(L) = gi(I) = I (I).

2 Machine Learning for Compact Lithographic Process Models 39

Mask Layout L

Layout Observation Point L

L

Ambit Radius AL

Resist Contour R

Resist Observation Point R

R

Fig. 2.6 The task of the L → R CPM is to infer whether point R is inside or outside of the resist
contour boundary, using as input the cross-hatched region of the layout within the ambit radius AL
of observation point L on the layout L

This feature would be the aerial image intensity at the point on the image field I
corresponding to point L on the layout.

Another example of a feature that could be extracted from I could be a
physically motivated quantity, like the acid concentration of the photoresist after
the processing step called post-exposure bake, or PEB [27]. Various physically
motivated terms are included in PCMs if they can be calculated quickly and if they
are able to help improve the model fitness.

Features do not need to be necessarily physically motivated, however. Some-
times, the feature generators operate more like image processing operators, detect-
ing the local density of I within the vicinity of I , or the value of edge-detection or
corner-detection filters. Frequently, a convolution of a kernel K evaluated at point
I in the image will be a feature generator. A radially symmetric kernel can be used
to sample local projection image density. An antisymmetric kernel can be used to
detect change in the projection image intensity, indicating potential edges or corners.

Much of the literature for CPMs explores the effectiveness of adding new
features, generated from new feature generators. The virtues of the different feature
generators used in CPMs are beyond the scope of the chapter. The key point is

40 J. P. Shiely

that feature generation, using hand-tuned feature-generating functions, is the main
mechanism for improving the performance of linear regression CPMs.

Each feature-generating function gi is parameterized by a vector of values φi . For
example, if the feature generator is a two-dimensional radially symmetric Gaussian
kernel convolved with the projection image at I , then it may be parameterized by its
standard deviation σ . The intensity of the image I at I can be considered a feature
with a large number of parameters, including every value used to specify the fm and
fi transfer functions.

For simpler notation, we will combine all of the individual feature-generating
functions gi into a feature-generating vector evaluated at observation point I of
projection image I . We denote it as g, so that:

x = g(I ;φ) (2.7)

where φ is a vector composed of all of the parameters necessary to initialize all of
the feature-generating functions.

Considering the many feature-generator parameters necessary to define the
optical projection system, as well as the parameters dedicated to photoresist, etch,
or measurement behaviors, the overall number of parameters that require co-
optimization can grow into the range of one hundred, although it is preferred to
keep the number much smaller.

CPMs based on the linear model have proven surprisingly resilient in capturing
lithographic processes, through the efforts of engineers to craft new feature-
generating functions. However, each new feature adds more parameters. The
complexity of determining the appropriate features to use for a given model as well
as to find the best values for all of the necessary parameters has complicated the
task of building CPMs. We will see in Sect. 2.4 that one of the opportunities for
neural networks in the CPM domain is to reduce the reliance on hand-crafted feature
engineering and optimization of a large number of parameters for feature generators.

Output Representation

The output of a linear regression model is a scalar value. The outcome we intend
to interpret from the model is whether an observation point R in the resist image is
inside or outside of the resist contour boundary. There are three different methods
by which this information is encoded: variable bias, constant threshold, and variable
threshold. The three output encodings are illustrated in Fig. 2.7.

Part a) of Fig. 2.7 illustrates the information we are trying to encode in the model
output. The input to the model is a layout L . We measure the width of a feature
on the layout and find the layout CD, CDL . The output of the model indicates that
points inside the resist contour R are confined within a narrower line, CDR .

If we are using the resist bias encoding, in Fig. 2.7b, we evaluate the model on
the edge of the line in the layout L . The model returns a value B that tells us the
distance from the layout edge to the edge of the resist contour.

2 Machine Learning for Compact Lithographic Process Models 41

Layout L

Layout CD (cross-section)
Resist CD

Resist Bias Encoding

S(r)

T
Constant Threshold Encoding

S(r)

T (r)
Variable Threshold Encoding

B

CDL

CDR

r

a)

b)

c)

d)

Fig. 2.7 The output of the linear regression model is a scalar value evaluated at each position r
on the resist field. The output must be interpreted to indicate the position of the resist contour
boundary, and whether a given point r is inside or outside of the photoresist. In (a), we see how the
width of a figure on a layout L may be measured to find the layout CD, CDL . We have trained the
model so that it predicts a narrower resist CD, shown by CDR . In (b), we see that the location of
the resist contour can be encoded by a bias value B returned by the model, which can be evaluated
on the layout edge and is a vector pointing to the resist contour edge. In (c), the constant threshold
encoding is shown, which trains a signal function S(r) to intersect the threshold function at the
desired contour locations. In (d), we see the variable threshold encoding, which often uses the
image intensity as the signal S(r) and trains a threshold function T to intercept the signal at the
locations of contours

If we are using the constant threshold encoding, in Fig. 2.7c, the model provides
a scalar value T , and a function S(r), a function of position r on the resist image.
The intersection points between S and T indicate the resist contour boundaries.
When T > S, the observation point r is inside the resist contour. When T < S, the
observation point is outside of the resist contour.

42 J. P. Shiely

The variable threshold encoding in Fig. 2.7d is similar to the constant threshold
encoding, except that the value of T is now a function of the observation point r .
The interpretation remains the same: the roots of S−T are contour points, the region
for which T < S is outside of the resist contour, and the region T > S is inside the
resist contour.

The bias encoding is easy to interpret but, in practice, can introduce difficulties
for mask synthesis tools when the biases are large compared to the minimum
allowable spaces on the layout. Also, it is difficult to encode the resist CD using the
bias encoding if there is not a one-to-one relationship between edges on the layout
features and edges on the resist contours. There are also difficulties in translating
discontinuous points on the layout, such as near corners and jogs, into a bias
representation. However, when kept within its optimal application parameters, it
can provide an efficient encoding for inferring the resist contour from the layout.

A more robust representation is the constant threshold output encoding, which
can smoothly represent mapping between arbitrary two-dimensional layouts and
contours. It can be evaluated across the entire domain of r rather than just at the
edges of the layout.

The variable threshold representation produces two output channels from the
linear regression model. This should provide identical contour results to the constant
threshold model. For convenience, the signal S can be the unmodified projection
image intensity I (r), and the threshold function T can be the polynomial, trained
by linear regression, that crosses the signal at the desired contour points. This
provides computational lithography tools not only access to the resist contour but
also simultaneous access to the original image intensity. With this encoding, a single
model can provide information on the purely optical behavior of the process, as well
as the final resist contour position.

Summary of CPM Dataset Representation

The task of the model is to map from layout polygons to a resist contour, but these
data cannot be directly input to, or output from, a linear regression model. It is
necessary to extract features from the layout in order to feed the input to the linear
regression. It is also necessary to define how the output of the linear regression
is to be interpreted in order to construct the desired final output result, the resist
contour R.

2.3.2.3 CPM Supervised Learning Cost Function

We have already discussed the optimization metrics of CPMs, as well as the
satisficing metrics that are used to select between alternative models that have
satisfied the optimization target, in Sect. 2.3.1.3. These metrics usually evaluate the
difference between measured and predicted CDs. However, the output representa-

2 Machine Learning for Compact Lithographic Process Models 43

tion of the linear regression model provides the signal value y′. The signal must
be analyzed in order to determine actual contour positions and CDs, as described
in Sect. 2.3.2.2. To avoid the additional computational cost of CD analysis, it is
common to construct the supervised learning per-element loss cost function in terms
of the signal differences between the expected and predicted signal, (y′ − y), rather
than the difference between the expected and predicted contour position or CD.

We assume that the dataset has been divided into a training set and a test set.
The training set will be used serve as examples available during the training process
and will influence the values of θ . The test set will be withheld from the training
process and used to assess how well the model generalizes and predicts the outputs
for inputs that it has not previously experienced.

Let the set of input feature vectors for every example in the training set be
denoted as x(train), and the input feature vector for the i-th example in the training
set as x(i). Similarly for the output y′(train) and y(i). The loss function, for example,
i is given as:

L(y′(i), y(i)) = 1

2
(y′(i) − y(i))2. (2.8)

From Eq. (2.3), we know that y′ is a function of θ , so that:

L
(
y′

(
θ
)(i)
, y(i)

)
= 1

2
(θT x(i) − y(i))2. (2.9)

The cost function J is merely the average of the loss function for all m examples in
the training set:

J (θ) = 1

m

m∑
i=1

L
(
y′(i), y

(
θ
)(i))

= 1

m

m∑
i=1

1

2
(θT x(i) − y(i))2,

(2.10)

which is also called the mean squared error on the training set, or MSEtrain.
Alternative cost functions are used to regularize the model, which reduces

risk of overfitting by penalizing model complexity [18]. This can be achieved by
incorporating the values of the weights w in the parameter vector θ into the cost
function. To avoid penalizing the bias term, θ0, we will modify our representation
of the parameter vector into a bias value b and a weight vector w:

θ =
[
b

w

]
. (2.11)

44 J. P. Shiely

The cost function may then penalize the model complexity by incorporating the L1
and L2 norms of the weight vector w, such that:

J (w, b) = 1

m

m∑
i=1

1

2
(wT x(i) + b − y(i))2 + λ2||w||2 + λ1||w||1, (2.12)

where λ1 and λ2 are model hyperparameters that are determined during optimiza-
tion:

||w||1 =
n∑
j=1

|wj |, (2.13)

and

||w||2 =
n∑
j=1

w2
j . (2.14)

The cost function J is optimized for fixed values of λ1 and λ2, which must be
determined during the hyperparameter tuning process.

As shown in Eq. (2.7), the input to the model is represented by the feature vector
x, which is generated from the image intensity input I by a vector of feature-
generation functions, g(I ;φ). In order to optimize the parameter values φ of
the feature-generating functions, we evaluate a performance function P(φ). This
function is usually some linearly weighted combination of the performance metrics
described in Sect. 2.3.1.3. A typical example would be

P(φ) =γ1DP1D,RMSE(φ)+ γ2DP2D,RMSE(φ)

+ γanchorPanchor(φ)+ γrangePrange(φ),
(2.15)

where γ1D, γ2D, γanchor, and γrange are chosen by the modeler and become, effec-
tively, the steering mechanism to direct the overall optimization. We will discuss
how the feature-generator parameter vector φ is found to minimize P in the
following section.

A summary of the various functions, including the loss, cost, and performance
functions, is shown in Table 2.4.

2.3.2.4 CPM Supervised Learning Optimization Algorithm

The final ingredient in the supervised learning recipe is the optimization algorithm,
which is used to find the parameter values that provide the best performance
metrics. Compact process models require three different types of parameter values
to be determined during optimization: the linear regression parameters θ , the

2 Machine Learning for Compact Lithographic Process Models 45

Table 2.4 Functions used to evaluate the model

Name Symbol Purpose

Loss L(y′ − y) The deviation, for a single example, between the predicted and
expected outcome

Cost J (θ) The average of the loss function for all examples in the training
set, parameterized by the linear regression parameters θ . May
also include additional regularization cost penalties to reduce
model complexity

Performance P(θ) The effectiveness of the model in meeting the performance
metrics, parameterized by the feature-generation parameters φ.
Typically evaluated on the training set and the test set

Table 2.5 Parameter types, and their optimization goals and methods

Parameter type Optimization goal Method

φ Find the best feature-generator
parameter values φ to minimize P

Simulated annealing, genetic
algorithm, Nelder–Mead

λ Find the best regularization
hyperparameter values λ to reduce
model generalization error

K-fold cross-validation to estimate
Var(J), heuristics to tradeoff vs
Bias(J)

θ Find the best linear regression bias and
weights θ to minimize the cost J

Gradient descent, Moore–Penrose
pseudo-inverse, coordinate descent

regularization hyperparameters λ1 and λ2, and the feature-generation parameters
φ. Each of these different parameter types are determined by different methods, as
shown in Table 2.5. The procedure for determining all three sets of parameters is
nested. In the outer loop, the feature parameter vectors φ are chosen. In the middle
loop, the values of the cost function hyperparameters λ are determined. In the inner
loop, the linear regression parameters θ are determined. Each level of this nested
loop will now be discussed in detail.

Determining Feature-Generator Parameters φ

Before the model cost function can be evaluated, the input representations x for each
training sample must be generated. Recall from Sect. 2.3.2.2 that the raw input for
each training sample is L , usually a set of polygons, or a two-dimensional array
of numbers composing an image intensity I . The CPM does not directly use the
raw input representations but rather extracts a set of features that will represent the
inputs to the model. The features are generated by a collection of feature generators,
which are parameterized. If g(X,φ) is a vector of feature-generating functions,
parameterized by φ, then:

x = g(X,φ). (2.16)

Generally, we seek φ that minimizes the cost function J :

46 J. P. Shiely

arg min
φ

J
(

x(train) (φ) ; θ, λ) . (2.17)

It is necessary to make an initial guess for the values of φ before we can generate
the feature vector x. In some cases, the parameters in φ correspond to physical
quantities about which the user has some prior knowledge. For example, the feature
generator corresponding to the aerial image intensity is parameterized by many
values that relate to the projection lithography equipment, that are either measurable
or provided by the tool manufacturer. These parameters can be initialized to
physically meaningful values with some degree of confidence. Other parameters
do not relate to physical quantities and must be guessed. Values that were found
from prior models may serve as good starting points.

Following the generation of the first model, its performance P will be evaluated
by Eq. (2.15). The outer-loop φ-optimizer will then choose a new location in φ-
space. The optimization is complicated by the highly nonlinear response surface of
the performance function P in φ-space. Typical optimizers include Nelder–Mead,
simulated annealing, and genetic algorithms.

The outer loop will terminate based on criteria specific to the chosen optimizer,
typically after a fixed number of iterations, or when P meets its performance
requirements, or when P has not improved noticeably for several iterations.

Determining Regularization Hyperparameters λ

The purpose of regularization is to improve the generalization performance of the
model and reduce the likelihood of overfitting. It is not possible to determine
the regularization hyperparemeters without making models and testing them to
assess their variance. Since data can be scarce for CPMs, a pragmatic approach to
measuring model variance as a function of the hyperparameter value is to use k-fold
cross-validation [18]. The training set is split into k equal parts called folds. Then,
k models are fit, and for each model a different fold is held out for validation. Each
of the models’ performance can be evaluated by comparing the prediction error on
the held-out validation data to the model bias on the training data.

The hyperparameters are set by sweeping through a range of values, making
a large number of models following the k-fold cross-validation methodology, and
calculating the model prediction variance for each value of λ. It is typical for k to
equal 10. Values for λ are selected that indicate the model as simple as it can be
without increasing prediction bias.

Determining Linear Regression Parameters θ

We will usually have more training samples than we have trainable θ parameters
for linear regression CPMs. For very large datasets, a gradient-descent method,
including batch gradient descent and stochastic gradient descent, may be used to

2 Machine Learning for Compact Lithographic Process Models 47

minimize the cost function. This approach works very generally and efficiently to
find θ .

For CPMs with merely thousands of training samples, which is a common case,
it can be even more efficient to calculate the θ parameters analytically. Finding
model parameters to minimize the RMSE is equivalent to solving the problem of
ordinary least squares, for which there are many resources [6] including singular
value decomposition (SVD). Some complications arise in efficiently minimizing
the cost functions if the λ1 hyperparameter is nonzero, since this can no longer be
posed an ordinary least squares problem, but this problem has been solved through
the method of least angle regression [12].

The efficiency and robustness of algorithms for finding the parameters of a linear
regression model are a strong motivation for using this simple form. In the practice
of training CPMs, the selection of parameters θ can be almost fully automated and
out of the view of the modeling process.

Summary of Supervised Learning Optimization Algorithm

To recap, three different functions are used to drive optimization: the loss function,
which is defined per-element; the cost function, which is chosen to be RMSE
so that a rapid analytical solution can be used as the linear regression training
algorithm; and the objective function, which is used to optimize the feature-
generation parameters φ. The historical motivation for this approach is to keep
the inner machine learning optimization loop fast and robust, and postpone the
calculation of more costly performance metrics to the outer loop, where they will
be used to drive the feature generator parameters rather than directly influencing
the linear regression parameter w and t . In cases where the least squares algorithm
cannot find a sufficient minimum, this could lead to nonideal performance of the
model since the performance metrics P are indirectly related to the optimized cost
function J . However, as the optimization converges, the cost function is usually a
sufficient proxy for the performance metrics.

2.4 Neural Network Compact Patterning Models

Compact patterning models utilize machine learning techniques to optimize the
manufacturing process for integrated circuits, putting them at the intersection of
two technology revolutions. Section 2.2 described the patterning process used to
manufacture each layer of an integrated circuit. Section 2.3 explained how linear
regression models of the patterning process are trained. Linear regression models
have been an appropriate model form for many years, considering the relatively
small number of measurements collected for training compact patterning models.
However, advances in computational architecture and training algorithms for neural

48 J. P. Shiely

networks open up many new possibilities for overcoming some of the limitations of
conventional patterning process models.

In this chapter, we will survey prior work adapting neural networks to implement
transfer functions in compact process models. Applications include the mask,
image, resist, and etch transfer functions.

2.4.1 Neural Network Mask Transfer Function

The mask transfer function is the first stage in the patterning process, representing
the transformation of the layout from a digital representation to a physical,
manufactured photomask. There are several papers that demonstrate effective linear
regression models of electron beam mask writing [20, 55]. The earliest paper
relating lithography to neural networks was Frye, Cummings, and Rietman [9, 14].
The paper appears to be the first to apply machine learning and backpropagation [39]
to the field of computational lithography. The input features were from an array of
binary-valued pixels representing the intended image to be written on the mask.
The first layer in the network calculated the average intensity integrated over nine
radial distances from the evaluation point as well as the center intensity. Engineering
the features in this way is a kind of radial weight sharing that reduces the number
of parameters and also ensures that the output will be radially symmetrical. This
provided ten features to a linear regression model.

Training data was generated by using an analytic expression for the electron
scattering and a nonlinear resist model to capture the thresholding behavior of resist.
A conventional iterative correction was performed on a test pattern, and each pixel
of the corrected mask constituted the output y of the training sample, with a 19×19
square of pixel values representing the mask target pixel values as inputs.

The output of the network was a single linear activation neuron that indicated a
dose adjustment that should be applied to the electron beam writing at each point
on the mask. The output of the linear regression model represented the degree to
which the observation point was underdosed. In effect, this early simple network
was designed to learn an inverse of the mask transfer function L = f−1

m (M),

modifying the representation of the layout L to improve the mask M . The benefit
of the neural network implementation was runtime, which the paper claimed had
reduced the time to optimize the mask from 6 years/mm2 to 18 h/mm2. The speedup
was achieved by eliminating the need for solving the inverse problem iteratively,
and instead using learning an inverse filter which will be convolved with the mask
target pattern to return the ideal dose adjustment.

More recent work [35] follows the example of Frye, learning a radially symmetric
convolution kernel to model ebeam proximity effects, but also offers an innovation
to correct for resist surface charging. The electron beam’s trajectory is deflected by
the influence of electrons that accumulate, during mask writing, on the photoresist,
leading to systematic errors in the measured edge placements of the transmitted
pattern [34]. Figure 2.8 illustrates the three-layer resist surface charging model form,

2 Machine Learning for Compact Lithographic Process Models 49

Input

Exposure
intensity
samples

Hidden layer Output layer

Fogging Kernel

Convolution

Fogging Neuron

Direct Charging

Neurons

Fu
lly

 C
o

nn
ec

te
d

Positional

displacement

Fig. 2.8 A novel multilayer perceptron to simulate the mask transfer function fm. The model
receives the intensity of the electron beam exposure at the inputs and models two different effects:
fogging, which is affected by the nearest neighbors, uses a fogging kernel to pass weighted sums
of nearby neurons to the middle layer; and direct charging, which uses a direct nonlinear mapping
from every input neuron to a neuron in the middle layer [35]

which has several novel characteristics. Charging can be modeled as a composite
of two processes: direct charging and fogging. To model both effects and their
interactions, the input values, representing the exposure intensity of the mask to
the ebeam, are passed into two different middle layers. One middle layer merely
applies a nonlinear activation on each input pixel, representing the direct charging as
a kind of thresholding operation. The other middle layer is constructed by learning
an asymmetric point-spread function to capture the fogging charging. Fogging
charging can lead to asymmetric displacement on the mask and also may require
an elliptical shape to the point-spread function. The output layer is fully connected
to both middle layers. The output nodes represent a displacement map from the input
exposure intensity map, from which can be interpreted the magnitude and direction
of positional error for the printed edges. The models are trained using supervised
learning from CD SEM measurements of manufactured photomasks.

In summary, linear regression models and neural networks have been applied to
model electron beam proximity and charging effects. The proximity effect models
are relatively simple in structure, learning symmetric point-spread functions that are
used as convolution kernels, resulting in essentially linear models. Charging effect
models learn how to represent asymmetric distortion effects, mapping from a scalar
exposure intensity map to a vector-valued positional error displacement map.

There remains room for further work in this area. Specifically, there has not yet
been a demonstration of a mask transfer function that succeeds in capturing the
etch component of the mask manufacturing process, which can cause significant
distortions that cannot be compensated by point-spread functions. More details on
attempts to capture etch effects with neural networks can be found in Sect. 2.4.4.

50 J. P. Shiely

2.4.2 Neural Network Image Transfer Function

The image transfer function is very well understood by theoretical models from first
principles, and rigorous simulators are very effective in providing predictive models
of this stage of the patterning process. However, the rigorous tools are too slow for
large area application, and approximations are necessary for most computational
lithography applications.

The image transfer function can, itself, be considered a composite of two transfer
functions: mask diffraction and image refraction. The first stage represents the
diffraction of the light from the illuminator as it passes through the photomask. The
second stage represents the refraction of some of the diffracted orders from the first
stage by the projection lenses, focused onto the wafer substrate to form an image.

The second stage can be implemented efficiently and with high precision in
CPMs using an approximation derived from rigorous principles [15]. Consequently,
there is no motivation for machine learning for this part of the image transfer
function. On the other hand, the first stage, mask diffraction, though it can be
modeled rigorously [50], is very difficult to model accurately with a CPM [32]. At
the same time, the computational expense of the rigorous mask diffraction model is
many orders of magnitude too slow for use in large-area computational lithography.
Many efforts have been made to generate compact representations of the photomask
diffraction, usually relying on hand-generated features and a segmentation of
regions of the mask into spatial domains [3, 26, 54]. These efforts have been critical
to enabling production-level OPC and lithography verification. The runtime of these
compact model forms is generally considered acceptable for full-chip applications.
The models are essentially perturbation models, with each new term representing
a higher-order effect of smaller magnitude. Higher-order terms involve scattering
interactions from more than one location on the mask. When multiple regions
of the mask are interacting electromagnetically, the hand-crafted features become
more complicated. As a result, it appears beyond the capability of hand-engineered
feature generation to craft a compact mask transmission model that can capture the
high-order interactions of some photomask geometries. Examples of difficult mask
geometries for CPMs include densely packed chromeless masks, and EUV masks
with assist features.

2.4.2.1 Neural Network Mask Diffraction Model

The task for the image transfer function, therefore, is to accurately represent high-
order interactions of light scattering off the densely packed edges on photomasks
with very fine geometries. An early approach attempted to train a neural network
to approximate the mask transmission function from input mask layouts [2]. The
training data supplied to the model was rigorously simulated results from the
waveguide method, which is effectively a frequency-domain representation of the
information transmitted through the photomask. The performance metric was the

2 Machine Learning for Compact Lithographic Process Models 51

error in the predicted value for each sampled point in the simulated spectrum. The
RMSE of all of the signal prediction errors is used as the cost function.

The input representation is the scalar diffraction spectrum, which can be quickly
calculated. Each point in the scalar diffraction spectrum represents the magnitude
and phase of a wave with a particular spatial frequency through the mask. This can
be represented as a complex number in the frequency domain. As the light interacts
with the edges of the features on the photomask, it will become polarized. Polar-
ization can be represented as the propagation of two waves, the transverse magnetic
(or TM) and the transverse electric (or TE) waves. The output representation is,
therefore, effectively two complete spectrum maps, complex valued at each point,
in the frequency domain.

The model form utilizes a pair of neural networks, each with two to four hidden
layers. Each of the independent networks is responsible for predicting the spectrum
of one of either the TE or TM polarizations, which are accessible on the output nodes
of the network. The hidden nodes use sigmoid activation. The model is trained by
gradient descent, and the weights are updated by backpropagation. The number of
hidden layers, and the number of neurons per layer are tunable hyperparameters.
A genetic algorithm is used to identify the hyperparameter values that balances the
minimization of the prediction error and the variance. The best candidate models are
then validated on highly sensitive test data to detect overfitting and prevent selection
of a model with high variance.

Unfortunately, the network did not demonstrate strong prediction results based
on frequency-domain data. When space-domain information was added to the input
representation, such as the size of a space or feature, the prediction of the network
improved. But, extracting space-domain feature information like the sizes of spaces
or lines eliminates many of the intended advantages of neural networks over
conventional domain decomposition methods, which can also construct accurate
tables for specific lines and spaces.

More recently, a team demonstrated the application of a deep neural network
(DNN) to model the diffraction effects resulting from mask topography [23].
Whereas conventional domain decomposition methods are restricted to specific
simple mask geometries that directly relate to the pre-computed tables in their
mask library, the proposed DNN approach can be trained with input mask layout
data of any shape. This is increasingly important in leading-edge lithography
applications, which can benefit from more flexible mask shapes. Training data
is generated by feeding mask layout samples into a rigorous electromagnetic
solver for mask diffraction. This generates for each sample a corresponding set
of images that represent a complex-valued mask transfer function. Each point on
the illuminator approaches the mask from a different angle, requiring a different
rigorous simulation. For efficiency, an approximation is made by selecting a few
points in the source for which to generate simulated data.

The first stage of the implementation rasterizes the mask layout L into a matrix
of pixel values, which serve as the input to the DNN. The output is a pair of
images representing the complex-valued mask transmission function. These two
output images are then input to the lens refraction model, which will generate the

52 J. P. Shiely

final image by convolving a set of kernels that characterize the interaction of the
illuminator and projection lenses.

The architecture of the neural network is not disclosed in the cited work.
Results demonstrate that the neural network is capable of learning the mask
transmission function with sufficient accuracy to keep the total CD error for the
entire image transfer function fi in the range of +5/−3 nm, as compared to a
rigorous simulation. Further accuracy improvement may be required for industrial
application, but the work illustrates the potential of neural networks to approximate
complex imaging functions. The runtime is not disclosed in the work either, but
experience with rigorous mask simulation leads to a reasonable estimate that the
relative speedup is greater than three orders of magnitude, which brings it into the
range of potential large-scale application in computational lithography.

2.4.2.2 Summary of Neural Network Image Transforms

The image transform can be subdivided into the mask diffraction and projection
components, the first of which is an attractive target for machine learning due to the
computational cost of rigorous simulation, whereas the second is less attractive due
to an existing efficient physical theory. Attempts to use neural networks to represent
mask diffraction processes have shown promise when space-domain information
about the mask layout has been supplied to the input.

2.4.3 Neural Network Resist Transfer Function

We have already described the generation of a linear regression resist model in
Sect. 2.3.2, which represents the dominant form for CPMs in current production.
To recap, the conventional resist CPM is a transfer function fr mapping I → R.
It is trained to learn a function called a “threshold” which intersects the intensity
signal I at the location of resist contour edges. An SEM image provides the data
that determines the target resist contour edges for the model. The performance
metric for the model is typically either the RMSE of the predicted edge positions
or the max edge position prediction error across the entire training set. The model
form is usually a linear regression, but the model is capable of representing some
nonlinear behaviors through extensive use of hand-engineered features. The features
are generated from the input image intensity distributions, resulting in a set of
feature maps. For a given point, the model samples every feature map and learns
the relative weights of each through a pseudo-inverse of the linear model, solving
for the weights w.

2 Machine Learning for Compact Lithographic Process Models 53

2.4.3.1 Motivation for Neural Network Resist Transfer Functions

Despite the prevalence of the linear threshold resist model form in industry, it
suffers from several defects, primarily related to its representational capacity and
the extensive feature engineering that must be performed to capture the observed
behaviors. Selection of the appropriate features remains an art, and the optimization
of all of the parameters for the feature-generating functions is computationally
intensive. The opportunity for neural networks is to expand the behavioral range
of the resist transform and reduce the need for human intervention and computation
to select and optimize features.

2.4.3.2 Earliest Neural Network Resist Model

There have been many attempts to apply neural networks to the problem of pho-
toresist modeling. Mardiris provided the earliest demonstration of resist modeling
with a neural network [29]. In this application, the task of the neural network is
to approximate the well-known ABC model from Dill [11]. The model provides
a mapping from the image intensity I at the resist surface to a quantity called
“dissolution inhibitor concentration” distributed throughout the three-dimensional
volume of the resist. The inhibitor concentration at each point in the resist can then
be transformed into a development rate using a simple calibrated model. From the
development rate, it is possible to iteratively evolve a “development front” which
represents the boundary between resist and non-resist regions.

The development rate at a particular location in the resist z can be simplified as:

R(I0, z) = exp(E1 + E2M(I0, z)+ E3M(I0, z)
2) (2.18)

where I0 is the image intensity at the surface of the resist, M normalized concen-
tration of the dissolution inhibitor, and E1, E2, and E3 are fitted to experimental
data. The functionM must be solved numerically, and the motivation for the neural
network is to provide a faster alternative.

The training data is generated from simulations using Eq. (2.18). The perfor-
mance metric is the difference between the predicted and simulated development
rate, and the cost function is the RMSE for the training data set. The input is
represented as a pair (I0, z) of real-valued numbers, and the output is a scalar value
representing R. The model form is a neural network using a single hidden layer
with sigmoidal activation on the hidden and output layers as shown in Fig. 2.9. The
model is trained by gradient descent with backpropagation.

The purpose of Mardiris’ model is to learn a function approximation of a
system that otherwise requires numerical solution of a system of partial differential
equations. Although the paper does not provide runtime comparisons, it claims that
the neural network implementation is “much faster” than the conventional method,
which is plausible. Unfortunately, the output of the model is a development rate,
which is not directly consumable in an OPC tool or lithography verification tool.

54 J. P. Shiely

Fig. 2.9 A single
hidden-layer neural network
to approximate Dill’s model,
which represents the rate of
resist dissolution (the
development rate) as a
function of the exposure
intensity and the depth below
the resist surface [29]

Input

Exposure
intensity

Resist
depth

Hidden layer Output layer

Resist
development

rate

Instead, the output of the Mardiris neural network is fed into a cellular automaton
model to evolve, over several time steps, the final resist contour boundary R.

2.4.3.3 Neural Network Resist Model That Maps to a Contour

Since Mardiris’ work, several neural network models have been designed to infer
the resist contour boundary after development, which simplified their integration
into large-area computational lithography systems. Zach [53] made an important
contribution with a neural network that provides a variable threshold function as
its output. By representing the output of the resist model as a variable threshold,
the resist contour can be found following the same procedure described in Fig. 2.7
in Sect. 2.3.2.2. The task of Zach’s model is to predict the resist contour locations,
using training data extracted from 2D SEMs. The performance metric is the RMSE
of the predicted contours at selected locations, compared to the measure edge
positions.

Zach’s work was motivated by the observation that the image intensity function
I includes all of the information necessary to determine R, but the engineered
features available to him in his commercial OPC tool were too limited. That the
feature-space was insufficient could be shown by observing that they could not
discriminate fundamentally different patterns.

The input representation for Zach’s neural network model was a vector of image
intensity values x sampled along a cutline extending a micron from the point of
interest p. The output representation of the model is a shorter vector y that constructs
a threshold function near the point of interest p. Interpreting y as a threshold
function t , and interpolating t near p to find intersections with the image intensity
I , the contour point of R along the cutline is found.

It is difficult to evaluate the performance of the model based on the published
data, and it is worthy of note that the author found the neural network prediction
to be roughly equivalent in quality to a linear regression model trained using the

2 Machine Learning for Compact Lithographic Process Models 55

same procedure. Although the results were inconclusive regarding the benefits of
neural networks, Zach did provide an effective supervised learning framework for
finding a transfer function fr : I → R which could have been easily integrated
into commercial OPC tools. However, the limitation of the input representation to
one-dimensional cutlines may have prevented the neural network from providing
differentiation from linear models.

2.4.3.4 Neural Networks of Two- and Three-Dimensional Resist Models

More recently, work has extended neural network resist models beyond one-
dimensional cutlines. Shim et al. [44] demonstrated a three-dimensional and a two-
dimensional resist transfer function fr implemented with a multilayer perceptron.
The task of the two-dimensional resist contour model is to predict the resist contour
locations, and the task of the three-dimensional resist model is to predict the resist
heights. The training data for the network was generated from rigorous lithographic
simulation.

For the three-dimensional resist neural network, the performance metric was the
difference between the predicted and simulated resist height as a function of position
on the wafer substrate plane. The cost function was the RMSE of this difference. A
satisficing performance metric was the maximum observed error.

The two-dimensional resist contour neural network was implemented as a
classifier, and its performance metric was its accuracy in predicting whether a given
location on the wafer contour plane was “inside” or “outside” of the photoresist
contour boundary. The cost function appears to have been the negative log likelihood
of the output nodes.

Both the three-dimensional and two-dimensional resist neural networks make
an interesting choice for their input representation. These models do not use the
intensity I as inputs. Instead, they use features gL extracted from the layout L ,
so that fr : gL(L) → R. This effectively lumps the mask transform fm and
image transform fi into the resist model. The network will then, effectively, learn
the representations of the combined effects of the mask, image, and resist transforms
at the same time. This kind of approach is known as “lumped modeling.”

The feature extraction method used for both the three-dimensional resist height
model and the contour classifier is shown in Fig. 2.10. The input features were 33
measurements of the local pattern density, distributed in a polar grid sampled at
discrete angles on multiple concentric rings centered on the observation point. Also
provided as input features were the convolution results φnm of several sampling
functions over the layout L . The sampling functions are a family of kernel function
Ψnm indexed by n and m and given by:

Ψnm(r, θ) = Jn(r) cos(mθ), (2.19)

where Jn is the nth Bessel function and θ the angle relative to the center of
the kernel. This family of kernel functions can form a complete two-dimensional

56 J. P. Shiely

(a) (b)

Measurement Point

Position of interest
l

Region of density
measurement

Bessel convolution

Fig. 2.10 Feature extraction gL(L) for the three-dimensional resist height neural network, and
the two-dimensional resist contour classifier, both from Shim et al. [44]. In (a), a set of 49 or 65
measurements of pattern density positioned radially around the point of interest p are extracted
from the layout L . In (b), an example of a convolution of a radial Bessel function with the layout
L . A series of convolutions with 20 or 50 members of this family of functions is used to help
represent the optical transfer function, without directly calculating the mask M or the image I .
The network learns a mapping to the resist boundary from features extracted from the layout L ,
effectively lumping the mask, image, and resist transformations into a single learned transform.
Figure used with permission from [44] and modified for notational consistency

band-limited representation of the input pattern L , and therefore serves as a conve-
nient feature generator. Since we know that the optical projection system filters out
high-order, and hence high-frequency, terms from the mask diffraction spectrum,
we can actually completely represent the layout using samples of convolution maps
generated from this basis. It therefore is feasible that the neural network could learn
the image transfer function during its training process.

For both the three-dimensional and two-dimensional resist models, a multilayer
perceptron is used for the network architecture, with sigmoid activations on all of
the hidden layers, as illustrated in Fig. 2.11.

The output node of the three-dimensional model represents the height of the resist
at the observation point, and is implemented by a single linear neuron. The two-
dimensional classification model represents the output as two logistic regression
neurons, one for each potential class label y,∈{inside resist, outside resist}.

The training algorithm for both models is stochastic gradient descent, to reduce
memory requirements of optimizing all training samples simultaneously and to
reduce the risk of getting trapped in a saddle point of the cost function. Back

2 Machine Learning for Compact Lithographic Process Models 57

Input

Layout density
radially sampled

around p

Convolutions
of Bessel
sampling

functions with
Layout

sampled at p

5 Hidden layers Output layer

Linear :
Resist height

at p

x 65

x 50

Fu
lly

 C
on

ne
ct

ed

7 hidden nodes per layer
a(z)=Sigmoid

1linear output nodes
a(z)=Sum115 input nodes

Fu
lly

 C
on

ne
ct

ed

Fu
lly

 C
on

ne
ct

ed

Fu
lly

 C
on

ne
ct

ed

(a)

Input

Layout density
radially sampled

around p

Convolutions
of Bessel
sampling

functions with
Layout

sampled at p

3 Hidden layers Output layer

x 65

x 50

10 hidden nodes per layer
a(z)=Sigmoid

2 output nodes
a(z)=Sigmoid

Logistic:

Likelihood

Likelihood

Fu
lly

 C
o

nn
ec

te
d

Fu
lly

 C
o

nn
ec

te
d

115 input nodes

(b)

Fig. 2.11 Network architecture for: (a) the resist height regression model and (b) the resist contour
classification model, both by Shim et al. [44]. The input features and hidden-layer architectures
are the same for both models. The input features are up to 65 density samples of layout local to
observation point p and convolutions of up to 50 members of the Bessel sampling function family
with layout L evaluated at p, as illustrated in Fig. 2.10. The network is a multilayer perceptron
with sigmoid activations on all hidden-layer neurons. For the three-dimensional resist model in
(a), the output is a linear neuron representing the resist height at p. For the contour classification
model in (b), the output layer is two logistic neurons. One neuron represents the likelihood that
observation point p is labeled “inside resist,” while the other neuron the likelihood of p labeled
“outside resist”

58 J. P. Shiely

propagation is used to update the weights, using the regression cost function as
the starting point for differentiation for the three-dimensional model and the inverse
log-likelihood cost function as the starting point for the two-dimensional contour
classifier. Hyperparameters, including network depth and width, were selected by
analyzing the variance of the model using k-fold cross-validation.

The purpose of these neural networks is to approximate the results of rigorous
simulations, but provide inferences at a small fraction of the runtime. The total
computational time for rigorously simulating the training and test data would require
approximately 2 h. The results show that contour classification accuracy can reach
94.9% on the test set, requiring only a few seconds to inference all of the test
scenarios, implying a speedup of several orders of magnitude. The performance of
the three-dimensional resist model to predict resist height appears to be within 5%
of the maximum resist height.

2.4.3.5 Convolutional Neural Network Resist Model

The final resist transform model we will consider, from Watanabe et al. [48] is based
on a convolutional neural network (CNN) similar to the AlexNet architecture [22].
The aim of this architecture is to train the network to learn the necessary features
for mapping from the input image intensity directly to the output image. It is the
architecture that most closely represents a direct transfer function fr : I → R.

The training data are resist contour edges extracted from 2D SEMs of developed
photoresist. The performance metric is the difference between the predicted and
measured edge at selected positions. A satisficing metric is the maximum prediction
error. The model achieves the task by predicting a threshold function that is equal
to the image intensity at the observed locations of contour edges (and not equal to
the image intensity when the edge is not present). This is the same methodology
used for conventional linear regression resist transfer functions, such as described
in Sect. 2.3. The cost function is also the same for both methods, specifically the
RMSE of the differences between the image intensities and the modeled thresholds
at all of the locations where the resist contour edge has been measured.

The exciting aspect of CNNs is that the input representation is simply a 2D pixel
map of the image intensity. There is no concern with extracting features from the
raw image data, because it is the purpose of the CNN to learn the feature generators
in the earlier convolutional layers of the network. A high-level representation of the
network is shown in Fig. 2.12. A CNN directly accepts a two-dimensional map of the
image intensity I without any further feature engineering and learns the necessary
nonlinear feature extractions to complete the mapping to R in the lower layers of
the network. The example from Watanabe et al. [48] uses three convolutional layers.
Each convolutional layer is composed of a conv layer followed by a pool layer. The
first conv layer is a collection of images generated by convolving the input image
map with a collection of kernels, the shapes of which are learned during the training
process. The result is a collection of feature maps, much like the feature maps
generated in a conventional variable threshold model such as shown in Sect. 2.3.2.2.

2 Machine Learning for Compact Lithographic Process Models 59

Input
Convolutional layers x 3

(feature discovery layers) Output

Threshold

at p

Image
intensity

map

FC layers

Fu
lly

 C
o

nn
ec

te
d

ReLU-
activated

feature maps

Compressed
feature maps

(max pool)

learned
conv

kernels

* *

Convlayer 1 Convlayer 2 Convlayer 3

*

Fu
lly

 C
o

nn
ec

te
d

Fig. 2.12 A convolutional neural network (CNN) directly accepts a two-dimensional map of the
image intensity I without any further feature engineering and learns the necessary nonlinear
feature extractions to complete the mapping to R in the lower layers of the network. The example
from Watanabe et al. [48] uses three convolutional layers. Each convolutional layer is composed
of a conv layer followed by a pool layer. The first conv layer is a collection of images generated
by convolving the input image map with a collection of kernels, the shapes of which are learned
during the training process

Each of the maps in the first layer can be considered functionally identical to the
feature maps generated in a linear regression CPM; however, the feature generation
is learned automatically during training.

The CNN departs from the conventional linear regression CPM when each pixel
on the feature maps is activated, element-wise. This is usually done using a rectified
linear unit, or ReLU, which maps from a pixel z in a feature map to a pixel a in an
activation map by:

a = max(0, z). (2.20)

Through experience, many practitioners of model building with deeper networks
such as CNNs have found that the optimization proceeds more efficiently with ReLU
activation.

Following the method first demonstrated by LeCun et al. [24], the image maps
are then subsampled by a pooling operation. The pooling stage of a convolutional
layer compresses the activation map to reduce the volume of data passed to the next
layer. In the case of Watanabe’s model, a “max-pooling” subsampling method is
used, where the largest-valued activation pixel for a tile will represent the whole
tile. This reduces the input volume to the next layer by a factor of four.

The second convolutional layer of a CNN operates the same as the first one.
However, image intensity that served as input to the first layer was only a single map.
Subsequent layers receive the entire collection of pooled activation maps generated

60 J. P. Shiely

from the preceding layer. Because the input volume of the second, and later, stages
is now more than two dimensions, the convolutions become volumetric. Instead
of merely weighting neighboring pixels on the same image, the second and third
convolution layers must integrate over the feature map index as well.

As the size of the feature maps is compressed in each new convolutional layer, the
number of maps per layer typically increases. At the last convolutional layer, a large
number of low-resolution feature maps have been generated. If the convolutional
layers have functioned correctly, these features should be sufficient to replace or
exceed the quality of the laboriously hand-engineered filters used in a conventional
variable threshold resist CPM.

The collection of final feature maps are then fed into a series of two fully
connected layers, which successively reduce the number of neurons until finally
being collected at a single neuron. This neuron is a linear output representing the
threshold.

The network is trained using backpropagation, and optimized by Adam to help
manage the learning rate. Mini-batch SGD is used to keep the memory requirements
manageable and also reduce the likelihood of getting trapped in a saddle point of the
cost function. Dropout method is used for regularization to help prevent overfitting.

The resulting model was demonstrated to reduce the RMS error of the resist
model to predict CDs measured by an SEM by 70% compared to a conventional
compact resist model with hand-engineered features, such as the model described
in Sect. 2.3.2. More specifically, the conventional model achieved an RMS error of
approximately 5 nm, while the CNN resist model achieved 1.5 nm on the training
data set, and 1.64 mn on the test data set, indicating good generalization.

The demonstration of CNNs for resist modeling demonstrates two key values
machine learning can offer to the construction of resist transfer functions: greater
representational capacity, resulting in a smaller model error; also greater produc-
tivity, by learning the necessary features automatically during the training process,
using only aerial image data as input and no hand-crafted features.

2.4.3.6 Summary of Neural Network Resist Transfer Functions

We have discussed the evolution of neural network resist models. Because the output
is observable by an SEM image, or simulated by rigorous simulators, and because
the internal physical mechanisms of photoresist processing are not fully understood,
the resist stage of the patterning process has long been a subject of new model forms.
We have discussed model forms ranging from linear regressions to binary classifiers
as well as MLPs and deep CNNs. Much that we have learned from this section is
directly transferrable to the next stage of the patterning process, which is etch.

2 Machine Learning for Compact Lithographic Process Models 61

2.4.4 Neural Network Etch Transfer Functions

As described in Sect. 2.2.2.4, etch is the removal of substrate material caused by
the interaction of an etching particle with the substrate. The photoresist selectively
masks some regions of the substrate from interaction with the etching particles.

Etch CPMs can be used for verification, to help detect etch hotspots that are likely
to lead to pattern transfer problems and impact the yield or reliability of a device.
Etch CPMs can also be used to inform etch proximity correction (EPC), which
constructs a resist target. The resist target generated by EPC will then determine
the success criteria for OPC and RET. CPMs for the etch stage have typically been
linear regression models, trained to predict the displacement of the post-etch pattern
from the resist edge position. Production-grade model-based etch correction has
been deployed since at least 2004 [5].

Rigorous treatments of the etching process exist but are not applicable to large-
area simulation. Etch CPMs are phenomenological, motivated by some simple
physical insights. The discussion that follows will overlook many important phys-
ical aspects of the etch process, including depositions that occur incidentally to
the etch process. To first order, the etch CPM determines a probability that an
etch particle will interact with the substrate. A region is more likely to interact
with the substrate if the substrate is not masked by the photoresist, and if the
population of etch particles that can access the region is greater. Etch CPMs
therefore usually include some short-range density measurement as a proxy for
the likelihood of substrate interaction with an etching particle, and a longer-range
density measurement that may be a proxy for the local population density of etching
particles.

The probability that the substrate may interact with an etching particle is also
increased if the photoresist protection layer is thin, since the resist may be eroded
away during the etching process. When the resist sidewall angle is shallow near
the contour boundary, resist erosion and unwanted etching will be higher. For
this reason, etch CPMs have also included the photoresist sidewall angle as a
feature [51].

Compact etch models may also add a nonlinear feature called visibility to the
model [5]. Visibility emulates the three-dimensional character of the photoresist
mask that protects the substrate from etch, as illustrated in Fig. 2.13. In this case,
a nonlinear function of the pattern is required since only edges within visual
communication with each other can effectively screen each other. A visibility kernel
is used as a quick approximation of the proportion of incoming angles, from the
point of view of a substrate region, that are screened by the local environment of
the photoresist. It is easier to grasp the meaning of a visibility kernel by imaging
yourself on the sidewalk in a city with tall buildings in a rainstorm. Being away from
buildings makes you more likely to get rained on. Being near the outside corner of a
building reduces the probability of getting wet. When you are alongside a building’s
edge, the probability goes down further. If you are in an alley between two buildings,

62 J. P. Shiely

P

VP

Fig. 2.13 An example of a visible area extraction from a layout. On the left is a three-dimensional
representation of an observation point P at the base of a protective photoresist wall. It is screened
from etch by the neighborhood of resist walls that are directly “visible” to it. Represented from the
top-down in two dimensions, the solid region V represents the region of points from which point P
would be “visible” to etching particles. The extracted visible area V is then further integrated with
a weighting function to produce a scalar value with respect to location P . An efficient learned
representation of the visible area, as well as density and resist sidewall and potentially other
interactions, is approximated by the neural network in Shim et al. [43]

the probability goes down further still, because two walls are screening you from
raindrops.

The visible kernel is computationally costly. Densities are linear and can be
computed by high-speed convolutions, but the visible kernel is inherently nonlinear.
The presence of a neighboring edge completely screens out all of the edges behind it.
Implementations of the visible kernel have either had to approximate the effect with
linear terms or rely on geometric algorithms to trace out the boundary of the visible
area region and then perform integration. In the first case, the accuracy suffers, since
the required nonlinearity cannot be supported. In the latter case, the runtime suffers
and the scaling can be poor as the complexity of the visible area region increases.

In summary, the etch CPM conventionally is a linear regression composed of
zero or more of each of the following feature types:

• Density measurements
• Visible kernel features
• Resist sidewall measurements

Recently, the training of an etch transfer function using a neural network has been
demonstrated by Shim et al. [43] The method uses a multilayer perceptron network,
of the same architecture shown in Fig. 2.11a. The only difference is that the output
linear neuron, rather than representing the resist height at the observation point p,
is a single linear neuron representing the magnitude of the etch bias. The features
fed into the MLP are similar to those illustrated in Fig. 2.10: a polar mesh of layout
density samples, and a vector of convolution values between the layout and a family
of sampling function kernels provided by Eq. (2.19).

The choice of features is motivated by the need to capture linear and nonlinear
effects: the polar map of density samples can be used to learn a linear convolution
kernel that can replicate the traditional density measurements; the same map can

2 Machine Learning for Compact Lithographic Process Models 63

be used to construct a nonlinear response to the input pattern that approximates the
visible kernel signal; finally, the information from convolutions with polar sampling
functions can be used to approximate the aerial image contrast and, therefore, the
resist sidewall measurements.

While the input features to the MLP are likely to be sufficient to replicate the
capabilities of the conventional etch CPM, the MLP has much greater capacity to
combine all of these features into more complete representations of the etch process.
The intention is to reduce the error of the model and, ideally, speed up the model by
replacing the costly visible calculation.

Shim trains the model using measured etch biases, which are the displacements
of edges between the resist and etch stages. The model is an etch transfer function
fe, mapping R → E . The supervised learning procedure minimizes the RMSE
between predicted and measured etch biases. It is trained by stochastic gradient
descent, so as to manage memory consumption and reduce the likelihood that
the optimizer will get trapped in the saddle point of cost functions. The model
hyperparameters, including the layer width and the number of hidden layers, are
selected to prevent overfitting, which is observed using k-fold cross-validation.

The results of the model demonstrate an improvement in the representational
capacity compared to a conventional CPM, as evidenced by a reduction in the
RMSE of the etch bias prediction of more than 20%, compared to a conventional
etch CPM. The implementation, however, did not demonstrate a runtime improve-
ment, although it is likely that exploitation of greater potential parallelism in an
implementation such as a CNN should provide significant speedup.

2.4.5 Summary of Neural Network Compact Patterning Models

We have surveyed several applications of machine learning to the problem of
constructing CPMs, each of which is represented in Table 2.6. Every stage of
the patterning process is represented, including the mask, image, resist, and etch
transfer functions. The task in all cases is to train a model that approximates a
function. Sometimes, the model is trained by experiencing measured training data,
and sometimes from simulated training data. In almost every case, the performance
of the model is determined by how well the model predicts a real-valued target
function, trained to minimize RMSE. The exception is a model that is trained to
maximize the likelihood of accurate binary classification. Input representations vary,
but the most common case is a 2D pixel map representing the spatial distribution of a
quantity. The output representations are usually very compact, between one and four
scalar values, or two different classification labels. Model forms cover a very wide
range, from linear regressions to CNNs. Training algorithms are usually a variant of
gradient descent, although in at least one case it is possible to solve for the learned
parameters directly using the Moore–Penrose pseudo-inverse. The benefit provided
by the neural network is usually related to the nature of the training data: if the
input data is simulated, the benefit is to provide a faster calculation time; if the

64 J. P. Shiely

Ta
bl

e
2.

6
M

ac
hi

ne
le

ar
ni

ng
co

m
pa

ct
pa

tte
rn

in
g

m
od

el
s

E
xp

er
ie

nc
e

(t
ra

in
in

g
Pe

rf
or

m
an

ce
C

os
t

In
pu

t
O

ut
pu

t
T

ra
in

in
g

St
ag

e
Ta

sk
da

ta
)

m
et

ri
cs

fu
nc

tio
n

re
pr

es
en

ta
tio

n
re

pr
es

en
ta

tio
n

M
od

el
fo

rm
al

go
ri

th
m

B
en

efi
t

M
as

k
[1

4]
A

pp
ro

xi
m

at
e

th
e

do
se

ad
ju

st
m

en
t

to
im

pr
ov

e
M

Pr
e-

co
rr

ec
te

d
do

se
m

ap
s

E
rr

or
in

pr
ed

ic
te

d
pi

xe
lv

al
ue

R
M

SE
B

in
ar

y
2D

pi
xe

lm
ap

Sc
al

ar
re

al
(d

os
e

ad
ju

st
m

en
t)

L
in

ea
r

re
gr

es
si

on
G

D
w

/
ba

ck
pr

op
Sp

ee
d

M
as

k
[3

5]
A

pp
ro

xi
m

at
e

L
→

M
2D

SE
M

im
ag

es
of

M

D
if

fe
re

nc
e

be
tw

ee
n

th
e

pr
ed

ic
te

d
an

d
m

ea
su

re
d

ed
ge

po
si

tio
ns

R
M

SE
R

ea
l-

va
lu

ed
2D

pi
xe

lm
ap

V
ec

to
r-

va
lu

ed
po

si
tio

n
er

ro
r

(Δ
p
x
,
Δ
p
y
)

Pa
ra

lle
ls

in
gl

e
hi

dd
en

-l
ay

er
ne

ur
al

ne
tw

or
k

w
ith

lin
ea

r
ou

tp
ut

s

G
D

w
/

ba
ck

pr
op

A
cc

ur
ac

y

Im
ag

e
[2

]
A

pp
ro

xi
m

at
e

th
e

di
ff

ra
ct

ed
sp

ec
tr

um
of

M

R
ig

or
ou

sl
y

si
m

ul
at

ed
di

ff
ra

ct
io

n
sp

ec
tr

a

D
if

fe
re

nc
e

be
tw

ee
n

pr
ed

ic
te

d
an

d
si

m
ul

at
ed

sp
ec

tr
a

R
M

SE
Tw

o
re

al
-v

al
ue

d
2D

pi
xe

lm
ap

s

Fo
ur

re
al

-v
al

ue
d

2D
pi

xe
lm

ap
s

Tw
o

m
ul

til
ay

er
pe

rc
ep

tr
on

s.
Si

gm
oi

d
ac

tiv
at

io
ns

.
L

in
ea

r
ou

tp
ut

s

G
D

w
/

ba
ck

pr
op

Sp
ee

d

R
es

is
t

(S
ec

t.
2.

3)
A

pp
ro

xi
m

at
e

I
→

R
2D

SE
M

im
ag

es
of

R
D

if
fe

re
nc

e
be

tw
ee

n
pr

ed
ic

te
d

an
d

m
ea

su
re

d
ed

ge
po

si
tio

ns

R
M

SE
of

s
−
t

at
m

ea
su

re
d

ed
ge

lo
ca

tio
ns

M
ul

tip
le

ha
nd

-g
en

er
at

ed
fe

at
ur

e
m

ap
s

w
ith

tu
na

bl
e

pa
ra

m
et

er
s

O
ne

sc
al

ar
(v

ar
ia

bl
e

th
re

sh
ol

d)

L
in

ea
r

re
gr

es
si

on
.L

1
re

gu
la

ri
za

tio
n

an
d
k

-f
ol

d
cr

os
s-

va
lid

at
io

n

M
oo

re
–

Pe
nr

os
e

ps
eu

do
-

in
ve

rs
e

Sp
ee

d
an

d
ac

cu
ra

cy

R
es

is
t

[2
9]

A
pp

ro
xi

m
at

e
th

e
tr

an
sf

or
m

fr
om

I
to

re
si

st
de

ve
lo

pm
en

tr
at

e

Si
m

ul
at

ed
de

ve
lo

pm
en

t
vs

ex
po

su
re

in
te

ns
ity

cu
rv

es

D
if

fe
re

nc
e

be
tw

ee
n

pr
ed

ic
te

d
an

d
si

m
ul

at
ed

de
ve

lo
pm

en
tr

at
es

R
M

SE
Tw

o
sc

al
ar

s
(e

xp
os

ur
e

in
te

ns
ity

an
d

re
si

st
de

pt
h)

O
ne

sc
al

ar
(e

tc
h

ra
te

)
Si

ng
le

hi
dd

en
la

ye
r.

Si
gm

oi
da

l
or

ta
nh

ac
tiv

at
io

n.
L

in
ea

r
ou

tp
ut

G
D

w
/

ba
ck

pr
op

Sp
ee

d

R
es

is
t

[5
3]

A
pp

ro
xi

m
at

e
I
→

R
2D

SE
M

im
ag

es
of

R
D

if
fe

re
nc

e
be

tw
ee

n
pr

ed
ic

te
d

an
d

m
ea

su
re

d
ed

ge
po

si
tio

ns

R
M

SE
1D

ve
ct

or
(a

er
ia

li
m

ag
e

in
te

ns
ity

cu
tli

ne
)

1D
ve

ct
or

(r
es

is
t1

/d
os

e
cu

tli
ne

)

Si
ng

le
hi

dd
en

la
ye

r.
N

on
lin

ea
r

ac
tiv

at
io

n.
L

in
ea

r
ou

tp
ut

G
D

w
/

ba
ck

pr
op

A
cc

ur
ac

y

2 Machine Learning for Compact Lithographic Process Models 65

R
es

is
t

[4
8]

A
pp

ro
xi

m
at

e
I
→

R
2D

SE
M

im
ag

es
of

R
D

if
fe

re
nc

e
be

tw
ee

n
pr

ed
ic

te
d

an
d

m
ea

su
re

d
ed

ge
po

si
tio

ns

R
M

SE
of

s
−
t

at
m

ea
su

re
d

ed
ge

lo
ca

tio
ns

R
ea

l-
va

lu
ed

2D
pi

xe
lm

ap
(a

er
ia

li
m

ag
e)

O
ne

sc
al

ar
(v

ar
ia

bl
e

th
re

sh
ol

d)

C
N

N
.T

hr
ee

co
nv

+
m

ax
_p

oo
l

la
ye

rs
.T

w
o

FC
la

ye
rs

fe
ed

in
g

to
lin

ea
r

ou
tp

ut

M
in

i-
ba

tc
h

G
D

w
/

ba
ck

pr
op

.
A

da
m

op
tim

iz
er

.
D

ro
po

u

A
cc

ur
ac

y

R
es

is
t

[4
4]

A
pp

ro
xi

m
at

e
L
→

R
3D

re
si

st
si

m
ul

at
io

ns
D

if
fe

re
nc

e
be

tw
ee

n
pr

ed
ic

te
d

an
d

si
m

ul
at

ed
re

si
st

he
ig

ht

R
M

SE
R

ad
ia

lp
at

te
rn

de
ns

ity
,B

es
se

l
fu

nc
tio

n
co

nv
ol

ut
io

ns

O
ne

sc
al

ar
(r

es
is

th
ei

gh
t)

M
ul

til
ay

er
pe

rc
ep

tr
on

.
Si

gm
oi

d
ac

tiv
at

io
n

SG
D

w
/

ba
ck

pr
op

.
k

-f
ol

d
cr

os
s-

va
lid

at
io

n

Sp
ee

d

R
es

is
t

[4
4]

A
pp

ro
xi

m
at

e
L
→

R
Si

m
ul

at
ed

re
si

st
co

nt
ou

rs

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
L

ik
el

ih
oo

d
R

ad
ia

lp
at

te
rn

de
ns

ity
,B

es
se

l
fu

nc
tio

n
co

nv
ol

ut
io

ns

O
ne

sc
al

ar
(r

es
is

th
ei

gh
t)

M
ul

til
ay

er
pe

rc
ep

tr
on

.
Si

gm
oi

d
ac

tiv
at

io
n

SG
D

w
/

ba
ck

pr
op

.
k

-f
ol

d
cr

os
s-

va
lid

at
io

n

Sp
ee

d

E
tc

h
[4

3]
A

pp
ro

xi
m

at
e

R
→

E
M

ea
su

re
d

et
ch

bi
as

(R
→

E
)

D
if

fe
re

nc
e

be
tw

ee
n

pr
ed

ic
te

d
an

d
si

m
ul

at
ed

et
ch

bi
as

R
M

SE
R

ad
ia

lp
at

te
rn

de
ns

ity
,B

es
se

l
fu

nc
tio

n
co

nv
ol

ut
io

ns

on
e

sc
al

ar
(e

tc
h

bi
as

)
M

ul
til

ay
er

pe
rc

ep
tr

on
.

Si
gm

oi
d

ac
tiv

at
io

n

SG
D

w
/

ba
ck

pr
op

.
k

-f
ol

d
cr

os
s-

va
lid

at
io

n

A
cc

ur
ac

y

66 J. P. Shiely

input data is measured, the benefit is to more accurately reflect observed behavior in
the absence of a completely physical understanding. The publication dates for the
surveyed works range from 1990 to 2017.

2.5 Conclusions

Machine learning and computational lithography share a long history. The aim of
computational lithography is to improve the fidelity and yield of the integrated
circuit manufacturing process. Machine learning is useful for finding efficient
representations of the patterning processes that construct integrated circuits. We call
these efficient representations compact patterning models, or CPMs, and they are
built using a supervised learning process. The forms of these models range from
linear regressions to convolutional neural networks.

In the first section, we described the patterning process and the stages that
compose it, including mask-making, image projection, photoresist processing,
and etching. It is hoped that the presentation motivates more machine learning
researchers to explore the field of computational lithography, and in particular the
construction and training of CPMs, more closely.

In the second section, we introduced we described in detail the supervised
training of a linear regression lumped process model, the most common model form
and training procedure for a CPM. We attempted to apply the current terminology of
machine learning to the problem. It is hoped that the presentation motivates experts
in the state of the art of CPMs to delve more deeply into the machine learning
literature.

In the final section, we surveyed the long shared history of neural networks and
CPMs. After a lot of early interest in the 1990s, interest in neural networks for CPMs
waned. Recently, however, the maturing training methodologies and improved
parallel computational infrastructure have reinvigorated interest in neural networks
for computational lithography. Early indications are that the reacquaintance of
computational lithography and neural networks will lead to faster, more accurate
CPMs that are built with less user intervention and fewer hand-crafted features.

Acknowledgements Special thanks to Mike Rieger and John Stirniman for introducing me to this
fascinating field.

References

1. E. Abbe, Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch.
Mikrosk. Anat. 9, 413–418 (1873)

2. Agudelo et al., Application of artificial neural networks to compact mask models in optical
lithography simulation. J. Micro/Nanolith, MEMS MOEMS 13(1), 0110022-1–16, (2014)

2 Machine Learning for Compact Lithographic Process Models 67

3. J.T. Azpiroz, Analysis and modeling of photomask near-fields in sub-wavelength deep
ultraviolet lithography with optical proximity correction, Dissertation, University of California,
Los Angeles, 2004

4. S. Babin et al., Modeling of charge and discharge in scanning electron microscopy. Proc. SPIE
7378 (2009). https://doi.org/10.1117/12.828575

5. D. Beale et al., Etch modeling for accurate full-chip process proximity correction. Proc. SPIE
5754 (2004). https://doi.org/10.1117/12.600815

6. Å. Björk, Numerical Methods for Least Squares Problems (Society for Industrial and Applied
Mathematics, Philadelphia, 1996). https://doi.org/10.1137/1.9781611971484

7. S.-Y. Chou et al., Study of mask corner rounding effects on lithographic patterning for 90-nm
technology and beyond. Proc. SPIE 5446 (2004). https://doi.org/10.1117/12.557745

8. N. Cobb, Fast optical and process proximity correction algorithms for integrated circuit
manufacturing, Dissertation, University of California, Berkeley, 1998

9. K. Cummings et al., Using a neural network to proximity correct patterns written with a
Cambridge electron beam microfabricator 10.5 lithography system. Appl. Phys. Lett. 57, 1431
(1990)

10. R. Dennard et al., Design of ion-implanted MOSFET’s with very small physical dimensions.
IEEE J. Solid State Circuits (1974). https://doi.org/10.1109/JSSC.1974.1050511

11. F.H. Dill, Modeling projection printing of positive photoresists. IEEE Trans Electron Devices
22, 456–464 (1975)

12. B. Efron et al., Least angle regression. Ann. Stat. 32, 407–499 (2004)
13. C. Fang et al., A physics-based model for negative tone development materials. J. Photopolym.

Sci. Technol. 27, 53–59 (2014)
14. R. Frye et al., Proximity effect corrections in electron beam lithography using a neural network,

in IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings
(1990). https://doi.org/10.1109/ICSMC.1990.142210

15. H. Gamo, Matrix treatment of partial coherence, in Progress in Optics, ed. by E. Wolf (1964).
https://doi.org/10.1016/S0079-6638(08)70571-7

16. A. Garetto et al., Aerial imaging technology for photomask qualification: from a microscope
to a metrology tool. Adv. Opt. Technol. (2012). https://doi.org/10.1515/aot-2012-0124

17. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (The MIT Press, Cambridge, 2016)
18. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, 2nd edn. (Springer, New York, 2009)
19. H. Hopkins, On the diffraction theory of optical images. Proc. Roy. Soc. A 217, 408 (1953)
20. A. Isoyan, L. Melvin, Full-chip high resolution electron-beam lithography proximity effect

correction modeling. Proc. SPIE 7637 (2010). https://doi.org/10.1117/12.846681
21. J. Kotani et al., Mask CD uniformity improvement by dry etching loading effect correction.

Proc. SPIE 5256. https://doi.org/10.1117/12.524430
22. A. Krizhevsky, ImageNet classification with deep convolutional neural networks. Adv. Neural

Inf. Proces. Syst. 25, 1097–1105 (2012)
23. S. Lan et al., Deep learning assisted fast mask optimization. Proc. SPIE 10587 (2018). https://

doi.org/10.1117/12.2297514
24. Y. LeCun et al., Gradient-based learning applied to document recognition. Proc. IEEE 86(11),

2278–2324 (1998)
25. M. Levenson et al., Improving resolution in photolithography with a phase shifting mask. IEEE

Trans. Electron Devices 29, 1828–1836 (1982)
26. P. Liu et al., A full-chip 3D computational framework. Proc. SPIE 83260A (2012). https://doi.

org/10.1117/12.916076
27. C. Mack, New kinetic model for resist dissolution. J. Electrochem. Soc. 139, L34–L39 (1992)
28. C. Mack, Fundamental Principles of Optical Lithography (Wiley, Hoboken, 2007)
29. V. Mardiris, Neural networks for the simulation of photoresist exposure process in integrated

circuit fabrication. Model. Simul. Mater. Sci. Eng. 5, 439–450 (1997)
30. D. Matiut et al., New models for the simulation of post-exposure bake of chemically amplified

resists. Proc. SPIE 5039 (2003). https://doi.org/10.1117/12/485080

https://doi.org/10.1117/12.828575
https://doi.org/10.1117/12.600815
https://doi.org/10.1137/1.9781611971484
https://doi.org/10.1117/12.557745
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/ICSMC.1990.142210
https://doi.org/10.1016/S0079-6638(08)70571-7
https://doi.org/10.1515/aot-2012-0124
https://doi.org/10.1117/12.846681
https://doi.org/10.1117/12.524430
https://doi.org/10.1117/12.2297514
https://doi.org/10.1117/12.2297514
https://doi.org/10.1117/12.916076
https://doi.org/10.1117/12.916076
https://doi.org/10.1117/12/485080

68 J. P. Shiely

31. T. Mitchell, Machine Learning (McGraw-Hill, New York, 1997)
32. M.G. Moharam et al., Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt.

Soc. Am. A 71 (1981). https://doi.org/10.1364/JOSA.71.000811
33. G. Moore, Cramming more components onto integrated circuits. Electronics 38, 114–117

(1965)
34. N. Nakayamada et al., Modeling of resist surface charging effect on EBM-8000 and its

comparison with EBM-6000. Proc. SPIE 8701 (2013). https://doi.org/10.1117/12.2030095
35. N. Nakayamada et al., Electron beam lithography modeling assisted by artificial intelligence

technology. Proc. SPIE 10454 (2017). https://doi.org/10.1117/12/2282841
36. O. Otto et al., Automated optical proximity correction: a rules-based approach. Proc. SPIE

2197 (1994). https://doi.org/10.1117/12.175422
37. M. Rieger, Communication theory in optical lithography. J. Micro/Nanolithogr. MEMS

MOEMS 11(1) (2012). https://doi.org/10.1117/1.JMM.11.1.013003
38. S. Robertson, Negative tone development: gaining insight through physical simulation. Proc.

SPIE 7972 (2011). https://doi.org/10.1117/12.879506
39. D. Rumelhart, G. Hinton, R. Williams, Learning representations by backpropagating errors.

Nature 323, 533 (1986)
40. V. Rutigiliani et al., Setting up a proper power spectral density (PSD) and autocorrelation

analysis for material and process characterization. Proc. SPIE 10585 (2018). https://doi.org/
10.1117/12.2297264

41. I. Santo et al., Accurate contour extraction from mask SEM image. Proc. SPIE 9050 (2014).
https://doi.org/10.1117/12.2046530

42. D. Shamiryan et al., Dry etching process for bulk finFET manufacturing. Microelectron. Eng.
86(1), 96–98 (2009)

43. S. Shim et al., Etch proximity correction through machine-learning driven etch bias model.
Proc. SPIE 9782 (2016). https://doi.org/10.1117/12.2219057

44. S. Shim et al., Machine learning-based resist 3D model. Proc. SPIE 10147 (2017). https://doi.
org/10.1117/12.2257904

45. L. Stirniman, M. RIeger, Fast proximity correction with zone sampling. Proc. SPIE (1994).
https://doi.org/10.1117/12.175423

46. I. Stobert et al., Etch correction and OPC: a look at the current and future of etch correction.
1493 Proc. SPIEE 8685 (2013). https://doi.org/10.1117/12.2015000

47. L.F. Thompson et al. (eds.), Introduction to Microlithography, 2nd edn. (American Chemical
Society, Washington, 1994)

48. Y. Watanabe et al., Accurate lithography simulation model based on convolutional neural
networks. Proc. SPIE 10147 (2017). https://doi.org/10.1117/12.2257871

49. F. Weisbuch, A.S. Naranaya, Assessing SEM contour based OPC models quality using rigorous
simulation. Proc. SPIE 9051 (2014). https://doi.org/10.1117/12.2047826

50. A.K. Wong et al., Massively parallel electromagnetic simulation for photolithographic appli-
cations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 14 (1995). https://doi.org/10.
1109/43.466339

51. C. Wu et al., Photoresist 3D profile related etch process simulation and its application to full
chip etch compact modeling. Proc. SPIE 9426 (2015). https://doi.org/10.1117/12.2086048

52. M. Young, Modeling high numerical aperture optical lithography. Proc. SPIE 922 (1988).
https://doi.org/10.1117/12.968409

53. F. Zach, Neural network based approach to resist modeling and OPC. Proc. SPIE 5377 (2004).
https://doi.org/10.1117/12.535931

54. H. Zhang et al., An accurate ILT-enabling full-chip mask 3d model for all-angle patterns
(2013). Proc. SPIE 8880. https://doi.org/10.1117/12.2026468

55. R. Zimmerman et al., Predictive modeling for EBPC in EBDW. Proc. SPIE 7488 (2009). https://
doi.org/10.1117/12.833482

https://doi.org/10.1364/JOSA.71.000811
https://doi.org/10.1117/12.2030095
https://doi.org/10.1117/12/2282841
https://doi.org/10.1117/12.175422
https://doi.org/10.1117/1.JMM.11.1.013003
https://doi.org/10.1117/12.879506
https://doi.org/10.1117/12.2297264
https://doi.org/10.1117/12.2297264
https://doi.org/10.1117/12.2046530
https://doi.org/10.1117/12.2219057
https://doi.org/10.1117/12.2257904
https://doi.org/10.1117/12.2257904
https://doi.org/10.1117/12.175423
https://doi.org/10.1117/12.2015000
https://doi.org/10.1117/12.2257871
https://doi.org/10.1117/12.2047826
https://doi.org/10.1109/43.466339
https://doi.org/10.1109/43.466339
https://doi.org/10.1117/12.2086048
https://doi.org/10.1117/12.968409
https://doi.org/10.1117/12.535931
https://doi.org/10.1117/12.2026468
https://doi.org/10.1117/12.833482
https://doi.org/10.1117/12.833482

Chapter 3
Machine Learning for Mask Synthesis

Seongbo Shim, Suhyeong Choi, and Youngsoo Shin

3.1 Introduction

With semiconductor technology scaling, mask synthesis tasks become more and
more challenging. Popular model-based OPC (MB-OPC) relies on the iteration of
lithography simulation and mask image correction [1]; it requires more iterations
and each simulation takes more time, and resulting OPC time often becomes
unmanageable. Conventional EPC methods become more inaccurate due to the
simple rules and empirical models they employ [2–5].

Machine learning (ML) has recently been applied to mask synthesis tasks for
their efficient implementation. ML technique consists of two phases: training and
actual testing as shown in Fig. 3.1. In the training phase, ML model receives a
vector of parameters (x), such as local densities, extracted from a layout pattern
and outputs a predicted value (f (x)), such as a mask bias for OPC application.
ML model is optimized so that the difference between predicted value and desired
value (y) can be minimized for all test patterns for the training. In testing phase,
parameters extracted from unknown pattern of interest are provided to the trained
ML model, which then outputs predicted value.

This chapter addresses two applications of machine learning in mask synthesis
process: ML-OPC and ML-EPC. In Sect. 3.2, some prior works on ML-OPC
are reviewed, which are followed by our own proposal. The idea is implemented
and demonstrated using 28-nm industrial technology. Section 3.3 addresses EPC
problem. Some conventional approaches to EPC and their limitations are introduced.

S. Shim (�)
Samsung Electronics, Hwasung, South Korea
e-mail: sb47.shim@samsung.com

S. Choi · Y. Shin
School of Electrical Engineering, KAIST, Daejeon, South Korea
e-mail: suhyeung93@kaist.ac.kr; youngsoo@ee.kaist.ac.kr

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_3

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_3&domain=pdf
mailto:sb47.shim@samsung.com
mailto:suhyeung93@kaist.ac.kr
mailto:youngsoo@ee.kaist.ac.kr
https://doi.org/10.1007/978-3-030-04666-8_3

70 S. Shim et al.

Patterns

Extracting parameters

ML-model training

Training phase

Trained ML-model

Unknown pattern

Extracting parameters

Testing/ prediction

- Mask bias

- Etch bias

- SRAF insertion

Testing phase

Fig. 3.1 Typical procedure of machine learning

How ML technique is applied to EPC is presented and experimentally demonstrated
using 20-nm node DRAM gate layer. In both applications of machine learning, we
discuss some key components: choice of model parameters, systematic reduction
of training data, and the method to avoid over-fitting. Section 3.4 summarizes this
chapter.

3.2 Machine Learning-Guided OPC

Conventional MB-OPC is based on iterative lithography simulation and mask
correction by inspecting the simulation result. As feature sizes scale down, a
lithography simulation takes longer time because of denser polygons, longer optical
influence range, and more kernels. In addition, smaller feature size requires more
OPC iterations to satisfy smaller edge placement error (EPE) tolerance. Thus,
MB-OPC in 20-nm technology takes about 180 times longer than it does in 40-
nm technology (Samsung Electronics Corp., OPC Principal Engineer, Personal
communication, May 2016).

Recently, ML technique has been applied to OPC to overcome the limitation of
MB-OPC. It consists of training and testing phases. In the training phase (Fig. 3.2a),

3 Machine Learning for Mask Synthesis 71

an interesting segment of the layout (and its surroundings) is parameterized by a
set of parameters (x), e.g., local pattern densities that are measured around the
interesting segment. The parameters are inputted to a mask bias model (F) that
outputs a predicted value of mask bias (F(x)) for the input segment, which is
then used to synthesize a mask image. The model F is trained so that F(x) can
approach a desired (target) value of mask bias, which is obtained by conventional
MB-OPC in advance. In the subsequent testing phase (Fig. 3.2b), a layout segment
to be corrected is parameterized using the same set of parameters that were used in
the training phase, and the trained model F predicts the mask bias for the segment,
which is then used to synthesize mask image.

The accuracy and runtime of ML-OPC are affected by the method of model
training and the choice of parameters. A few existing studies adopt hierarchical
Bayesian model (HBM) [6], multilayer perceptron (MLP) [7], and support vector
regression (SVR) [8] for model training and local pattern densities or pixel values
of rasterized layout as parameters. The parameters may be extracted and optimized
by an information-theoretic approach with a dynamic programming model [9]. The

Segment
Segment

Layout Mask image

Mask image

Mask
bias

(a) (b)

Segment
parameterization

Mask bias model ()
training

Applying

mask bias

Segment
parameterization

Mask bias
extraction

Mask bias
model ()

Layout

Fig. 3.2 ML-OPC: (a) training and (b) actual testing

72 S. Shim et al.

number of parameters is however typically very large (e.g., some hundreds), which
negatively affects both runtime and accuracy.

This section introduces the state-of-the-art ML-OPC [10, 11], in which polar
Fourier transform (PFT) signals are used as input parameters. A PFT signal is
obtained by multiplying a PFT basis function with layout image near a segment
of interest. Due to orthogonality of PFT basis functions, the PFT signals have little
redundancy which allows us to reduce the number of parameters. Reduced number
of parameters also helps in accuracy provided that unnecessarily large number of
parameters in the conventional approach often causes over-fitting that negatively
affects accuracy.

3.2.1 Prior Works

One popular parameter type in ML-OPC is a set of pixel values from a rasterized
layout (Fig. 3.3a) [7, 8, 12, 13]. A local layout surrounding the segment of interest
is extracted and rasterized; if more than half of pixel area is overlapped with layout,
1 is assigned to the pixel and, otherwise, 0 is assigned. The number of parameters
drastically increases for larger layout and smaller pixel, which in turn increase OPC
runtime and often cause over-fitting due to many unnecessary parameters. Small
layout with large pixels, on the other hand, yields small number of parameters, but
it may lose necessary geometry information, thereby resulting in inaccurate OPC
result.

Another popular parameter type is local pattern density (Fig. 3.3b) [6, 14, 15].
A few concentric circles with their auxiliary lines crossing centers of the circles
are drawn around an interesting segment. At each point where the circles and lines
intersect (measurement point), a pattern density within each local region (region

1 1 1

0

0

0

0

1

1 1 1 1

0

0

0

1

0

0

0000

0

0

0 0

0 0

0

0

0 00

0

0 0

0 1 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 00

1

(a)

Binary pixel values Measurment point
Region of density

measurement

(b)

Fig. 3.3 Parameters of conventional ML-OPC: (a) binary pixel value and (b) local pattern density

3 Machine Learning for Mask Synthesis 73

of density measurement) is measured and used as a parameter. The number of
parameters is determined by the numbers of the concentric circles and lines that
are used. This method yields smaller number of parameters than the pixel value
parameters because measurement positions are rather sparsely distributed.

In both methods, the region where parameters are extracted is usually smaller
than optical influence range, a circular region of about 1 μm or longer radius. If
the region is expended for the benefit of accuracy in a way as to extract parameters
within the optical influence range, the number of parameters becomes unrealistic,
e.g., 32 times in pixel value parameters and twice in local density parameters.

3.2.2 ML-OPC with PFT Signals as Model Parameters

3.2.2.1 PFT Signal

The polar Fourier transform (PFT) is widely used in modeling optical diffraction
and interference [16, 17]. The real part of the PFT basis function is given by:

Ψnm(r, ϕ) = Jn(r)cos(mϕ), (3.1)

where the n-th Bessel function (Jn) and cos(mϕ) are, respectively, its radial and
angular components,1 n is the number of critical points in the radial direction as
shown in Fig. 3.4, and m is the number of periods in the direction of angular ϕ. PFT
basis function becomes more complicated as n and m increase as shown in Fig. 3.5.
PFT basis functions are orthogonal to one another due to the orthogonality of the
Bessel and cosine functions.

Fig. 3.4 Some Bessel
functions with zero boundary
condition

1
23

n = 4

1The complete form of the Bessel function is Ψnm(r, ϕ) = Jn(r)e
imϕ , but the real part is only

considered in this chapter.

74 S. Shim et al.

...

30 21 12 14 23 16

Fig. 3.5 Some basis functions of PFT

Fig. 3.6 Obtaining PFT
signal

Layout (L)

Segment of interest

PFT basis function ()

Using PFT basis functions, the PFT signal (φk) of a layout segment can be
expressed as follows:

φk =
∑
∀x,y

Ψk(x, y)L(x, y), (3.2)

where Ψk is the k-th PFT basis function in Cartesian coordinates (nm is replaced by
k for the sake of simplicity), which has its origin at the center of the layout segment
as shown in Fig. 3.6. The segment (and its surroundings) is represented by an array
of pixels, which is called the layout image (L). A pixel in this image is 1 if it is
within a polygon of the layout, or 0 otherwise. Note that an ambit of PFT basis
function is close to optical diameter, so that influence of surrounding patterns on a
segment of interest is all taken into account; optical diameter of 45-nm technology,
for instance, is around 2 μm [18].

In commercial OPC tools, PFT signals are commonly used to determine the
printability of a pattern on a wafer by approximating the variation in light intensity
over layout segments [19, 20]. The intensity of light (I) at the center of a layout
segment can be expressed as follows:

I =
∑
∀k
ckφ

2
k , (3.3)

where ck is the contribution of the k-th PFT basis function. PFT basis functions and
corresponding cks are predetermined once lithographic condition is given. Critical
dimensions (CDs) of some sample patterns on a wafer are measured from SEM
image after actual lithography process, and cks are calibrated to yield simulated CDs

3 Machine Learning for Mask Synthesis 75

as close as possible to measured ones [21, 22]. At this moment, some candidates of
PFT basis functions with both n and m increasing from 0 are taken into account.
Final PFT basis functions are then picked in descending order of corresponding
cks until target accuracies of CDs are satisfied for the sample patterns [23]; at last,
around 20 PFT signals are determined.

There are two benefits if PFT signals are used as representative parameters of a
layout segment. First, they are readily available from commercial OPC tools, which
therefore can serve as a platform to build ML-OPC. Second, a layout segment can
be modeled by fewer parameters by using PFTs instead of pattern densities or pixel
values, which allows ML-OPC to be trained more quickly [10].

3.2.2.2 MLP Construction

PFT signals obtained from each segment are arranged as a vector, which is inputted
to ML-OPC model. Multilayer perceptron (MLP) is employed to build new ML-
OPC model as shown in Fig. 3.7. The input layer of MLP has n nodes, each of which
receives a parameter from an interesting segment. Each input node propagates the
signal that it receives to every node in the first hidden layer. Each connection is made
by an edge, which has a weight, by which the signal is multiplied. The weighted
signals received by each hidden node are summed: if the total is larger than some
threshold, the hidden node outputs 1, but otherwise 0. Thresholding is realized by a
sigmoid function h(x), with the following form:

h(x) = 1

1+ e−(x−xo)
, (3.4)

where x is the sum of the weighted signals, and xo is the threshold. Each node in
the first hidden layer then propagates its output value to every node in the next layer

Fig. 3.7 An MLP network as
an ML-OPC model

Hidden layers

Output node

Input nodes

0

1

0

1

1

0

11 1

76 S. Shim et al.

in the same manner as the nodes in the input layer, and this process is repeated until
the output layer is reached. The output layer consists of one node, which receives
the weighted signals and outputs the summed value as a predicted mask bias.

Edge weights and threshold in each node are appropriately adjusted in advance
so that mask bias can be more accurately predicted. Sample segments are extracted
from some test layouts for training, and each segment is associated with a vector of
PFT signals together with a mask bias result from MB-OPC. MLP predicts mask
bias once the vector is applied to ML-OPC, and the difference of mask bias from
MB-OPC and ML-OPC is defined as an error. Cost function is a sum of squared
errors for all segments used in training process. Gradient descent method is applied
to minimize the cost function by adjusting edge weights and threshold in each node;
because the function is differentiable if thresholding is done by using sigmoid:

dh(x)

dx
= h(x)(1− h(x)), (3.5)

the minimization is fast. The numbers of layers and nodes in each layer are
determined in empirical fashion. The resulting MLP is new mask bias model.

3.2.3 Experiments

New ML-OPC is implemented using Python for MLP construction and commercial
OPC package (Progen and Proteus [19, 20]) for PFT signal computation. ArF
immersion lithography (1.2NA) with annular illumination is assumed; correspond-
ing optical influence range is about 1 μm. MLP consists of three hidden layers, each
of which contains ten nodes. The MLP is trained for 20,000 training segments that
are extracted from metal 1 test layouts in 20-nm logic technology. Other test layouts
containing about two million segments are also prepared for testing the trained MLP.

Assessment of Parameters
A standard ML-OPC using local pattern densities is also implemented as a reference
of comparison. It uses 80 local pattern densities as parameters, which are compared
with only ten parameters in the new ML-OPC as illustrated in Fig. 3.8a. Runtime of

Fig. 3.8 (a) The number of
parameters and (b) RMSE of
conventional and new
ML-OPC

Density

80

(a) (b)

PFT Density PFT

10#
P

ar
am

et
er

s

5.4

3.5

R
M

S
E

 [n
m

]

3 Machine Learning for Mask Synthesis 77

Fig. 3.9 RMSE of new
ML-OPC with different
illumination type

10 10 13

Number of PFT signals

Annular Cross-pole

3.9

3.5

R
M

S
E

 [n
m

] 3.5
Result of
 Fig. 8(b)

MLP construction is reduced by 26% in the new ML-OPC due to smaller number
of parameters. There is even larger reduction of runtime in actual OPC, by 80%.

The accuracy of ML-OPC is assessed by using root mean square error (RMSE)
of predicted mask bias, with mask bias from MB-OPC as a reference. Figure 3.8b
shows that new ML-OPC achieves 3.5-nm RMSE, which is 1.9 nm smaller than
that of standard one, even though smaller number of parameters are used; this is
understandable consequence of less over-fitting that occurs in new ML-OPC.

Complexity of Illumination
Illumination types affect optical proximity effect. To investigate the impact of
illumination complexity on new ML-OPC, the same experiment is re-performed
assuming cross-pole illumination. As shown in Fig. 3.9, RMSE increases to 3.9 nm
due to high complexity of cross-pole (compared to annular), which may cause more
complex optical proximity effects. To reduce RMSE to 3.5 nm, the same quantity of
annular is assumed, three more PFT signals are required (see bright gray bar).

Layer and Device
To investigate the impact of layer type, new ML-OPC is applied to metal 1 and
contact layouts. As shown in Fig. 3.10a, metal 1 causes larger RMSE because its
layout is typically more complex than contact layout. For the same reason, ML-
OPC shows larger RMSE in logic devices than in memory devices, as shown in
Fig. 3.10b.

Hybrid ML- and MB-OPC
The new ML-OPC is much faster than conventional MB-OPC, but a little RMS error
is left. In industry, therefore, it is proposed to perform ML-OPC first to reduce EPE
dramatically and the rest is eliminated by MB-OPC, namely hybrid ML- and MB-
OPC. As illustrated in Fig. 3.11, for the layout in metal 1 layer, while MB-OPC

78 S. Shim et al.

Metal1

3.5

(a)

Contact

2.1

R
M

S
E

 [n
m

]

Logic

3.5

(b)

Memory

R
M

S
E

 [n
m

]

1.7

Result of Fig. 8(b)

Fig. 3.10 RMSE of new ML-OPC with different design type: layer and device

0

20

16

12

M
ax

. E
P

E
 [n

m
]

Iterations of MB-OPC

8

4

30 18151296

MB-OPC alone

Hybrid OPC

Fig. 3.11 Maximum EPE with the number of MB-OPC iterations for stand-alone MB-OPC and
hybrid ML- and MB-OPC

(black line) takes 16 iterations to meet EPE criteria, MB-OPC starting from the
result of ML-OPC (gray line) takes only six iterations; hybrid ML- and MB-OPC is
almost three times faster than casual MB-OPC remaining negligible EPE.

3.3 Machine Learning-Guided EPC

Rule- and model-based methods of etch proximity correction (EPC) are widely
used, but they are insufficiently accurate for technologies below 20 nm. Simple
rules are no longer adequate for the complicated patterns in layouts, and models

3 Machine Learning for Mask Synthesis 79

Fig. 3.12 (a) Resist image
with small and large spaces
and (b) corresponding etch
result with negative and
positive etch biases

Positive etch bias

Ion and radical

Negative etch bias

Resist

Substrate

(a)

(b)

based on a few empirically determined parameters cannot reflect etching phenomena
physically. This section introduces how machine learning technique is applied
to EPC (ML-EPC). Each segment of interest, together with its surroundings, is
characterized by geometric and optical parameters, which are then inputted to
MLP that predicts the etch bias. The ML-EPC is implemented using a commercial
OPC tool, and applied it to a DRAM gate layer in 20-nm technology, achieving
predictions that are 34% more accurate than model-based EPC (MB-EPC).

3.3.1 Preliminaries

3.3.1.1 Etch Bias and EPC

The etching process is a key step in semiconductor fabrication: Resist pattern is
created on a wafer by optical lithography (Fig. 3.12a); and, during the subsequent
etching process, etching particles (e.g., ions and radicals) collide with the surface
of the resist and the substrate (Fig. 3.12b). The problems during etching process
include etch proximity effects, which can produce an over-etched substrate (negative
etch bias) due to lateral erosion of the photo resist, or an under-etched substrate
(positive etch bias) due to excessive deposition (Fig. 3.12b). The extent of the over-
or under-etching is called the etch bias.

To obtain a pattern of correct size on a wafer after both lithography and etching
process, a design layout has to be modified through a process called etch proximity
correction (EPC). EPC compensates for etch bias before the design layout is
inputted to optical proximity correction (OPC) as shown in Fig. 3.13.

80 S. Shim et al.

Litho pattern layout Mask imageDesign layout

EPC OPC

Fig. 3.13 EPC and OPC
W

id
th

 [n
m

]

40

05 001 051 200 1500...

50
60
70

Space [nm]

DLS E2E

Segment of interest
CD measurement position

DLS Iso

Fig. 3.14 Synthetic patterns and etch bias rule table used in RB-EPC

3.3.1.2 Rule- and Model-Based EPC

Etch bias is affected by the amount of etching particles and their angle and direction
of their collision with the surface of the substrate [24]. It is not feasible to apply a
rigorous simulation of the etching process over an entire chip because it may take a
few days, which is not practical. So, EPC has to be based on heuristics, which may
be empirical rules (rule-based EPC) or simplified models (model-based EPC).

In rule-based EPC (RB-EPC), a set of typical test patterns, such as the dense line
and space (DLS), isolated line (Iso), and line-end to line-end (E2E) patterns shown
in Fig. 3.14, are patterned on a wafer; the etch bias is then measured at the center of
each pattern; and the results are summarized in a table against the parameters of the
patterns, e.g., their width and space. RB-EPC has been used for circuits with some
technology nodes (Samsung Electronics Corp., OPC Principal Engineer, Personal
communication, May 2016) [2], but the rules are too simplistic to cover the range
of pattern shapes that may occur in a real layout. It is estimated [2] that on-chip
variation (OCV) in 10-nm technology remains 28% out of tolerance after RB-EPC
has been applied.

3 Machine Learning for Mask Synthesis 81

Layout Point of interest

Density kernel
Visible kernel Blocked kernel

Fig. 3.15 Kernels for MB-EPC

In model-based EPC (MB-EPC), etch bias is modeled as a simple function of a
few empirical parameters:

Etch bias = C0 + C1Den+ C2Vis+ C3Blo+ C4Den2 + · · · , (3.6)

where Den is the density of layout within a region of density kernel; Vis is the area of
the open space not hidden by the edges that are neighbors of a point of interest (i.e.,
space beyond the nearest edge is ignored); and Blo is the area of the nearest polygon
that overlaps with the blocked kernel, as shown in Fig. 3.15 [3]. The coefficients Ci
and the radii of the kernels are adjusted through regression. The number of terms
in the model function is determined in empirical fashion. MB-EPC can deal with
a greater range of patterns than RB-EPC, but it still fails to achieve a satisfactory
OCV. It is estimated [3] that OCV in 20-nm DRAM device is still 15% of gate size
after MB-EPC has been applied.

3.3.2 ML-EPC

Machine learning technique is applied to etch bias model for more accurate
prediction of etch bias. Figure 3.16 illustrates new etch bias model. A litho pattern
layout is divided into edge segments. A number of parameters are extracted from
a segment of interest by examining its surroundings (Fig. 3.16a). The parameters
are then submitted to MLP, which outputs the predicted etch bias of the segment
(Fig. 3.16b). This MLP is trained on a number of training segments that are prepared
in advance so that their etch biases can be predicted as correctly as possible. The
trained MLP is effectively the new etch bias model.

There are three key factors affecting accuracy and efficiency of ML-EPC: the
set of training segments used for MLP construction, the input parameters, and the
complexity of the MLP. Following sections describe ML-EPC steps with how such
key factors are determined.

82 S. Shim et al.

Predicted
etch bias

Edge segment
Litho pattern layout

Segment of interest

Parameter

(b)(a)

Fig. 3.16 ML-guided etch bias model: (a) each segment in a layout is parameterized, and (b) MLP
is constructed to predict etch bias from input parameters

3.3.2.1 Preparation of Training Segments

Two types of pattern are used to prepare training segments: typical synthetic patterns
and complicated patterns extracted from layouts of real circuits. Typical synthetic
patterns (see Fig. 3.14) can be analyzed to see how etch bias changes in response
to changes in geometry, e.g., a space of DLS patterns. For example, if etch bias
appears to change abruptly in response to a gradual change in geometry, we can
infer that there are errors in the measured data, and that we need to reexamine the
measurement process.

The etch bias of a synthetic pattern is determined as follows: A lithography
process is performed using a photomask that includes mask images of the training
patterns. Critical dimension (CD), which is the width of a pattern (or space)
between two segments placed face-to-face, is measured as shown in Fig. 3.14,
after lithography (CDlitho). This measurement process is performed again after the
subsequent etching (CDetch) process. Since all the synthetic patterns are symmetric,
a pair of segments can be assumed to have the same etch bias, and thus the etch bias
of one segment can be expressed as (CDetch − CDlitho)/2.

More complicated patterns are obtained from actual circuit layouts as follows:
Test layouts are prepared by shrinking layouts of earlier technologies, or synthe-
sizing designs from a preliminary version of the new technology library. Pairs of
segment for CD measurement (see candidate position of CD measurement) are then
identified on parallel edges, as shown in Fig. 3.17a. Each candidate position is then
examined to determine whether the two associated segments and their surroundings
are symmetric; if they are symmetric (e.g., CD2 and CD3 in Fig. 3.17a), then they
should acquire the same etch bias, which is expressed as (CDetch − CDlitho)/2;
otherwise (e.g., CD1 in Fig. 3.17a), they are likely to have different etch biases,
and neither bias can be readily identified: such points are rejected. Identical, or
very similar, points are filtered out through a classification process. The segments

3 Machine Learning for Mask Synthesis 83

p1

Cluster

p2

pn

...

Test layouts

Representative segment

(a)

(b)

Candidate position of CD measurement

CD2

CD3

CD1

Fig. 3.17 Preparations of complicated training segments: (a) segments extracted from test layout
and (b) representative segments after classifying the segments

corresponding to the remaining points are parameterized and mapped to points in an
n-dimensional parameter space, as shown in Fig. 3.17b. Some close points are then
grouped through modifiedK-mean clustering [25, 26], and representative points are
selected from each cluster: the corresponding segments are used to train new etch
bias model.

3.3.2.2 Extracting Parameters

Two types of parameter are used to characterize a segment and its surroundings.
The first parameter is a local pattern density, which is measured at points sampled
around the segment of interest. Figure 3.18 shows how to draw lines passing through
the center of the segment, and place a series of touching circles along each line.
The radii r of these circles, which are the regions in which pattern density will be
measured, increase by a user-defined ratio as circles are placed further from the

84 S. Shim et al.

Fig. 3.18 Parameterization
of a segment using local
pattern densities

Segment of interest

Litho pattern layout

A
A’

Region of densify measurement

r

segment. The total number of circles determines the number of parameters. A local
pattern density is associated with the quantity of etching particles, and the position
at which local pattern density is measured is associated with incident angle and
direction of the particles. Because etching particles with the same incident angle
and the symmetric directions equally affect etch bias, density values at symmetric
locations (e.g., A and A′ in Fig. 3.18) can be summed and regarded as a single
parameter, which reduces the number of parameters, making it faster to train the
MLP.

To take account of sidewall angle of resist, an optical kernel signal φnm is chosen
as the second parameter type. The PFT signals, which are used as parameters of new
ML-EPC presented in Sect. 3.2.2, can be used as the optical kernel signals. Optical
kernel signals model constructive or destructive interference of light at the center
of the segment, and thus are associated with the vertical shape of the resist, which
affects the etch bias [27]. Since each function makes a separate contribution to the
resulting light intensity, those functions that make the largest contribution can be
chosen.

3.3.2.3 Construction of Etch Bias Model

MLP is employed to build new etch bias model as shown in Fig. 3.19. The input
layer of MLP has n nodes, each of which receives a parameter from an interesting
segment. Each input node propagates the signal that it receives to every node in
the first hidden layer. Each connection is made by an edge, which has a weight, by
which the signal is multiplied. The weighted signals received by each hidden node
are summed: if the total is larger than some threshold, the hidden node outputs 1,
but otherwise 0; the thresholding is realized by a sigmoid function. Each node in the
first hidden layer then propagates its output value to every node in the next layer in
the same manner as the nodes in the input layer, and this process is repeated until
the output layer is reached.

3 Machine Learning for Mask Synthesis 85

Signal 1

Signal 2

Signal n

Input layer

Hidden layers

Output layer

[-0.5δ, 0.5δ]

 (0.5δ, 1.5δ]

[-1.5δ, -0.5δ)

 > (N-0.5)δ

 < -(N-0.5)δ

Etch bias

Signal 1

Signal 2

Signal n

Input layer

Hidden layers

(b)

(a)

Output layer

Etch bias

Fig. 3.19 MLP for (a) regression and (b) classification

86 S. Shim et al.

Two types of MLP are constructed as etch bias model: regression and classifi-
cation. MLP for regression is constructed in a way that the output layer consists
of one node, as shown in Fig. 3.19a. The weighted signals received by this output
node are summed, and the resulting scalar value is the predicted etch bias. MLP
for classification, with an output layer consisting of 2N + 1 nodes, each of which
corresponds to a certain range of etch bias values, as shown in Fig. 3.19b. This MLP
maps an input segment to a single output node, which returns 1 while the others
return 0; the median of the corresponding range of etch bias values becomes the
predicted etch bias of the interesting segment. The range covered by each node
has an extent of δ, which is used to determine the convergence criteria in the EPC
algorithm in Sect. 3.3.2.4.

Each MLP is evaluated over all the training segments, and optimizes the edge
weights and threshold values to minimize the cost, which is the difference between
the predicted and the actual etch bias. This minimization is performed by the method
of steepest descent in the same manner of Sect. 3.2.2.2. The resulting MLP is new
etch bias model.

The accuracy of prediction is related to the complexity of the MLP. An MLP
with insufficient nodes and layers cannot be trained successfully. Conversely, an
overcomplex MLP may be too specific to the training segments, making it over-
fitted, and produces poor results for segments with different configurations. The
numbers of nodes and layers are adjusted through k-fold cross-validation. The set of
training segments is randomly divided into k subsets of equal size; k−1 of these sets
are used to construct an MLP, while the remaining set is used to assess the proportion
of correctly predicted etch biases. The accuracy is averaged over k iterations, and the
whole iterations are repeated for another MLP with different numbers of nodes and
layers. This adjustment procedure is embedded into an optimization that determines
the numbers of nodes and layers that give the highest accuracy.

Once an MLP has been trained, it is used to predict the etch pattern for a litho
pattern layout. A set of parameters is extracted from each segment in the layout, as
described in Sect. 3.3.2.2, and submitted to the MLP, which then predicts the etch
bias of that segment. The segments are then moved in or out following the bias,
which yields a predicted etch pattern.

3.3.2.4 EPC Algorithm

EPC is to find a litho pattern layout that is expected to produce the desired etch
pattern, as shown in Fig. 3.21. Since no analytical function exist to model etch
proximity effect, EPC cannot be performed in analytical fashion, so trial-and-error
is the only way for this.

Figure 3.20 shows new EPC algorithm, which receives a design layout Din,
which becomes the initial litho pattern layout L (L1), and outputs a corrected
litho pattern layout Lout that is expected to produce the desired etch pattern. L
is modified iteratively (L2–L7), with the aim of making the expected etch pattern
D as similar as possible to the desired etch pattern Din. Each segment of the litho

3 Machine Learning for Mask Synthesis 87

Fig. 3.20 The EPC
algorithm

Input: A design layout Din
Output: A litho pattern layout Lout

L1: L ← Din
L2: repeat for max iterations
L3: A set of biases ← MLP(a set of segments from L)
L4: D ← ETCH(L , a set of biases)
L5: A set of EPEs ← Measure EPE(Din,D)
L6: if EPEmax ≤ e then Exit loop
L7: L ←CORRECT (L ,−a × a set of EPEs)
L8: returnLout ← L

Litho pattern layout ()

(a) (b) (c)

Design layout ()

EPE

L
Expected etch pattern ()

Etch bias

D

D

D in

Fig. 3.21 (a) Current litho pattern layout (L), (b) expected etch pattern (D), and (c) EPE
measured between the expected etch pattern (D) and a design layout (Din)

pattern layout L is parameterized and inputted to the MLP, which returns (L3) a set
of expected etch biases for all the segments. Each edge of L is moved following
the expected etch bias, which yields expected etch pattern D (L4), as shown in
Fig. 3.21b. The expected etch pattern is then compared with the design layout; the
difference between them is modeled by edge placement errors (EPEs), which are
signed distances between the edges of Din and D , as shown in Fig. 3.21c. The EPE
is measured at the center of every segment of Din (L5). A new L is constructed
(L7) by moving each segment of the current L in the opposite direction to the
EPE through a distance of α × EPE, where α is a user-defined coefficient that
improves convergence. If the magnitude of the largest EPE is less than a threshold
ε, then iteration stops; otherwise, it continues until a user-defined iteration count is
reached. Note that ε needs to be larger than δ, which is the precision of the predicted
etch bias obtained from the MLP, as discussed in Sect. 3.3.2.4.

88 S. Shim et al.

3.3.3 Experiments

ML-EPC was implemented using Proteus [20] for parameter extraction and Python
to construct the MLP. For MLP training, 1.2-k training segments are extracted from
both synthetic and actual layouts; a further 1.5-k test segments are extracted from the
layouts and used to assess accuracy. A segment is represented by 35 parameters: 29
local densities and 6 optical kernel signals, so MLP has to have 35 input nodes. To
avoid over-fitting, tenfold cross-validation is performed for two alternative MLPs
(see Fig. 3.19a and b). The MLP for regression had 4 hidden layers, each of 10
hidden nodes, and the MLP for classification had 3 hidden layers, each of 14 hidden
nodes. In the MLP for classification, N and δ, respectively, are set to 75 nm and
0.2 nm, yielding 151 output nodes to cover etch biases from −15 nm to 15 nm, with
0.2-nm precision.

A rule-based (RB) and a model-based (MB) EPC are also implemented for
comparisons. Each rule covers 28 increments in pattern space and 20 increments
in pattern width; each of the 560 combinations that result is associated with an
etch bias. Two versions of MB-EPC were implemented: MB-2nd was constructed
with a version of Eq. (3.6) that includes all six second-order terms (Vis2 and
Vis × Den, etc.); MB-3rd includes all third-order terms. The size of each kernel
and the coefficients were determined through linear regression using Progen [19].
The RB- and MB-EPCs were trained using the same 1200 segments.

3.3.3.1 Assessment of Accuracy

Accuracy is evaluated in terms of root mean square (RMS) errors for the 1200
training segments (see white bars in Fig. 3.22). RB-EPC has very large RMS errors,
indicating that a few simple rules cannot represent complicated pattern shapes
adequately. With the MB-EPC, the RMS errors decrease as higher-order terms are
introduced. MLPs for regression and classification, respectively, produced results
with average RMS errors of 2.1 nm and 1.6 nm, which are placed between MB-2nd
(2.3 nm) and MB-3rd (1.4 nm).

The RMS errors for the 1500 test segments that were not used in model training
are also compared (see black bars). RB now produces even larger errors, probably
due to its poor coverage of complicated patterns. The errors produced by MB-
2nd increase only slightly, but the errors from MB-3rd become almost three times
larger. This may be attributed to the inability of empirical kernels to model etching
phenomena accurately, which may cause over-fitting when too many terms are
involved in model training.

3 Machine Learning for Mask Synthesis 89

RB

6.2

9.1

0

2

4

6

8

10

2.3
1.6

1.92.1
2.5

Tr
ai

ni
ng

 s
eg

m
en

ts

6.9

MB-2nd

R
M

S
 e

rr
or

s
of

 e
tc

h
bi

as
 [n

m
]

MLP
(regression)

MLP
 (classification)

2.9

1.4

MB-3rd

4.1
Te

st
 s

eg
m

en
ts

Fig. 3.22 RMS error of etch bias for training (white) and test (black) patterns

Table 3.1 Errors with MLPs for regression and classification

RMS errors (nm)

Large etch bias (Fig. 3.22) Small etch bias

Segments Regression Classification Regression Classification

Training 2.1 1.6 0.8 1.1

Test 2.5 1.9 1.2 1.6

3.3.3.2 Comparison of Two MLP Types

In general, using MLP for classification results in a slightly smaller RMS errors than
MLP for regression, as shown in Fig. 3.22. However, it is observed that the MLP for
regression achieves smaller errors than the MLP for classification when the etch bias
is small.

A second set of training and test segments is prepared in a way as to include
1200 training and 1500 test segments with an etch bias ranging from −10 nm to
5 nm, which is little more than half of its range in the experiments which generated
the results shown in Fig. 3.22. As before, two types of MLP were constructed for
these training segments. This time, the MLP for regression produced smaller errors
than classification (see columns 4 and 5 in Table 3.1). This suggests that MLP for
regression may be more suitable for a week etch process, which produces small etch
biases; whereas classification is likely to be more suitable for a strong etch process,
which produces large etch biases.

90 S. Shim et al.

Table 3.2 Errors with
different parameter sets

RMS errors (nm)

Parameter sets # Parameters Training Test

Den 49 3.3 3.5

Den+Opt 59 1.5 1.9

Den+Opt (reduced) 35 1.6 1.9

3.3.3.3 Sampling of Training Segments

A third set of 1200 training segments are prepared in a way as to randomly extract
them from both the synthetic patterns and actual layout. An MLP for classification
was constructed for these segments, and its RMS errors on the training segments
was 1.4 nm, which is 0.2 nm smaller than the results in Fig. 3.22 because the set
of training segments includes a number of segments with similar surroundings. But
the RMS errors for the test segments become 2.5 nm, which is 0.6 nm larger than the
results in Fig. 3.22, because the randomly sampled segments do not include a range
of patterns comprehensively.

3.3.3.4 Changing the Parameter Sets

Three different combinations of parameter types are tried with MLPs for classifica-
tion. Table 3.2 shows the RMS errors for the training and test segments classified
using the three parameter sets. The significant contribution of optical kernel signal
to accuracy is largely independent of that of the local pattern densities. If no optical
kernel signals are considered (see the second row), the RMS error is very large for
both the training and test segments. Accuracy is much improved when optical kernel
signals are introduced (see the third row).

The number of parameters is further reduced by summing pairs of densities in
symmetric locations, and using the result as a single parameter, and the six most
significant optical kernel signals are only used, as discussed in Sect. 3.3.2.2. The
number of parameters is in turn reduced by 40% (last row), and the runtime of
the MLP is reduced by 49%, with an RMS accuracy of 1.6 nm and 1.9 nm for the
training and test segments, respectively.

3.3.3.5 Effect of Cross-validation

To investigate the effect of cross-validation, two more MLPs for classification are
constructed. One is a simple MLP, consisting of a single hidden layer with ten nodes,
which produces very high RMS errors for both training (6.7 nm) and test segments
(7.8 nm); this is an understandable consequence of its simplicity. The second MLP
is more complicated, with 5 hidden layers, each consisting of 15 nodes. It produces
very small RMS errors for training segments (1.1 nm), which is expected with this

3 Machine Learning for Mask Synthesis 91

Fig. 3.23 Histogram of CD
errors on a wafer after
MB-EPC and ML-EPC

MB-EPC
(3σ = 8.2%)

30

20

P
er

ce
nt

ag
e

[%
]

CD error [%]

10

0 5 10–10 –5
0

ML-EPC
(3σ = 5.3%)

number of degrees of freedom; but, its error with test segments is 2.8 nm, which is
0.9 nm larger than the errors produced by MLP constructed using cross-validation.
It can be attributed that the cross-validation declines to over-fitting.

3.3.3.6 Assessment of ML-EPC

ML-EPC and MB-2nd are compared in terms of the critical dimension (CD); MB-
2nd is used for etch bias prediction in L3 of Fig. 3.20. MB-EPC was applied to a
20-nm DRAM gate layer, and the gate CD was measured in the core and peripheral
regions. The distribution of CD errors is shown (dashed curve) in Fig. 3.23, in
which the 3-sigma value is 8.2% of the target CD. The same experiment was
performed using ML-EPC with the MLP for classification, and the resulting CD
error distribution is shown as a continuous curve, and the 3-sigma value is reduced
to 5.3%.

ML-EPC requires about eight times more runtime than MB-2nd because many
local densities are extracted around every interesting segment. It is expected that
runtime can significantly be improved if commercial tools are optimized to measure
local densities.

3.4 Conclusions

Machine learning technique has recently been applied to mask synthesis problems
for higher speed and better accuracy. MLP is used to build a mask bias model for
ML-OPC. The choice of parameters is very important in its accuracy as well as
runtime. New ML-OPC uses PFT signals as parameters. Since they are orthogonal
while they model light interference very well, the number of parameters can
significantly be reduced without loss of accuracy, which was demonstrated using
2X-nm node logic metal layer. Another application of ML is EPC, in which a
model is built to predict etch bias. The key components of new etch bias model

92 S. Shim et al.

are the methods of preparing training segments and parameterizing them. Training
segments are systematically prepared to keep their number small, while ensuring
sufficient coverage to handle the shapes of patterns in real layouts. Local density
distributions and optical kernel signals have been proposed as parameters. MLP as
the etch bias model is optimized through cross-validation to avoid over-fitting. ML-
EPC was demonstrated using 20-nm DRAM technology and showed more accurate
predictions of etch bias compared to conventional RB- and MB-EPC.

References

1. N. Cobb, Fast optical and process proximity correction algorithm for integrated circuit
manufacturing, Ph.D. Dissertation, University of California at Berkeley, 1998

2. M. Salama, A. Hamouda, Efficient etch bias compensation techniques for accurate on-wafer
patterning, in SPIE Advanced Lithography, March 2015, pp. 1–7

3. J. Park, S. Kim, S. Shim, S. Suh, H. Oh, The effective etch process proximity correction
methodology for improving on chip CD variation on 20 nm node DRAM gate, in SPIE
Advanced Lithography, March 2011, pp. 1–10

4. S. Shang, Y. Granik, M. Niehoff, Etch proximity correction by integrated model-based
retargeting and OPC flow, in SPIE Advanced Lithography, March 2007, pp. 225–232

5. Q. Liu, R. Cheng, L. Zhang, Study of model based etch bias retarget for OPC, in SPIE
Advanced Lithography, March 2010, pp. 1–6

6. T. Matsunawa, B. Yu, D.Z. Pan, Optical proximity correction with hierarchical Bayes model,
in SPIE Advanced Lithography, March 2015, pp. 1–10

7. R. Luo, Optical proximity correction using a multilayer perceptron neural network. J. Opt.
15(7), 075708–075713 (2013)

8. K.-S. Luo, Z. Shi, X.-L. Yan, Z. Geng, SVM based layout retargeting for fast and regularized
inverse lithography. J. Zhejiang Univ. Sci. C 15(5), 390–400 (2014)

9. H. Zhang, B. Yu, E. Young, Enabling online learning in lithography hotspot detection
with information-theoretic feature optimization, in IEEE/ACM International Conference On
Computer-Aided Design (ICCAD), November 2016, pp. 1–8

10. S. Choi, S. Shim, Y. Shin, Machine learning (ML)-guided OPC using basis functions of polar
Fourier transform, in SPIE Advanced Lithography, March 2016, pp. 1–8

11. M. Jeong, J.W. Hahn, Prediction of biases for optical proximity correction through partial
coherent identification. J. Micro/Nanolithogr. MEMS MOEMS 15(1), 1–12 (2016)

12. A. Gu, A. Zakhor, Optical proximity correction with linear regression. IEEE Trans. Semicond.
Manuf. 21(2), 263–271 (2008)

13. T. Shah, O. Dabeer, Fast inverse lithography using machine learning, in Indian Workshop on
Machine Learning, July 2013, pp. 21–22

14. S. Shim, Y. Shin, Etch proximity correction through machine-learning-driven etch bias model,
in SPIE Advanced Lithography, March 2016, pp. 1–10

15. S. Shim, Y. Shin, Machine learning-guided etch proximity correction. IEEE Trans. Semicond.
Manuf. 30(1), 1–7 (2017)

16. Q. Wang, O. Ronneberger, H. Burkhardt, Fourier analysis in polar and spherical coordinates,
Albert-Ludwigs-Universität Freiburg, Institut für Informatik, Technical Report, 2008

17. M. Born, E. Wolf, Principles to Optics, 4th edn. (Pergamon Press, London, 1970)
18. N. Cobb, D. Dudau, Dense OPC and verification for 45 nm, in Proceedings of SPIE Advanced

Lithography, March 2006, pp. 1–7
19. Synopsys, Progen, User Guide (2016)
20. Synopsys, Proteus, User Guide (2016)

3 Machine Learning for Mask Synthesis 93

21. M. Feldman, Nanolithography: The Art of Fabricating Nanoelectronic and Nanophotonic
Devices and Systems (Woodhead, Oxford, 2014)

22. J. Li, X. Li, R. Lugg, L.S. Melvin III, Kernel count reduction in model based optical proximity
correction process models. Jpn. J. Appl. Phys. 48(6S), 1–5 (06FA05) (2009)

23. P. Gong, S. Liu, W. Lv, X. Zhou, Fast aerial image simulations for partially coherent systems
by transmission cross coefficient decomposition with analytical kernels. J. Vac. Sci. Technol.
B: Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 30(6), 1–7 (06FG03) (2012)

24. Y. Granik, Correction for etch proximity: new models and applications, in SPIE Advanced
Lithography, March 2001, pp. 98–112

25. J.B. MacQueen, Some methods for classification and analysis of multivariate observations, in
Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (1967), pp. 281–
297

26. R. Ng, J. Han, CLARANS: a method for clustering objects for spatial data mining. IEEE Trans.
Knowl. Data Eng. 14(5), 1003–1016 (2002)

27. C. Wu, W. Yang, L. Luan, H. Song, Photoresist 3D profile related etch process simulation
and its application to full chip etch compact modeling, in SPIE Advanced Lithography, March
2015, pp. 1–8

Chapter 4
Machine Learning in Physical
Verification, Mask Synthesis, and
Physical Design

Yibo Lin and David Z. Pan

4.1 Introduction

The extreme scaling of VLSI circuits has reached to the manufacturing limitation.
Various challenges have been raised from the printability issues due to lithography
resolution, process variation, etc. Thus a design needs to be highly optimized
and extensively verified for manufacturability. In addition, design quality and
manufacturability in late stages of the design flow become increasingly sensitive
to the changes in early stages, increasing turn-around time and slowing down the
design closure. Thus, early stage prediction of valid designs is becoming more and
more critical.

In this chapter, we focus on the backend design challenges, including physical
design, mask synthesis, and physical verification. Physical design implements a
gate-level netlist to a layout with physical locations and geometries. It typically
includes placement, clock tree synthesis, routing, etc. Mask synthesis is a follow-up
step to improve the printability utilizing resolution enhancement techniques (RETs),
such as optical proximity correction (OPC) and sub-resolution assist features
(SRAFs). Besides optimization stages like physical design and mask synthesis,
physical verification, e.g., hotspot detection [12, 20], photoresist modeling [25, 46],
is another crucial step to validate the manufacturability of a design.

The aforementioned stages have been developing for decades and are encoun-
tering various challenges in performance and efficiency in advanced technology
nodes. The advances in machine learning stimulate new opportunities to boost the
design closure of the backend flow. General machine learning can be categorized as
supervised learning and unsupervised learning. Supervised learning is essentially a

Y. Lin (�) · D. Z. Pan
University of Texas at Austin, Austin, TX, USA
e-mail: yibolin@utexas.edu; dpan@ece.utexas.edu

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_4

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_4&domain=pdf
mailto:yibolin@utexas.edu
mailto:dpan@ece.utexas.edu
https://doi.org/10.1007/978-3-030-04666-8_4

96 Y. Lin and D. Z. Pan

modeling technique in which underlying correlation between features and labels
is extracted to build a model. The model is then able to predict labels when
given new features. Typical algorithms for supervised learning include boosting,
logistic regression, support vector machines, deep neural networks, and so on
[14]. Unsupervised learning does not require labels from data samples, such as a
clustering problem. It aims at learning the hidden structures in the data.

This chapter will survey recent practices and researches on the machine learning
applications to the backend design automation, from late stages to early, i.e.,
physical verification, mask synthesis, and physical design. We will introduce the
motivations of each problem and briefly explain the learning techniques to solve
the problem. Section 4.2 focuses on the challenges in physical verification; Sect. 4.3
illustrates the problems in mask synthesis; Sect. 4.4 talks about the applications in
physical design; Sect. 4.5 concludes the chapter.

4.2 Machine Learning in Physical Verification

Physical verification refers to various validation steps in the manufacturing process,
such as lithography hotspot detection. Machine learning mainly helps to decrease
turn-around time and manufacturing costs.

Lithography hotspots denote specific patterns that tend to fail in printing even
after RETs, which are becoming more and more common due to the complexity
of lithography system and process variation. The early detection of lithography
hotspot remains to be a critical challenge to enhance manufacturability and reduce
costs. Generally, expensive lithography simulation is required for accurate hotspot
detection, often leading to long turn-around time. Therefore, developing efficient
hotspot detection is desired and machine learning is a suitable technique due to its
efficiency in prediction.

Hotspot detection is a classification task in which layout clips labeled as either
hotspots or non-hotspots are provided. The objective is to construct a model that can
accurately classify clips. Figure 4.1 shows two layouts with hotspots. In practice,
the performance of hotspot detection is mainly evaluated with two metrics, i.e.,
detection accuracy and false alarm. Detection accuracy is defined as the ratio
between the number of correctly detected hotspots and the number of real hotspots.
False alarm is defined as the number of non-hotspots that are recognized as hotspots.
The modeling objective is to first improve detection accuracy and then minimize
false alarms. In other words, it is tolerable to mis-classify a few non-hotspots into
hotspots, while the opposite is not encouraged.

4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design 97

Core

(a) (b)

Fig. 4.1 Example of hotspot patterns marked in red [12]. (a) A relatively simple pattern with
hotspot; (b) a relatively complex pattern with hotspot

4.2.1 Layout Feature Extraction and Encoding

The performance of hotspot detection is highly dependent to layout feature extrac-
tion and model selection. Layout feature represents the layout attributes to determine
hotspots and non-hotspots, which is fundamental to the detection. Typical feature
representations include density based feature [28, 47], fragmentation based feature,
and concentric circle area sampling (CCAS) [29, 59, 60].

Figure 4.2a illustrates the fragmentation based feature extraction. Each fragment
F within a circle with an effective radius r is considered. Geometric characteristics
of fragments covered by the circle are extracted as the representation of F , e.g.,
pattern shapes, distances between layout and corner information. Figure 4.2b
explains the concentric circles with area sampling to capture the layout information
that matches the diffraction of lights. In this feature representation, a layout is
sampled with different number of positions along concentric circles. Figure 4.2c
shows the density-based feature extraction. The feature is a vector of pattern
densities computed from the layout density within each grid. As features are
generally extracted to a feature vector, the spatial information between elements
of the vector is lost [24, 54]. For example, geometrically close sampling points
may not correspond to elements close to each other in indices. Hence, a feature
tensor representation is proposed to keep such spatial information, as shown in
Fig. 4.2d. The original clip is converted to a hyper-image after feature tensor
extraction. That is, the clip is divided into 12 × 12 blocks with each block holding
a part of the clip, shown as the “Division” process in the figure. Then each block
is converted to an image with 100 × 100 pixels. Discrete cosine transformation
(DCT) is then applied to each block and a transformed 100× 100 image with each
pixel representing the coefficient of a specific frequency is obtained, shown as the
“DCT” process. Due to the nature of DCT, high frequency coefficients are nearly
zero. Thus, only the coefficients of lowest 32 frequencies are kept for each block.
Combining on the coefficients of all blocks forms the feature tensor representation
with the dimensionality of 12× 12× 32, shown as the “Encoding” process.

98 Y. Lin and D. Z. Pan

F_ExIn

0
-1

+1

+2F_Ex

0+1
+2

-1-2 F

0
+1

+2

+2 +1 F_In -1 -2

F_InEx

0

0
-1 +1 +2

-2

-1

(a) (b)

0.32 0.32 0.32 0.32

0.29 0.18 0.51 0.15

0.40 0.26 0.23 0.43

0.65 0.33 0.50 0.39

0.32

0.32

.

.

.

0.33

0.50

0.39

Feature Vector

0.32 0.32 0.32 0.32

0.29 0.18 0.51 0.15

0.40 0.26 0.23 0.43

0.65 0.33 0.50 0.39

(c)

Division DCT

⎡
⎢⎢⎢⎣
C11,1 C12,1 C13,1 . . . C1n,1
C21,1 C22,1 C23,1 . . . C2n,1
...

...
...

. . .
...

Cn1,1 Cn2,1 Cn3,1 . . . Cnn,1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
C11,k C12,k C13,k . . . C1n,k
C21,k C22,k C23,k . . . C2n,k
...

...
...

. . .
...

Cn1,k Cn2,k Cn3,k . . . Cnn,k

⎤
⎥⎥⎥⎦{

k

Encoding

(d)

Fig. 4.2 (a) Fragmentation based hotspot signature extraction [8]. (b) CCAS feature extraction
[23]. (c) Density-based pattern representation [60]. (d) Feature tensor generation [54]

4.2.2 Machine Learning Models for Hotspot Detection

Conventionally pattern matching is widely used in hotspot detection, as shown in
Fig. 4.3a, while it cannot handle the situation when a pattern is not found in the
pre-built library [20, 56]. Then fuzzy pattern matching is developed to dynamically
tune the regions around the known hotspots, as shown in Fig. 4.3b [23]. Machine
learning based approaches recently demonstrate even better generality, as shown in
Fig. 4.3c.

Besides feature extraction, various machine learning models have been used as
hotspot detection kernels to achieve high accuracy and low false alarms, including
support vector machine (SVM) [9, 57], artificial neural network (ANN) [9], and
boosting methods [28, 59]. Zhang et al. [59] also propose an online learning scheme
to verify newly detected hotspots and incrementally update the model.

To mitigate the impacts from feature representation to the detection accuracy,
deep neural network (DNN) has been proposed for hotspot detection [30, 40]. DNN

4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design 99

Hotspot Non-hotspot Hotspot region

(a) (b) (c)

Fig. 4.3 A 2D-space example of hotspot region decision. (a) Pattern matching. (b) Fuzzy pattern
matching. (c) Machine learning [23]

⊗

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

=

x1 x0 x1

x1x0 x0

x1 x0 x1
1 0 1
0 1 0
1 0 1

Fig. 4.4 Example of convolution with one kernel filter

can avoid the manual efforts for the selection of feature extraction approaches,
because it takes high-dimensional layout as input and perform automatic feature
extraction during training. Promising empirical results have been observed with
DNN in several papers [30, 40, 52, 53]. A typical configuration of DNN structure
is shown in Fig. 4.5. It consists of four convolution layers and two fully connected
layers. Each convolution layer uses a set of kernels to perform convolution on an
input tensor. Figure 4.4 shows the operation of convolution for a 7× 7 tensor with
a 3× 3 kernel filter. The kernel filter sweeps through the input tensor and fills each
element in the 5 × 5 output tensor. Each fully connected layer performs linear
transformation to an input vector as follows,

x �→ Wx, (4.1)

where x ∈ Rm×1 is the input vector and W ∈ Rn×m represents the neuron weights.
The activation function ReLU layer is defined as follows,

100 Y. Lin and D. Z. Pan

Co
nv

ol
ut

io
n

La
ye

r

Co
nv

ol
ut

io
n

La
ye

r

M
ax

 P
oo

lin
g

La
ye

r

Co
nv

ol
ut

io
n

La
ye

r

Co
nv

ol
ut

io
n

La
ye

r

M
ax

 P
oo

lin
g

La
ye

r

Re
LU

Re
LU

Re
LU

Re
LU ...

Hotspot

Non-Hotspot

Fully Connected Layers

Fig. 4.5 An example of a neural network for hotspot detection [54]

Algorithm 1 Mini-batch gradient descent (MGD)
1: function MGD((W, λ, α, k, y∗h, y∗n))
2: Initialize parameters j ← 0,W > 0;
3: while not stop condition do
4: j ← j + 1;
5: Sample m training instances {F1,F2, . . . ,Fm};
6: for i = 1, 2, . . . , m do
7: Gi ← backprop(Fi);
8: Calculate gradient Ḡ ← 1

m

∑m
i=1 Gi ;

9: Update weight W ← W− λḠi ;
10: if j mod k = 0 then
11: λ← αλ, j ← 0;
12: return Trained model f ;

x �→
{
x, if x > 0,
0, otherwise,

(4.2)

where x ∈ Rm×1 is the input vector.
The DNN in Fig. 4.5 is trained with mini-batch gradient descent (MGD) algo-

rithm, as shown in Algorithm 1 [54]. Variable W is the neuron weights, λ is the
learning rate, α ∈ (0, 1) denotes the decay factor of the learning rate, k denotes the
decay step, y∗h is the hotspot ground truth, and y∗n is the non-hotspot ground truth.
In each iteration, m training instances {F1,F2, . . . ,Fm} are randomly sampled. The
gradients are computed from line 6–8. The neuron weights W is updated with the
gradients and the learning rate in line 14. In every k iterations, the learning rate λ
is decayed to αλ, as shown in line 10–11. MGD function returns the best model for
the training set.

Despite the convenience in automatic feature extraction, the best configuration of
DNN still requires manual trial and error process, such as searching for the number
and types of layers. Later, Matsunawa et al. [30] and Yang et al. [54] further propose
two different DNN structures that can improve the accuracy and reduce false alarms.

4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design 101

Table 4.1 shows the comparison between various state-of-the-art hotspot detec-
tors on both ICCAD 2012 contest benchmarks and industrial designs [24, 52, 54].
The number of clips with hotspots is represented as “HS#” and the number of
clips without hotspots is represented as “NHS#”. Column “Accu” denotes the
accuracy and column “FA” denotes the false alarm. While different hotspot detectors
may have different objectives in their problem formulations, the table reports the
accuracy and false alarm for reference. Generally, deep learning achieves high
accuracy with relatively low false alarm [52, 54]. Detectors like the online boosting
algorithm [59] mainly try to reduce the overall detection and simulation time
(ODST) using online learning with reasonable accuracy.

4.3 Machine Learning in Mask Synthesis

As the technology nodes scale to the limit of light wavelength, various resolution
enhancement techniques (RETs), such as optical proximity correction (OPC),
source mask co-optimization, and sub-resolution assist features (SRAFs), become
a necessity. Machine learning can be applied to various RETs to improve the turn-
around time of mask synthesis.

4.3.1 Mask Synthesis Flow

Figure 4.6a gives a standard mask synthesis flow in which target patterns (layout)
are taken as input and mask patterns are generated after iterative optimization proce-
dures including SRAF generation, OPC, mask rule check (MRC), and lithography
compliance check (LCC) [24]. In SRAF generation, sub-resolution assist features
are inserted to benefit the printing of target patterns. In OPC, the edge segments
of target patterns are optimized for robust lithography printing. To ensure mask
manufacturing friendliness, mask manufacturing rules should be checked after these

Table 4.1 Comparison between the state-of-the-art hotspot detectors [52, 54]

Train Test AdaBoost [28] Online [59] Deep [54] Deep [52]

Accu Accu Accu Accu
Bench HS# NHS# HS# NHS# FA# (%) FA# (%) FA# (%) FA# (%)

ICCAD 1204 17,096 2524 13,503 2919 84.2 4497 97.7 3413 98.2 1776 97.36

Industry1 34,281 15,635 17,157 7801 557 93.2 1136 89.9 680 98.9 307 98.41

Industry2 15,197 48,758 7520 24,457 1320 44.8 7402 88.4 2165 93.6 793 90.56

Industry3 24,776 49,315 12,228 24,817 3144 44.0 8609 82.3 4196 91.3 1723 83.63

Avg. - - - - 2397 66.6 5411 89.6 2613 95.5 1150 92.49

Ratio - - - - 0.92 0.70 2.07 0.94 1.0 1.0 0.44 0.97

102 Y. Lin and D. Z. Pan

(a) (b)

Fig. 4.6 Mask synthesis: (a) a standard mask synthesis flow, (b) printing contours under different
{focus, dose} conditions [50]

optimization procedures in MRC. Then, LCC performs the lithography simulation
under a set of process windows to check printability. Here process windows denote
different {focus, dose} conditions to generate printing contours, such as nominal,
inner, and outer contour, as shown in Fig. 4.6b. To quantify the process windows,
two metrics are introduced: edge placement error (EPE) evaluates the distance
between the target pattern contour and the nominal contour; process variation (PV)
band evaluates the area between the inner and outer contour. A typical objective of
RETs is to minimize EPE and PV band.

4.3.2 Machine Learning for Sub-resolution Assist Features

SRAFs are small rectangles within the sub-resolution domain to assist the printing
of target patterns. In other words, they will not be actually printed, even though
they are on masks. The effectiveness of SRAFs for an isolated contact is illustrated
in Fig. 4.7. It can be seen that Fig. 4.7c (with SRAFs) achieves much smaller PV
band than Fig. 4.7b (without SRAFs). This is because SRAFs deliver light to the
positions of target patterns in a proper phase, improving the robustness of printing.
In advanced technology nodes, developing fast yet high-quality SRAF generations
is increasingly critical to the yield [49, 50].

There are two types of conventional SRAF generation approaches, model-
based and rule-based. Model-based SRAF generation ensures high-quality and
robustness but is computationally expensive [21, 35, 38, 39, 42, 55]. Thus, it is
not scalable to large layout designs. On the other hand, rule-based SRAF generation
enables superfast turn-around time by complicated look-up-tables [19, 22, 37], while
its performance highly depends on the quality of look-up-tables which require
adjustment with significant engineering efforts [50].

4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design 103

Target pattern OPC pattern SRAF PV band

Fig. 4.7 (a) An isolated contact, (b) printing with OPC only, (c) printing with SRAF generation
and OPC [50]

(a)

Margin

(b)

Fig. 4.8 Example of separation hyperplane in (a) logistic regression and (b) SVM

Supervised learning is promising to efficiently approximate model-based SRAF
generation to improve turn-around time and meanwhile maintain high quality
[50]. The training data comes from model-based SRAF generation. The model
is trained to predict whether a pixel should be covered by SRAFs. The actual
SRAFs are generated with the guidance of the model, subjecting to SRAF rules.
Learning-based SRAF generation is formulated into a classification problem in
which feature vectors are extracted with CCAS and the kernel models adopt both
logistic regression and SVM.

Intuitively, logistic regression incorporates the logistic function to map the output
of a linear regression into a class label where the fitted model predicts the class
probability and the objective is to maximize the probability of correct classification.
Figure 4.8a gives an example of separation hyperplane for logistic regression. The
mathematical formulation of logistic regression is as follows [10]:

min
w

1

2
wTw + C

∑
i

log(1+ e−yiwT xi), (4.3)

104 Y. Lin and D. Z. Pan

where w is the weight parameters determined during training, xi and yi are features
and label (−1 or 1 for two-class classification) for ith data sample, respectively. The
first term 1

2wTw is the L2 regularization to avoid overfitting utilizing maximum
likelihood method [16]. The second term is the overall error cost. Parameter C
sets the importance of the regularization term. Thus the objective for training is
to minimize the overall error cost with L2 regularization.

On the other hand, SVM defines a hyperplane to maximize the margin between
the decision boundaries. Figure 4.8b shows an example of the separation hyperplane
in SVM and the margin to maximize in the objective. The mathematical formulation
of support vector machine with linear kernel is as follows [3]:

min
w,b,ξ

1

2
wTw + C

∑
i

ξi , (4.4a)

s.t. yi(w
T xi + b) ≥ 1− ξi, (4.4b)

ξi ≥ 0, ∀i, (4.4c)

where w, b, ξ are variables to be determined during training. Variable b is the bias
for the hyperplane and ξ denotes the error for the ith data sample. The objective
function contains two terms: one term for error minimization; the other for L2
regularization like that in logistic regression.

The comparison of various SRAF generation approaches in EPE, PV band,
and runtime is shown in Fig. 4.9. The model-based SRAF generation uses Mentor
Calibre with industrial-strength setup. As shown in Fig. 4.9a, SVM based clas-
sification leads to better approximation to the model-based approach than does
logistic regression in terms of PV band. The differences in EPE are marginal,
as shown in Fig. 4.9b. The major benefit of the learning-based approaches comes
from the runtime, as shown in Fig. 4.9c. Over 3× speedup for a layout clip with
10 μm × 10 μm size can be achieved by both logistic regression and SVM due to
efficient prediction.

4.3.3 Machine Learning for Optical Proximity Correction

OPC is another important RET to improve the performance of advanced lithography.
Figure 4.10 demonstrates the effectiveness of OPC, where the edges of target
patterns are fragmented and each segment is shifted in a way that the target
patterns can be robustly printed, i.e., the EPE values are minimized. Conventional
model-based OPC approaches are notorious for their runtime overhead [15, 33]. To
overcome the runtime issue, regression models are proposed to enable fast full-chip
OPC with an acceptable performance loss, such as linear regression [15, 18] and
nonlinear regression [26, 27].

4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design 105

1.3 1.57 1.85 2.13 2.41 2.69 2.97 3.25 3.52

PV band area (*0.001um)

0.0

0.14

0.29

0.43

0.58

0.72

0.87

N
or

m
al

iz
ed

Fr
eq

ue
nc

y

Model-based
Logistic
SVM
No SRAF

2

(a)

− 5 − 4 − 3 − 2 − 1 0 1 2 3 4

EPE at nominal contour (nm)

0.0

0.18

0.36

0.54

0.72

0.91

N
or

m
al

iz
ed

fr
eq

ue
nc

y

Model-based
Logistic
SVM

(b)

(c)

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 910 10

Layout size (um um)

0

10

20

30

40

50

R
un

tim
e

(s
)

Model-based
Logistic
SVM

Fig. 4.9 Comparison among different schemes in terms of (a) PV band distribution, (b) EPE
distribution at nominal conditions, and (c) runtime [50]

Mask WaferDesign target

without OPC

with OPC

Fig. 4.10 Wafer patterns w./w.o. OPC [31]

Figure 4.11 shows the flow of regression-based OPC, which consists of training
and testing phases. Besides standard steps for both model-based OPC and machine
learning based approaches like edge fragmentation, training phase requires both
model-based OPC and feature extraction for model calibration, while testing
phase only needs feature extraction for model validation. Current regression-based
techniques suffer from overfitting issues, degrading the accuracy of OPC results in

106 Y. Lin and D. Z. Pan

Fig. 4.11 Machine learning
based OPC flow [31]

Training layout

Edge
fragmentation

Model-based OPC Feature extraction

Model training

Training layout

Edge
fragmentation

Feature extraction

Model testing

Training Phase Testing Phase

the testing phase. In addition, increasingly complicated designs result in complex
optical proximity effects toward the sub-resolution domain, causing the difficulty in
achieving accurate regression models.

To overcome the aforementioned challenges, a hierarchical Bayes model (HBM)
is proposed for the OPC problem with CCAS feature extraction [31]. In the HBM,
a generalized linear mixed model (GLMM) is trained with explicit consideration
of different edge types, including normal, convex, concave, line-end edge, etc.
GLMM handles these edge types by regarding them as a random effect with a
random variance. For unknown variables, the HBM assumes a non-informative
prior distribution, thus avoiding the lack of prior information. Therefore, better OPC
results can be generated by HBM compared with previous regression approaches.

The comparison between HBM-based approach and model-based (MB) approach
is demonstrated in Fig. 4.12. MB_ik denotes OPC results from the kth iteration of
the MB-approach. The HBM-based approach can achieve EPE results comparable
to that of the MB-approach at the 10th iteration, while the former is much faster.
Hence, it is suggested to initialize OPC conditions with HBM-based approach and
use MB-based approach to finish the rest OPC iterations, such that the overall
runtime can be reduced [31].

4.4 Machine Learning in Physical Design

Machine learning can not only benefit late stages in the backend design flow, but
also early stages, such as physical design. Physical design contains many difficult
combinatorial problems that are hard to solve optimally. These problems are getting
even more complicated due to increasing constraints from design configurations and
manufacturing in advanced technology nodes.

4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design 107

Fig. 4.12 Compare HBM-based and model-based OPC in terms of EPE distributions [31]

4.4.1 Machine Learning for Datapath Placement

Wirelength, such as Steiner tree wirelength (StWL), is a widely used metric in
VLSI placement for random logic designs. It is the first-order approximation to
interconnect delay and capacitance. As minimizing HPWL is generally NP-hard [6],
analytical placement with iterative optimizations is developed. Logic designs often
contain datapaths in which cells are characterized with a high degree of bit-wise
parallelism. Conventional analytical placement usually handles them sub-optimally
[43]. For designs with many embedded datapaths, it is critical to extract and place
them appropriately for high quality placement [5, 44, 48].

An example in which modern placers fail to handle datapaths effectively is shown
in Fig. 4.13 [44, 58]. Figure 4.13a sketches a datapath circuit in which there are
three bit-stacks of cells, {2, 3, 4, 5}, {6, 7, 8, 9}, and {10, 11, 12, 13}, with fixed
I/O pins. Two placement solutions, one from a datapath-aware placer, PADE [44],
and the other from a conventional placer, Fast-Place3 [41], are shown in Fig. 4.13b,
c, respectively. PADE is able to achieve smaller StWL because it packs and aligns
each bit-stack more tightly than does Fast-Place3.

The automatic extraction of datapath is critical to eventual placement quality, in
which machine learning techniques can bring benefits. In the datapath extraction
proposed by Ward et al. [44], datapaths are evaluated with SVM and ANN
techniques and then extracted according to their importance. A combined SVM and
ANN learning approach is developed to classify datapath and non-datapath patterns
in the initial netlist for efficient modeling. SVM is able to achieve global optimal
in maximizing the separation margin, while it is susceptible to data noise. ANN, on

108 Y. Lin and D. Z. Pan

1

2 6 10
3 7 11
4 8 12
5 9 13

Fixed pins

(a)

1

2 3 4 5

6 7 8 9

10 11 12 13

Fixed pins

(b)

1

2

3 4

5

6

7 8

9

10 11 12

13

Fixed pins

(c)

Fig. 4.13 An example of datapath-aware placement (PADE) achieves a 14% improvement in
StWL compared to conventional placement (Fast-Place3) [44]. (a) Logic circuit; (b) PADE results:
total StWL= 524; (c) FastPlace3 results: total StWL= 612

GR Prediction Actual DRC

(a) (b) (c)

Fig. 4.14 (a) Routing hotspots predicted by global routing and (b) actual routing hotspots and (c)
an overlay of predicted and actual routing hotspot [2]

the other hand, is more robust to noise, but more difficult to achieve optimal training
accuracy. A pattern is considered to be datapath if and only if both the SVM model
and the ANN model output positive predictions, utilizing the advantages of SVM
and ANN.

4.4.2 Machine Learning for Routability-Driven Placement

Machine learning can also be applied to routability prediction in placement, which
is very critical to the solution quality of modern placement. This is motivated by
the gap between conventional routing congestion metrics, such as global routing
congestion and the actual detailed routing violations [1, 2]. Figure 4.14 shows an
example in which the routing hotspots reported by global routing are quite different
from those in actual detailed routing. Figure 4.15 shows a similar comparison in
which an SVM model with radius basis function (RBF) is adopted to build the
correlation between layout features and routing hotspots. The routing hotspots

4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design 109

Learning-based Prediction Actual DRC

(a) (b) (c)

Fig. 4.15 (a) Routing hotspots predicted by machine learning and (b) actual routing hotspots and
(c) an overlay of predicted and actual routing hotspot [2]

Construct hotspot
map from
prediction

Original
converged

layout

DRC
hotspot

prediction

Calculate white
space in local

windows around
hotspots

Redistribute white
space among

overlapped local
windows

Incrementally
move cells to

redistribute white
space

Re-legalize

Fig. 4.16 Routability optimization guided by routing hotspot prediction [2]

reported by machine learning models are much more consistent with the actual
routing hotspots. Various features in placement are extracted to train an accurate
routing congestion predictor, including density parameters (e.g., local pin and cell
density), global routing parameters (e.g., local overflow, demand, and capacity), pin
proximity, cells tending to result in congestion (e.g., multi-height, sequential cells),
connectivity parameters (e.g., number of nets in local windows), and structural
parameters (e.g., number and depth of fanin and fanout logic stages). Hence,
congestion prediction is very effective in placement.

Based on the routing hotspot predictor, a routability optimization algorithm is
developed to redistribute white space, as shown in Fig. 4.16. White space around
hotspots is extracted and redistributed by incrementally moving cells to improve

110 Y. Lin and D. Z. Pan

routability. Incremental legalization is needed to remove overlaps between cells.
Experimental results demonstrate an average of 20.6% and a maximum of 76.8%
reduction in the number of DRC violations with negligible degradation in wirelength
and timing [2].

4.4.3 Machine Learning for Clock Optimization

Besides placement, machine learning can also benefit the design of clock networks.
Latch optimization including clustering and placement is of significant importance
in modern VLSI designs to optimize skew and power consumption in clock
networks. Latches in one cluster share a common local clock buffer (LCB) and
are generally placed physically together [4, 17, 36]. Figure 4.17 shows that latches
are tightly clustered around LCBs, dramatically reducing the overall wirelength of
local clock trees. A learning based latch optimization methodology is proposed in
[45] with a genetic algorithm for initial latch placement and decision tree induction
for latch template matching. It is reported that 20–30% average reduction in local
clock tree capacitance is achieved in industrial designs.

Classification with decision tree predicts a target class F based on an input vector
E in which (E, F) = (e1, e2, e3, . . . , ek, F) with (1 ≤ k ≤ |E|). A decision tree
learns by recursively partitioning the source data into subsequent subsets based on
the attribute test [45]. This method has the following advantages [34]:

• no prior probability distributions are required to data;
• greedy induction approaches provide good approximation to finding an optimal

decision tree;

Fig. 4.17 Multi-GHz design
showing clustered latches,
where red cells are latches
and purple cells are local
clock buffers (LCB) [45]

4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design 111

Algorithm 2 Decision tree induction
1: function TREEBUILD(E,F)
2: if stopping_condition(E, F) = T RUE then
3: Create a new node from the leaf ;
4: Classify the leaf ;
5: Return leaf ;
6: else
7: Create a node root ;
8: Find the best split and set it equal to the root test condition;
9: Let V = the set of possible outcome test conditions of the root node;

10: for each v ∈ V do
11: Ev = training records given the root test condition;
12: child = TREEBUILD(Ev, F);
13: Add child as descendent of root and label;
14: Return root ;

• fast prediction with worse case O(ω) complexity is possible, where ω is the depth
of the tree.

The decision tree induction algorithm is mainly used for structured template
selection. This problem requires a quick decision on the best template given even an
unknown set of input requirements. In addition, the algorithm can handle categorical
variables with multiple classes and is easy to implement and maintain. The template
selection problem is a suitable application of this algorithm.

The decision tree induction algorithm is presented in Algorithm 2 [45]. When
the stopping condition is met, a new node is created with either a test condition or
a class label, and then classify and return the final decision, in line 3–5. Let V be
the set of possible class labels in node leaf . When the stopping condition is not yet
met, a new node called root is created and the best split based on specific metrics is
searched in line 7–8. For each possible label in root , line 11–13 recursively call for
evaluating a new node.

4.4.4 Machine Learning for Lithography Friendly Routing

Despite other applications, the last application of machine learning we introduce
in this chapter is to improve lithography friendliness in early stage. Lithography
hotspot mitigation in the post-routing stage lacks the flexibility and thus requires
early consideration [32]. Rule-based approaches have been developed for hotspot
correction [11, 51]. However, with learning-based hotspot prediction, hotspots can
be identified with high accuracy to guide routing effectively.

The major challenge of hotspots detection in routing lies in the requirement
of early prediction before a real routing path is obtained. A layout region with
metal blockages and unrouted pins, Pin1 to Pin4, is shown in Fig. 4.18a. Due to
the existence of unrouted nets, general hotspot detection approaches fail to work,
while potential hotspots may be caused by the routing segments from Pin1 to

112 Y. Lin and D. Z. Pan

Fig. 4.18 The challenge of hotspot detection in detailed routing [7]. (a) A layout region with metal
blockages and unrouted pins; (b) potential hotspots caused by the routing segments from Pin1 to
Pin2

Pin2, as shown in Fig. 4.18b. To tackle this problem, a pre-built hotspot prediction
model and a routing path prediction model are developed for hotspot detection in
routing [7]. The routing path prediction model explores possible routing solutions
with given available routing resources and identify preferable routes according to
routing congestion and hotspots predicted by the hotspot prediction model. Due
to complexity of data, ANN is adopted as the classifier. The techniques report an
average of 50% reduction on lithography hotspots with 18–30% runtime overhead
compared with existing lithography friendly routing works.

4.5 Conclusions

Machine learning has demonstrated promising benefits to various key steps in the
VLSI backend design flow. This chapter surveys several critical issues in physical
verification, mask synthesis, and physical design, such as hotspot detection, SRAF
generation, OPC, placement, and routing optimization. There is also a tremendous
ongoing research in this area to develop effective and efficient techniques based on
machine learning. This will enable fast closure of the backend design flow as well as
increasing the quality of backend synthesis solutions such that timing, power, area,
and yield can be eventually improved.

In addition, backend VLSI design is still at its early stage in applying machine
learning techniques. For example, in the SRAF generation, pixel-by-pixel prediction
is required and only linear models are used, limiting the application of more
complicated models due to high computational expense. Similarly, OPC is only
affordable to adopt linear models as well. Such kind of optimization problems
essentially need to generate a new mask image with a given layout image. It is
worth exploring whether generative learning techniques can be applied [13]. For
placement and routing problems, manual selection of important features is still
required, while it is not clear whether general representation of layout information
exists and whether automatic feature selection can be developed. Furthermore,

4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design 113

unlike fields with extensive research on machine learning like image recognition
in which large amount of data is available, it is generally difficult and expensive
to obtain enough data in VLSI design for training robust and accurate models.
Therefore, it is critical to develop techniques to improve modeling accuracy with
relaxed requirement of big data so that machine learning can be widely adopted. All
these challenges remain to be explored in the future.

References

1. W.T.J. Chan, Y. Du, A.B. Kahng, S. Nath, K. Samadi, Beol stack-aware routability prediction
from placement using data mining techniques, in IEEE International Conference on Computer
Design (ICCD) (2016), pp. 41–48

2. W.T.J. Chan, P.H. Ho, A.B. Kahng, P. Saxena, Routability optimization for industrial designs
at sub-14nm process nodes using machine learning, in ACM International Symposium on
Physical Design (ISPD) (2017), pp. 15–21

3. C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines. ACM Trans. Intell.
Syst. Technol. 2, 27:1–27:27 (2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm

4. M. Cho, H. Xiang, H. Ren, M.M. Ziegler, R. Puri, LatchPlanner: latch placement algorithm for
datapath-oriented high-performance VLSI designs, in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) (2013), pp. 342–348

5. S. Chou, M.K. Hsu, Y.W. Chang, Structure-aware placement for datapath-intensive circuit
designs, in ACM/IEEE Design Automation Conference (DAC) (2012), pp. 762–767

6. S. Chowdhury, Analytical approaches to the combinatorial optimization in linear placement
problems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 8(6), 630–639 (1989)

7. D. Ding, J.R. Gao, K. Yuan, D.Z. Pan, AENEID: a generic lithography-friendly detailed router
based on post-RET data learning and hotspot detection, in ACM/IEEE Design Automation
Conference (DAC) (2011), pp. 795–800

8. D. Ding, J.A. Torres, D.Z. Pan, High performance lithography hotspot detection with succes-
sively refined pattern identifications and machine learning. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 30(11), 1621–1634 (2011)

9. D. Ding, B. Yu, J. Ghosh, D.Z. Pan, Epic: efficient prediction of IC manufacturing hotspots
with a unified meta-classification formulation, in IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC) (2012), pp. 263–270

10. R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, C.J. Lin, LIBLINEAR: a library for large linear
classification. J. Mach. Learn. Res. 9(Aug), 1871–1874 (2008)

11. J.R. Gao, H. Jawandha, P. Atkar, A. Walimbe, B. Baidya, O. Rizzo, D.Z. Pan, Self-aligned
double patterning compliant routing with in-design physical verification flow, in Proceedings
of SPIE, vol. 8684 (2013), p. 868408

12. J.R. Gao, B. Yu, D.Z. Pan, Accurate lithography hotspot detection based on PCA-SVM
classifier with hierarchical data clustering, in Proceedings of SPIE, vol. 9053 (2014), p. 90530E

13. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
Y. Bengio, Generative adversarial nets, in Advances in Neural Information Processing Systems
(2014), pp. 2672–2680

14. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT press, Cambridge, 2016)
15. A. Gu, A. Zakhor, Optical proximity correction with linear regression. IEEE Trans. Semicond.

Manuf. 21(2), 263–271 (2008)
16. T. Hastie, R. Tibshirani, J. Friedman, J. Franklin, The elements of statistical learning: data

mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005)
17. S. Held, U. Schorr, Post-routing latch optimization for timing closure, in ACM/IEEE Design

Automation Conference (DAC) (2014), pp. 7:1–7:6

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

114 Y. Lin and D. Z. Pan

18. N. Jia, E.Y. Lam, Machine learning for inverse lithography: using stochastic gradient descent
for robust photomask synthesis. J. Opt. 12(4), 045601:1–045601:9 (2010)

19. J.H. Jun, M. Park, C. Park, H. Yang, D. Yim, M. Do, D. Lee, T. Kim, J. Choi, G. Luk-Pat,
et al.: Layout optimization with assist features placement by model based rule tables for 2x
node random contact, in Proceedings of SPIE (2015), p. 94270D

20. A.B. Kahng, C.H. Park, X. Xu, Fast dual graph based hotspot detection, in Proceedings of
SPIE, vol. 6349 (2016), p. 63490H

21. B.S. Kim, Y.H. Kim, S.H. Lee, S.I. Kim, S.R. Ha, J. Kim, A. Tritchkov, Pixel-based SRAF
implementation for 32nm lithography process, in Proceedings of SPIE (2008), p. 71220T

22. C. Kodama, T. Kotani, S. Nojima, S. Mimotogi, Sub-resolution assist feature arranging method
and computer program product and manufacturing method of semiconductor device (2014). US
Patent 8809072

23. S.Y. Lin, J.Y. Chen, J.C. Li, W.y. Wen, S.C. Chang, A novel fuzzy matching model for
lithography hotspot detection, in ACM/IEEE Design Automation Conference (DAC) (2013),
pp. 1–6

24. Y. Lin, X. Xu, J. Ou, D.Z. Pan, Machine learning for mask/wafer hotspot detection and
mask synthesis, in Photomask Technology, vol. 10451 (International Society for Optics and
Photonics, Bellingham, 2017), p. 104510A

25. Y. Lin, Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima, M. Li, D.Z. Pan, Data efficient
lithography modeling with residual neural networks and transfer learning, in ACM Interna-
tional Symposium on Physical Design (ISPD) (2018), pp. 82–89

26. R. Luo, Optical proximity correction using a multilayer perceptron neural network. J. Opt.
15(7), 075708 (2013)

27. K.S. Luo, Z. Shi, X.L. Yan, Z. Geng, SVM based layout retargeting for fast and regularized
inverse lithography. J. Zhejiang Univ. Sci. C 15(5), 390–400 (2014)

28. T. Matsunawa, J.R. Gao, B. Yu, D.Z. Pan, A new lithography hotspot detection framework
based on AdaBoost classifier and simplified feature extraction, in Proceedings of SPIE,
vol. 9427 (2015)

29. T. Matsunawa, B. Yu, D.Z. Pan, Optical proximity correction with hierarchical Bayes model,
in Proceedings of SPIE, vol. 9426 (2015)

30. T. Matsunawa, S. Nojima, T. Kotani, Automatic layout feature extraction for lithography
hotspot detection based on deep neural network, in Proceedings of SPIE (2016)

31. T. Matsunawa, B. Yu, D.Z. Pan, Optical proximity correction with hierarchical Bayes model.
J. Micro/Nanolithogr. MEMS MOEMS 15(2), 021009 (2016)

32. J. Mitra, P. Yu, D.Z. Pan, RADAR: RET-aware detailed routing using fast lithography
simulations, in ACM/IEEE Design Automation Conference (DAC), pp. 369–372 (2005)

33. S. Miyama, K. Yamamoto, K. Koyama, Large-area optical proximity correction with a
combination of rule-based and simulation-based methods. Jpn. J. Appl. Phys. 35(12S), 6370
(1996)

34. M.J. Moshkov, Time complexity of decision trees, in Transactions on Rough Sets III (Springer,
Berlin, 2005), pp. 244–459

35. L. Pang, Y. Liu, D. Abrams, Inverse lithography technology (ILT): a natural solution for model-
based SRAF at 45nm and 32nm, in Proceedings of SPIE, p. 660739 (2007)

36. D. Papa, C. Alpert, C. Sze, Z. Li, N. Viswanathan, G.J. Nam, I.L. Markov, Physical synthesis
with clock-network optimization for large systems on chips. IEEE Micro 31(4), 51–62 (2011)

37. Y. Ping, S. McGowan, Y. Gong, Y.M. Foong, J. Liu, J. Qiu, V. Shu, B. Yan, J. Ye, P. Li,
et al.: Process window enhancement using advanced ret techniques for 20nm contact layer, in
Proceedings of SPIE, p. 90521N (2014)

38. K. Sakajiri, A. Tritchkov, Y. Granik, Model-based SRAF insertion through pixel-based mask
optimization at 32nm and beyond, in Proceedings of SPIE, p. 702811 (2008)

39. S.D. Shang, L.Swallow, Y. Granik, Model-based SRAF insertion (2011). US Patent 8037429
40. M. Shin, J.H. Lee, Accurate lithography hotspot detection using deep convolutional neural

networks. J. Micro/Nanolithogr. MEMS MOEMS 15(4), 043507 (2016)

4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design 115

41. N. Viswanathan, M. Pan, C. Chu, FastPlace 3.0: a fast multilevel quadratic placement algorithm
with placement congestion control, in IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC) (2007), pp. 135–140

42. R. Viswanathan, J.T. Azpiroz, P. Selvam, Process optimization through model based SRAF
printing prediction, in Proceedings of SPIE (2012), p. 83261A

43. S.I. Ward, D.A. Papa, Z. Li, C.N. Sze, C.J. Alpert, E. Swartzlander, Quantifying academic
placer performance on custom designs, in ACM International Symposium on Physical Design
(ISPD) (2011), pp. 91–98

44. S. Ward, D. Ding, D.Z. Pan, PADE: a high-performance placer with automatic datapath
extraction and evaluation through high dimensional data learning, in ACM/IEEE Design
Automation Conference (DAC) (2012), pp. 756–761

45. S.I. Ward, N. Viswanathan, N.Y. Zhou, C.C. Sze, Z. Li, C.J. Alpert, D.Z. Pan, Clock power
minimization using structured latch templates and decision tree induction, in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD) (2013), pp. 599–606

46. Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima, Accurate lithography simulation model
based on convolutional neural networks, in Proceedings of SPIE, vol. 10147 (2017),
p. 101470K

47. W.Y. Wen, J.C. Li, S.Y. Lin, J.Y. Chen, S.C. Chang, A fuzzy-matching model with grid
reduction for lithography hotspot detection. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 33(11), 1671–1680 (2014)

48. H. Xiang, M. Cho, H. Ren, M. Ziegler, R. Puri, Network flow based datapath bit slicing, in
ACM International Symposium on Physical Design (ISPD) (2013), pp. 139–146

49. X. Xu, T. Matsunawa, S. Nojima, C. Kodama, T. Kotani, D.Z. Pan, A machine learning based
framework for sub-resolution assist feature generation, in ACM International Symposium on
Physical Design (ISPD) (2016), pp. 161–168

50. X. Xu, Y. Lin, M. Li, T. Matsunawa, S. Nojima, C. Kodama, T. Kotani, D.Z. Pan, Sub-
resolution assist feature generation with supervised data learning. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 37(6), 1225–1236 (2018)

51. J. Yang, N. Rodriguez, O. Omedes, F. Gennari, Y.C. Lai, V. Mankad, DRCPlus in a router:
automatic elimination of lithography hotspots using 2D pattern detection and correction. Proc.
SPIE 7641, 76410Q (2010)

52. H. Yang, Y. Lin, B. Yu, F.E. Young, Lithography hotspot detection: from shallow to deep
learning, in IEEE International System-on-Chip Conference (SOCC) (2017), pp. 233–238

53. H. Yang, L. Luo, J. Su, C. Lin, B. Yu, Imbalance aware lithography hotspot detection: a deep
learning approach. Proc. SPIE 16(3), 033504 (2017)

54. H. Yang, J. Su, Y. Zou, B. Yu, F.E. Young, Layout hotspot detection with feature tensor
generation and deep biased learning, in ACM/IEEE Design Automation Conference (DAC)
(2017), p. 62

55. J. Ye, Y. Cao, H. Feng, System and method for model-based sub-resolution assist feature
generation (2011). US Patent 7882480

56. Y.T. Yu, Y.C. Chan, S. Sinha, I.H.R. Jiang, C. Chiang, Accurate process-hotspot detection using
critical design rule extraction, in ACM/IEEE Design Automation Conference (DAC) (2012),
pp. 1167–1172

57. Y.T. Yu, G.H. Lin, I.H.R. Jiang, C. Chiang, Machine learning based hotspot detection using
topological classification and critical feature extraction, in ACM/IEEE Design Automation
Conference (DAC) (2013), p. 67

58. B. Yu, D.Z. Pan, T. Matsunawa, X. Zeng, Machine learning and pattern matching in physical
design, in IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC)
(2015), pp. 286–293

59. H. Zhang, B. Yu, Y.F. Evangeline, Enabling online learning in lithography hotspot detection
with information-theoretic feature optimization, in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) (2016), p. 47

60. H. Zhang, F. Zhu, H. Li, F.E. Young, B. Yu, Bilinear lithography hotspot detection, in ACM
International Symposium on Physical Design (ISPD) (2017), pp. 7–14

Part II
Machine Learning for Manufacturing,

Yield, and Reliability

The Committee expressed their confident opinion of the
adequacy of the machinery to work under all the friction and
strain to which it can be exposed; of its durability, strength,
solidity, and equilibrium; of the prevention of, or compensation
for, wear by friction; of the accuracy of the various adjustments;
and of the judgment and discretion displayed by the inventor, in
his determination to admit into the mechanism nothing but the
very best and most finished workmanship; as a contrary course
would have been false economy, and might have led to the loss
of the whole capital expended on it.

Charles Babbage

Chapter 5
Gaussian Process-Based Wafer-Level
Correlation Modeling and Its
Applications

Constantinos Xanthopoulos, Ke Huang, Ali Ahmadi, Nathan Kupp,
John Carulli, Amit Nahar, Bob Orr, Michael Pass, and Yiorgos Makris

5.1 Introduction

As the complexity of modern integrated circuits (ICs) increases and the feature
sizes continue to shrink, undesirable process variations are becoming more and
more challenging for semiconductor manufacturers. These variations often result
in marginalities or even failures, impacting both quality and yield. Therefore,
understanding, monitoring, and minimizing these variations is critical for ensuring
the production of modern semiconductor devices. In order to understand how
process variations affect the performance and functionality of each manufactured
device, several types of tests are performed after fabrication. In this chapter, we
focus on the tests that are performed at the wafer level, which are usually categorized
into two major types.

C. Xanthopoulos · A. Ahmadi · Y. Makris (�)
The University of Texas at Dallas, Richardson, TX, USA
e-mail: constantinos.xanthopoulos@utdallas.edu; ali.ahmadi@utdallas.edu;
yiorgos.makris@utdallas.edu

K. Huang
San Diego State University, San Diego, CA, USA
e-mail: khuang@mail.sdsu.edu

N. Kupp
Yale University, New Haven, CT, USA

J. Carulli
GLOBALFOUNDRIES, Malta, NY, USA
e-mail: john.carulli@globalfoundries.com

A. Nahar · B. Orr · M. Pass
Texas Instruments, Dallas, TX, USA
e-mail: a-nahar2@ti.com; borr@ti.com; m-pas@ti.com

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_5

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_5&domain=pdf
mailto:constantinos.xanthopoulos@utdallas.edu
mailto:ali.ahmadi@utdallas.edu
mailto:yiorgos.makris@utdallas.edu
mailto:khuang@mail.sdsu.edu
mailto:john.carulli@globalfoundries.com
mailto:a-nahar2@ti.com
mailto:borr@ti.com
mailto:m-pas@ti.com
https://doi.org/10.1007/978-3-030-04666-8_5

120 C. Xanthopoulos et al.

5.1.1 Types of Wafer-Level Test Measurements

The first type of tests utilizes e-test measurements, also known as inline or kerf
measurements. E-test measurements provide a signature that indicates the wafer’s
position in the process space and can be used as a measure of health for each
wafer under inspection. These e-test measurements are performed on simple circuit
components located across the surface of each wafer. To optimize wafer area
efficiency, these structures are typically constructed in the wafer scribe lines which
are destroyed during wafer dicing. Collecting e-test measurements from the scribe
lines adjacent to every die would be prohibitively time-consuming. As a result, there
are generally only a handful of e-test sites measured on a wafer which can have
hundreds or thousands of die. In rare cases, when a high spatial sampling frequency
is necessary, e-test structures are placed inside each die, allowing for a more detailed
representation of the wafer’s health at the expense of longer test times.

The second type of tests performed at the wafer level is commonly referred
to as specification tests. During these tests, the performances of every fabricated
circuit are checked against its design specification, in order to capture devices that
do not function properly due to random manufacturing defects or due to the effects
of extreme process variations. Specification testing consumes the majority of time
spent across all testing processes, yet at the same time, it identifies the bulk of failing
devices. After this stage, the wafers are sliced, the passing die get packaged and
functionally tested one last time, in a stage called final test, to make sure that the
process of packaging did not severely affect them.

Current test flows and modern automated test equipment (ATE) allow the
mapping of a sliced and packaged die back to its corresponding wafer location,
through tracking of the unique die and wafer IDs. Despite this capability, the full
wafer signature of final tests cannot be constructed due to the missing die locations
that did not pass the previous stage. Moreover, since packaging can affect each
sliced die in a non-systematic way, any wafer-level analysis based on final test
measurements could be severely skewed and thus ineffective. For these reasons, in
this chapter, we only focus on the kerf and specification test measurements, which
provide abundant information for analyzing the wafer-level variation.

5.1.2 Wafer-Level Statistical Correlations

By univariately analyzing the variation of the measurements for each test performed
at the wafer level, we can adequately identify the majority of failing devices. This is
currently the de facto testing strategy, in which every measurement is compared
against known specification limits. This comparison determines the pass or fail
decision for every device under test (DUT). While these strategies have proven
successful, they can be improved by employing wafer-level correlation models,
resulting in increased testing accuracy as well as the reduction of test time. There

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 121

are multiple such correlations that we can exploit to achieve this. These correlations
may be spatial, between different die on the same wafer, temporal, between the
same die locations on different wafers, or both. Additionally, these correlations
may include e-tests variables, specification tests variables, or both. In recent years,
several statistical methodologies have been proposed that utilize such correlations.
These studies sought to reduce the number of specification tests required (i.e.,
test compaction) [7, 8], optimize the test flow at wafer-level optimization [2, 3],
introduce new alternative tests [5, 31, 32], or build machine learning models to learn
classification boundaries separating passing and failing populations of devices in a
multidimensional space of low-cost measurements [26, 28].

All these studies take advantage of the statistical correlations between tests at
wafer-level, but not the spatiotemporal correlations that are common for many e-
test and probe measurements. Spatial correlation refers to the relationship a test
measurement exhibits according to the location, on the surface of the wafer, of
the site that is being tested, and its proximity to other sites. These correlations
exist due to the fact that proximate locations on a wafer have very similar
physical properties, as they have been similarly influenced by the same series
of manufacturing steps. Likewise, temporal correlation refers to the relationship
between consecutively manufactured wafers, as they have been affected by very
similar process characteristics. A manufacturing lot is a set of wafers that have been
sourced from subsequent slices of the same silicon ingot and have gone through all
fabrication steps as a unit. Due to this, temporal correlations between wafers within
a lot are usually powerful, though such correlation is less evident across lots.

Using these wafer-level spatial correlations, we can predict measurements at
unobserved die locations, allowing us to collect wafer measurements from only a
sparse subset of die. The sampling rate conversely affects the error of the predictions
and the test time (cost). Figure 5.1 depicts an overview of the spatial interpolation
methodology that we will be discussing in this chapter. As shown in Fig. 5.1, the
statistical model is trained using sampled measurements across the surface of the
wafer and it predicts the measurements for the remaining locations of the wafer. As

Fig. 5.1 Overview of wafer measurement spatial interpolation

122 C. Xanthopoulos et al.

it is expected for any kind of prediction, there is an error associated with it and this is
represented by the deviation from the 45-degree diagonal in the actual-vs-predicted
graph.

Figure 5.2 shows the trade-off curve between the two key metrics, where 100%
test coverage reflects the commonly applied approach where all wafer sites are
measured. At the other extreme, 0% test coverage reflects a static model that has
no knowledge of the wafer under test. Test cost in the first case would be maximal,
while in the second case the prediction error is maximized. By tuning the sampling
rate, we can dramatically reduce test cost while incurring minimal test error. After
determining the optimal sampling rate, depending on the application, one can utilize
the wafer-level spatiotemporal correlation to achieve various goals.

The benefit of spatial and spatiotemporal correlation models is threefold: First,
sparse wafer-level e-test measurements can be accurately extrapolated to every die
location, which enables us to efficiently monitor process variations based only on
a handful of explicitly measured e-test sites. Second, the use of spatial correlation
modeling can significantly reduce the test cost of analog/RF circuits, by measuring
performances on a sparse subset of die on each wafer and, subsequently, using
spatial correlation models to predict the performance values at unobserved die
locations. Third, the HVM yield of a device can be predicted from measurements
obtained on a sample of die from a small set of wafers available in early production.
This description resembles the typical problem faced in post-silicon validation,
where the performance distribution of HVM devices needs to be extrapolated from
a few sample die obtained from a few engineering wafers produced over the period
of a few months.

Several techniques that exploit wafer-level spatial correlations have been pro-
posed. In [23], the expectation-maximization (EM) algorithm is used to estimate
spatial wafer measurements, assuming that data comes from a multivariate normal
distribution. The Box-Cox transformation is used in case data is not normally dis-
tributed. The “virtual probe” (VP) approach [10, 34–36] models spatial variation via
a discrete cosine transform (DCT) that projects spatial statistics into the frequency

Fig. 5.2 Trade-off between
test cost and test error

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 123

domain. In this chapter, we focus on the Gaussian process (GP) regression-based
modeling, which is a method of interpolation often used in geo-statistics and spatial
analysis. The author of [18] lays the groundwork for applying Gaussian process
(GP) models to spatial interpolation of semiconductor data based on generalized
least square fitting and a structured correlation function. As recently shown in
[16, 17], using such GP models can dramatically improve both prediction accuracy
and computational time, as compared to the previous state-of-the-art modeling
techniques.

5.2 Gaussian Process-Based Regression Models

In this section, we articulate the theoretical underpinnings of Gaussian process
models as well as the various enhancements for modeling spatial variation of wafer-
level measurements. GP modeling [22] is a regression methodology that enables the
learning of functions over Gaussian random fields based on sampled data. Such a
regression approach is well suited for spatial modeling of semiconductor test data,
as it is incredibly flexible in modeling data and imposes none of the traditional a
priori assumptions about the underlying form of the generative function that tend to
bias ordinary linear regression models.

Gaussian process models originate from the union of Bayesian statistics and the
kernel theory of support vector machines [24, 29, 30]. The fundamental concept of
Gaussian processes is to model function outputs as drawn from a prior distribution
with a fixed mean and a kernel-based covariance function. In this section, we
outline the theoretical basis for GP models and subsequently explain the Gaussian
process model-based methodology for learning from semiconductor test data, and,
more specifically, extrapolating wafer-level measurements that are sparsely sampled
across a wafer.

We begin this discussion of GP model theory by considering the monolithic
linear regression formulation t = f (x) + ε, where x is the d-dimensional input
vector, t is the output target value, f (x) = x�w, and ε represents independent
and identically distributed (i.i.d.) additive noise. In the traditional formulation, w is
a vector of weights associated with each dimension of x. This means that, in the
case of normalized data, large values of w correspond to more “important” features
in the model, when the features being used have being previously standardized.
Prescribing a model form that is linear in the parameters will reduce model variance
at the expense of introducing higher bias. As a result, linear models perform well
when the true generative function happens to be linear, but this is often not the
case. In cases where the high bias of linear regression is inappropriate, we seek an
alternative bias-variance trade-off, one that is proffered by GP models.

With Gaussian processes, we do not presume the generative function f (x) is of
linear form in the original feature space, as shown by the one-dimensional input
space curve on the left side of Fig. 5.3. Instead, we define a Gaussian process as
a collection of random variables f (x) indexed by coordinates x, such that every

124 C. Xanthopoulos et al.

Feature SpaceInput Space

Fig. 5.3 Overview of Gaussian process modeling

finite set of n function evaluations {f (x1), f (x2), . . . , f (xn)} over the coordinates
is jointly Gaussian distributed. To derive a GP model for regression, we first consider
a noise-free linear model, shown by the right side of Fig. 5.3, which has the form:

t = f (x) = φ(x)�wf (5.1)

where φ(x) is a function of the inputs mapping the input columns into some high-
dimensional feature space, shown by the bottom plane on the right side of Fig. 5.3,
and wf is the weight vector associated with φ(x) in the feature space. For example,
a scalar input x could be projected into the feature space: φ(x) = (1, x, x2)�.
We assign a Bayesian prior on the weights such that wf ∼ N (0,Σp). As the
realizations of the Gaussian process at points {f (x1), f (x2), . . . , f (xn)} are jointly
Gaussian, we can fully specify the Gaussian process with mean and covariance
functions:

E[f (x)] = φ(x)�E[wf] = 0, (5.2)

cov
(
f (x), f (x′)

) = E[f (x)f (x′)]
= φ(x)�E[wfw�f]φ(x′)
= φ(x)�Σpφ(x′) (5.3)

5.2.1 Modeling Covariance with Kernel Functions

Recall that our ultimate goal of building a Gaussian process-based regression model
is to somehow capture spatial variation in t as a function of the coordinates x. The

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 125

following discussion demonstrates how we can accomplish this task by modeling
our data as drawn from a process with a covariance function that depends on
spatial location. By taking this approach, proximal data points are modeled as being
highly covariant, and distant points are modeled with low covariance. This property
codifies our intuition and a priori knowledge of the domain; we expect the variation
of test measurements to strongly correlate to the wafer coordinates of the tested
sites.

Consider the covariance function specified in (5.3). Now, since covariance
matrices are by definition positive semi-definite (see proof in the section “Appendix
1: Proof of Positive Semi-Definite for Covariance Matrix”), we can redefine Σp as

(Σ
1/2
p)2 and rewrite (5.3) as:

cov
(
f (x), f (x′)

) = φ(x)�Σpφ(x′)
= φ(x)�(Σ1/2

p)�Σ1/2
p φ(x′) (5.4)

We now introduce the parameter ψ(x) by defining ψ(x) = Σ
1/2
p φ(x) and

subsequently rewrite the covariance of (5.3) as:

cov
(
f (x), f (x′)

) = φ(x)�(Σ1/2
p)�Σ1/2

p φ(x′)

= 〈ψ(x), ψ(x′)〉 (5.5)

Crucially, this covariance function is formed as an inner product, permitting us to
express (5.5) as a kernel function [4]: cov

(
f (x), f (x′)

) = k(x, x′). In other words,
the covariance between any outputs can be written as a function of the inputs using
the kernel function without needing to explicitly compute φ(x). Thus, we use the
terms covariance function and kernel function interchangeably in this paper. Many
kernel functions exist, and any function k(·, ·) that satisfies Mercer’s condition [29]
is a valid kernel function. However, only a handful of kernels are commonly used.
For example, one can use the squared exponential, also known as the radial basis
function kernel:

k(x, x′) = exp

(
− 1

2l2
|x− x′|2

)
(5.6)

where l is some characteristic length scale of the squared exponential kernel.
Employing this kernel is equivalent to training a linear regression model with an
infinite-dimensional feature space. Substituting our squared exponential covariance
function into the definition of the Gaussian process, we arrive at a Gaussian process
formulation as:

t = f (x) ∼ GP(0, k(x, x′)) (5.7)

126 C. Xanthopoulos et al.

The following section describes how to employ this process to derive predictive
distributions as well as how to manage the inclusion of additive noise in the model.

5.2.2 Training and Prediction

Suppose that we are provided a training set of n data points X = {x1, x2, . . . , xn}�
observed in a d-dimensional space, e.g., each vector in X is xi = {x1, x2, . . . , xd},
therefore X is an n × d matrix of inputs. With these input points, we are also
given a set of predictive targets, t = {t1, t2, . . . , tn}�. Now, we wish to model the
observed data as a noise-free Gaussian process and define, as before, y = f (x) ∼
GP(0, k(x, x′)).

To derive the predictive distribution of this Gaussian process, we first write the
joint distribution of the training set targets and a new test function value as:

[
t
f∗

]
∼ N

⎛
⎝0,

[
K k∗
k�∗ k(x∗, x∗)

]⎞⎠ (5.8)

where x∗ is a location we wish to extrapolate to, and where we have defined
K = K(X,X′) as the matrix of the kernel function k(x, x′) evaluated at all pairs
of training locations. We have also defined k∗ = K(X, x∗) as the column vector of
kernel evaluations between the test point and the entire set of training points, and
lastly, k(x∗, x∗) as the variance of the test function value at the observation point
x∗. With this distribution, we can condition the test function value on the observed
data to obtain the predictive distribution (see derivation in the section “Appendix 2:
Marginal and Conditional Distribution of Multivariate Normal Distribution”):

f∗|X, t, x∗ ∼ N (k�∗ K−1t, k(x∗, x∗)− k�∗ K−1k∗) (5.9)

In this work, we primarily concern ourselves with point predictions, and so we
use simply the distribution mean f̄∗ = k�∗ K−1t to generate a point prediction from
the predictive distribution. This corresponds to decision-theoretic risk minimization
[13, 29, 30] using a squared-loss function.

5.2.3 Regularization

To avoid overfitting, a technique known as regularization [13] is often employed
in decision-theoretic empirical risk minimization. In a traditional linear regression
model, regularization typically involves penalizing the L1 or L2 norm of the model
coefficient estimates β̂ to ensure that the “slope” of the model is not too large. This
ensures that extrapolative predictions are not too extreme.

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 127

GP models handle regularization somewhat differently. Instead of penalizing
coefficients, we consider our predictive targets t = {t ′1, t ′2, . . . , t ′n} as affected by
additive noise such that t ′i = ti + ε, where we make the usual i.i.d. assumptions
about the additive noise, ε ∼ N (0, σ 2

n). To incorporate this into our GP model, we
update (5.7) to model additive noise in the observations:

y = f (x)+ ε ∼ GP(0, k(x, x′)+ σ 2
n δx,x′) (5.10)

where δx,x′ is the Kronecker delta function. This, in turn, affects the joint distribution
of (5.8):

[
t
f∗

]
∼ N

⎛
⎝0,

[
K + σ 2

n I k∗
k�∗ k(x∗, x∗)

]⎞⎠ (5.11)

as well as the predictive distribution:

f∗|X, t, x∗ ∼ N (k�∗ (K + σ 2
n I)

−1t, k(x∗, x∗)− k�∗ (K + σ 2
n I)

−1k∗) (5.12)

resulting in a point prediction for new observations of f̄∗ = k�∗ (K + σ 2
n I)

−1t.
This constrains the fitted model to avoid extreme predictions. For example,

consider the univariate fit of Fig. 5.4, shown with four monotonically increasing
noise parameters σ 2

n = {0, 0.0001, 0.01, 0.5}. The blue line is the fitted model, the
red dots are the training data, and the dotted red line is the true generative function.
As this noise parameter increases, the model gradually flattens, and for very large
σ 2
n , approaches a constant fit. Applying a model with a σ 2

n = 0 is equivalent to the
hypothesis that our observations are noise free. Therefore, employing a nonzero σ 2

n

captures our intuition that real-world data measurements are affected by noise, and
that we should not expect to fit a model exactly through each observed data point.
As will be shown later, this parameter can be elegantly learned during the model
selection and parameter adaptation phase of GP training.

In Fig. 5.5, we show the effects of incorporating additive noise on example wafer
data, with σ 2

n = {0, 0.00001, 0.01, 0.1}. As can be seen from the figure, modeling
observations as noise free leads to extreme variation in the model as it fits the
response surface exactly through each point observation; relaxing this constraint
leads to smoother response surfaces.

5.2.4 Modeling Radial Variation

In semiconductor manufacturing, many operations include the rotation of the wafers
which leads to a radially shaped variation on several wafer measurements. Such
radial variation can be modeled efficiently by incorporating the radius feature to
the input vector x during training of GP model, which is achieved by updating the

128 C. Xanthopoulos et al.

Regularization: 0

Regularization: 0.01 Regularization: 0.5

–10

–5

0

0 2 4
x x

6 8 10

0 2 4
x

6 8 10 0 2 4
x

6 8 10

0 2 4 6 8 10

5

10

15

20

–10

–5

0

5

10

15

20

–10

–5

0

5

10

15

20

–10

–5

0

5

10

15

20
Regularization: 0.0001

Fig. 5.4 Effects of the regularization parameter when learning from training data

Cartesian coordinates from x = [x, y] to include a radius r = √
x2 + y2: x =

[x, y, r].
Now, applying the Gaussian process regression model over this space will result

in a model that takes radial variation patterns into account. In Fig. 5.6, we show the
impact on the prediction outcomes.

5.2.5 Model Selection and Adaptation of Hyperparameters

In Sect. 5.2.1, we have shown the training of GP models with a fixed covariance
(kernel) function, which is a squared exponential kernel specified in (8) with fixed
characteristic length scale value l. However, in many practical applications the
default kernel function, as well as the default hyperparameters, is not appropriate
for the particular case study. While some properties such as stationarity of kernel
function may be easy to determine from the context, we typically have only rather
vague information about other properties, such as the value of length scale parameter
l and regularization parameter σ 2

n . Thus, it is very important to automatically
adapt GP models to fit each particular application. In this section, we introduce a

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 129

Fig. 5.5 Effects of the regularization parameter when modeling wafer variation

Without Radius With Radius

Fig. 5.6 Radial modeling

method that addresses the model selection and adaptation of hyperparameters in GP
modeling.

In Sect. 5.2.3, we discussed the impact of the regularization parameter on the
spatial model. In order to illustrate the impact that other hyperparameters have on
the predictive function, we first use the squared exponential kernel function, as
specified in (5.6). In this function, the characteristic length scale parameter l is a

130 C. Xanthopoulos et al.

0 1
0

1

C
ov

ar
ia

nc
e,

 k
(x

, x
’)

Input distance, |x - x’| 0 1
-1.5

2.5

O
ut

pu
t,

f(x
)

Input, x

(a) (b)

Fig. 5.7 Using different values of characteristic length scale l in squared exponential kernel
function, we plot (a) covariance function value as a function of |x− x′|, and (b) generative output
as a function of one-dimensional input x

free parameter that can be controlled in the learning phase of GP models. Figure 5.7a
illustrates the covariance function value as a function of the distance between any
two points in the input parameter space |x − x′|, for different values of l. Note that
the covariance function value remains the same for a fixed distance value, regardless
of the individual input values x and x′. This is named kernel stationarity property
and allows us to draw the kernel function as a function of the distance. As can be
observed in Fig. 5.7a, as the value of l increases, the covariance function tends to be
smoother, which will in turn affect the predictive output. This observation is justified
by Fig. 5.7b, where we plot the predictive output as a function of one-dimensional
input for different values of l. It can be observed in Fig. 5.7b that the predictive
function is smoother as l increases and is very abrupt with l = 0.1.

The choice of kernel function is also a crucial ingredient in GP models, as it
encodes our assumptions about the function which we wish to learn. As shown
in Sect. 5.2.1, any arbitrary function of input pairs x and x′ will not always be a
valid kernel function, since it must be positive semi-definite and satisfy Mercer’s
condition [29]. In order to illustrate the impact of different kernel functions on
the predictive outcomes, we plot the set of kernel functions in Fig. 5.8a–c, namely
squared exponential (SE), absolute exponential (AE), linear (LI), and polynomial
(POLY). A list of common kernel functions can be found in the section “Appendix
3: Summary of Commonly Used Kernel Functions.” Note that LI and POLY kernel
functions are plotted in 3-D space as a function of x and x′, since these are
nonstationary kernel functions. As can be observed in Fig. 5.8, the AE kernel
function has a smaller value than SE kernel when input distance is small; as a
consequence, proximal data are less correlated when building GP models using
AE kernel function. The generative output in Fig. 5.8d can further justify this
observation, where the output generated using AE is very abrupt, while SE kernel
function has a very smooth output. We also observe that the smoothness of the
output using LI and POLY kernel functions is in between that obtained using SE
and AE.

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 131

X
X’

Linear kernel
 k(X, X’)

(b)(a)
Input distance, |X - X’|

k(
X,

 X
’)

X
X’

Polynomial kernel
 k(X, X’)

(d)(c)
Input, X

O
ut

pu
t,

f (X
)

Fig. 5.8 Impact of choice of kernel function on the generative outcomes, (a) squared exponential
(SE) and absolute exponential (AE) kernel function, (b) linear (LI) kernel function, (c) polynomial
(POLY) kernel function, and (d) generative output using different kernel function

As discussed before, the choice of kernel function and hyperparameters has
a significant impact on the predictive output using GP models; thus, learning an
optimal model is crucial in building accurate spatial correlation models. In order to
effectively learn the GP models, we first consider a hierarchical model that includes
all the parameters to be optimized, as suggested by Rasmussen and Williams [22].
At the lower level, we have the hyperparameter vector θ , which can include the
length scale parameter l, regularization parameter σ 2

n , and other model parameters
[33]: θ = (l, . . . , σ 2

n). At the higher level, we have a (discrete) set of possible model
structures, i.e., kernel functions, Hi , i = 1, . . . , nk under consideration, where nk
is the number of considered kernels functions. Then, we can express the posterior
over the hyperparameter vector θ using Bayesian inference:

p(θ |t, X,Hi) = p(t|X, θ ,Hi)p(θ |Hi)

p(t|X,Hi)
(5.13)

where p(t|X, θ ,Hi) is the likelihood which can be computed using multivariate
Gaussian distribution, p(θ |Hi) is the hyper prior (the prior for the hyperparame-
ters), and p(t|X,Hi) is the normalizing constant. The prior p(θ |Hi) encodes as a

132 C. Xanthopoulos et al.

probability distribution of the parameters independently of the data. If we have only
vague prior knowledge about the parameters, then the prior distribution is chosen to
be broad to reflect this. The normalizing constant p(t|X,Hi) is given by:

p(t|X,Hi) =
∫
p(t|X, θ ,Hi)p(θ |Hi)dθ (5.14)

At the top level, we compute the posterior for the model:

p(Hi |t, X) = p(t|X,Hi)p(Hi)

p(t|X) (5.15)

where p(t|X,Hi) can be computed using multivariate Gaussian distribution as
before, p(t|X) = ∑

i p(t|X,Hi)p(Hi). The prior over model Hi is often taken
to be flat, so that a priori we do not favor one model over another.

Figure 5.9 summarizes the model selection and hyperparameter adaptation
procedure for learning optimal GP models. We propose a top-down optimization
procedure. First, we consider a hold-out set S1 of n1 samples containing input
and target data points: S1 = {(x1, t1), . . . , (xn1, tn1)}. Then, we select the j -th
model as the optimal one such that the posterior of the model specified in (5.15)
is maximized, as shown in the second block of Fig. 5.9. Note that since we have a
rather limited set of possible kernel functions in the search space, we only have to
assess explicitly the posterior of the model for each considered kernel function by
setting the corresponding hyperparameters to their nominal values.

Once the optimal kernel function is chosen, we can further tune the model by
optimizing the hyperparameter vector θ , as shown in the third block of Fig. 5.9.
The optimization consists of searching in the hyperparameter space such that the
posterior of the hyperparameter p(θ |t, X,Hi) is maximized. As shown in (5.14),
this step requires the evaluation of the integral over θ , which may not be analytically
tractable in practice. Several approximation methods can be used to compute the
integral in (5.14) such as Markov chain Monte Carlo [11]. As an approximation,

Fig. 5.9 Model selection and
hyperparameter adaptation
procedure for learning
optimal GP models

Choose a hold-out set of n1 samples
 S1 = {(t1,x1),...,(tn1,xn1)}

Select model j that maximizes p(H i|t, X):
 j = argmax p(H i|t, X)

i

Select θ that maximizes p(θ|t, X,H i):
θ = argmax p(θ|t, X,H i)

θ

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 133

one can also shy away from using the hyperparameter posterior in (5.13), and
instead maximize the likelihood p(t|X, θ ,Hi) w.r.t. the hyperparameters, θ . This
approximation is known as type II maximum likelihood (ML-II) [22]. Let t1 denote
the set of target values in the hold-out set S1, t1 = {t1, . . . , tn1}. Then, the likelihood
function can be written as:

L (θ |t1, X,Hi) = p(t1|X, θ ,Hi) (5.16)

Finally, we use the maximum-likelihood estimation (MLE) to choose an optimal
value of θ :

θ̂ = arg max
θ

(
L (θ |t1, X,Hi)

)
(5.17)

Several methods exist in order to estimate the optimal value of θ̂ . Authors in
[22] proposed a marginal likelihood gradient method by computing the partial
derivatives of the marginal likelihood w.r.t. the hyperparameter. This method
is rather computationally intensive. In this work, we propose to use simulated
annealing (SA) algorithm, which is very efficient for locating a good approximation
to the global optimum, while maintaining reasonable computational time [6, 15].
The procedure of SA algorithm is depicted in Algorithm 1.

Algorithm 1 Simulated Annealing (SA) algorithm for choosing optimal θ

1: Randomly choose θ between [θ l , θu] as initial value, where θ l /θu denotes the lower/upper
bound vector for θ . The initial value is denoted by θ0. Define the cooling schedule T (t) =
1/(et), set t = 1

2: Compute the likelihood L (θ0|t1, X,Hi)

3: Randomly choose θ t between [θ t−1 − v, θ t−1 + v], where v is a vector of small values in [θ l ,
θu]. Compute L (θ t |t1, X,Hi)

4: if L (θ t |t1, X,Hi) ≥ L (θ t−1|t1, X,Hi) then
5: Accept θ t as the new optimal value
6: else
7: The probability of accepting θ t is

8: Pt = exp
(
− (

L (θ t−1|t1, X,Hi)−L (θ t |t1, X,Hi)
)
/T (t)

)
9: Update and assign t = t + 1

10: Repeat steps 3–9, until the assignments do not change

5.2.6 Handling Discontinuous Effect in GP Modeling

While an optimal choice of kernel function and hyperparameters can greatly
improve the ability of the GP models to adapt different types of spatial patterns (e.g.,
nonlinear variation, noise-affected variation, and smooth or abrupt variation), some
essential assumptions still must hold when applying the method. Indeed, the success

134 C. Xanthopoulos et al.

(a) (b)
x-coordinatey-coordinate

Measurement

0

1

5

0

1

x-coordinatey-coordinate

Measurement

5

Fig. 5.10 Spatial wafer measurement data that (a) can be modeled efficiently by GP models and
(b) cannot be modeled efficiently by GP models

of the GP models relies on the assumption that the generative function f underlying
the spatial variation should be continuous, albeit affected by noise. This assumption
can be seen in the structure of GP models: proximal data points are modeled as being
highly covariant, and distant points are modeled with low covariance. An example
of wafer measurement data that can be modeled efficiently by GP model is shown in
Fig. 5.10a. As can be observed, despite the nonlinear behavior of the measurements,
the GP models are able to capture the spatial correlation. Similar assumptions are
made when applying the VP and EM approaches. For example, a small number of
dominant DCT coefficients at low frequencies are assumed to represent most spatial
patterns of process variations in VP models.

However, our experience with production data shows that these assumptions
may not hold for certain measurements. For example, spatial features of certain
test data on a wafer can involve localized effects such as discontinuous trends.
These localized discontinuous effects may be caused by a variety of sources with
the most prominent ones being the reticle shot and the multisite testing strategy.
The first is part of the lithography processes which produces rectangular regions
with discrete characteristics. The second refers to the parallelization of the probe
testing that aims to reduce the overall time. This multisite testing strategy leads to
systematic variations between the die tested simultaneously, due to minor variations
in the measurement mechanisms of each site. Our experience shows that, for certain
measurements and for certain periods of time, these localized discontinuous effects
(a) dominate spatial variations on the wafer and (b) are stationary, i.e., most wafers
have very similar spatial discontinuous patterns. Figure 5.10b illustrates an example
of the simulated spatial discontinuous effects on a wafer measurement.

In order to efficiently handle discontinuous effect in GP modeling, the k-means
clustering algorithm is used. A preliminary work that uses the k-means algorithm in
modeling discontinuous effects can be found in [14]. Figure 5.11 shows an overview
of the method, which consists of two main stages, namely pretraining and training.
The objective of the first stage is to partition the wafer into k clusters, which
reflect the k “levels” of wafer measurements induced by discontinuous effects.
Partitioning of the wafer is accomplished by a k-means clustering algorithm applied
on a wafer, for which all measurements for all die locations are explicitly collected.

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 135

k-means clustering

Pre-training

Cluster 1
Cluster 2

Training

)(ˆ
1 xfm =

Predict untested wafer measurements

Cluster 1 training:

Cluster 2 training:)(ˆ
2 xfm =

Fig. 5.11 Overview of proposed methodology

The left-hand side of Fig. 5.11 shows an example of k-means clustering applied
to a simulated wafer map which has 2 clusters. We note that the clusters might
be different for each measurement, yet we assume stationarity across wafers, so
identifying the clusters is a one-time effort. Furthermore, the number of wafers
needed to compute k-means clustering is typically very small.

The details of the partitioning procedure are explained as follows. Let the set:

Mi = {m1,m2, . . . , mn} (5.18)

include the values of the i-th measurement on all die of a wafer, with mj denoting
the measurement on the j -th die and n denoting the total number of die which are to

136 C. Xanthopoulos et al.

be clustered. The k-means clustering algorithm aims to partitionMi into k sets (k ≤
n): {S1, S2, . . . , Sk} so as to minimize the expected distortion D, which is defined as
the sum of squared distances between each observation and its dominating cluster
mean:

D =
∑
j

‖m̄k(j) −mj‖2 (5.19)

where m̄k(j) denotes the nearest cluster mean value for observationmj . In this work,
we use the most common iterative refinement technique to refine the choices of
cluster means in order to reduce the distortion D. The technique is presented in
detail in Algorithm 2 [19]:

Algorithm 2 k-Means clustering algorithm for discontinuous effects
1: Set k cluster means {m̄1, m̄2, . . . , m̄k} to random values.
2: Each measurement inMi is assigned to the cluster with the nearest cluster mean. The assigned
p-th cluster is denoted by Sp:

Sp = {mj : ‖mj − m̄p‖2 ≤ ‖mj − m̄q‖2,∀1 ≤ q ≤ k} (5.20)

3: Compute the new cluster means:

m̄p = 1

np

∑
mj∈Sp

mj (5.21)

where np is the number of observations in the p-th cluster.
4: Repeat steps 2 and 3 until the assignments do not change.

The question that naturally arises next concerns the choice of k, which is the
central hyperparameter in the k-means clustering algorithm. Underestimating k
would result in clusters that still contain discontinuous patterns, while overestimat-
ing k would reduce the amount of available data in each cluster during training of
spatial correlation models. The authors of [21] conducted a very comprehensive
comparative study of 30 methods for determining the number of clusters in data.
Among the variety of examined methods, the approach suggested in [9] generally
outperformed the others. This approach consists of choosing an optimal value for
k by maximizing the between-cluster dispersion and minimizing the within-cluster
dispersion. Formally, the optimal value for k is defined as [9]:

k = argmax
g

CH(g) (5.22)

where CH(g) is the Calinski and Harabasz index when g clusters are considered
and is defined as:

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 137

CH(g) = B(g)(g − 1)

W(g)(n− g) (5.23)

where n is the total number of die on the wafer, B(g) and W(g) are the between-
and within-cluster sums of squared errors computed as:

B(g) =
g∑
p=1

np(m̄p − m̄)(m̄p − m̄)T (5.24)

W(g) =
g∑
p=1

(
∑
mj∈Sp

(mj − m̄p)(mj − m̄p)T) (5.25)

where np denotes the number of samples in the p-th cluster, m̄p denotes the cluster
mean of the p-th cluster, and m̄ denotes the mean of all measurement samples in
Mi . Equation (5.22) allows us to automatically choose an optimal value for k for
a particular measurement without making any assumptions about its discontinuity
trends.

Once the k clusters are identified on the wafer for each particular measurement,
we proceed to the second stage, where we capture spatial correlation within each
cluster. In other words, we train GP models within each individual cluster as
shown on the right-hand side of Fig. 5.11. Individually training and predicting
measurements in each cluster allows us to avoid modeling spatial correlation on
an entire wafer, which can lead to erroneous spatial models due to the discontinuous
effects.

5.2.7 Progressive Sampling (GP-PS)

Selecting a sample of die locations that accurately reflect the spatial variation across
a wafer is crucial in any wafer-level spatial correlation modeling method. To date,
most methods rely on a set of randomly selected die locations. Attempts to guarantee
sufficient coverage by employing a Latin hypercube sampling approach to choose
random sample points over the entire wafer evenly have also been made [36].
Usually, the selection of the sample location on a wafer is performed once without
taking into consideration any a priori knowledge of spatial variation patterns on the
wafer. In contrast, an iterative progressive sampling approach can select the training
samples that better represent the spatial variation pattern across a wafer. To achieve
this, we leverage the ability of the GP model to provide a confidence level for all
predicted samples in each iteration. Algorithm 3 outlines the progressive sampling
approach [1].

In particular, the sampling procedure starts with n′ samples randomly chosen
from the wafer. Note that n′ is set to be significantly smaller than the total number

138 C. Xanthopoulos et al.

of samples, n, allowed in our budget for building the model. Using these samples,
we build a GP model, and we predict the values along with the prediction confidence
level at each unobserved die location. This confidence level is then used to guide our
sampling at the next iteration, towards reducing the uncertainty and improving the
accuracy of the GP model. Specifically, we identify a set of k locations for which
the predictions have the highest uncertainty and lowest confidence level, we sample
them to obtain the true values, and we then use them to augment our training sample.
Note that the selection of these k new locations also uses their Euclidean distance as
a metric, in order to distribute the new samples across many areas of low confidence.
This progressive sampling process is repeated until a stopping criterion is reached.
In Fig. 5.12, we illustrate an example of progressive sampling in 2 iterations. As can
be observed, carefully selecting a new sample in the training set can significantly
improve the accuracy of the spatial correlation model.

Algorithm 3 Progressive sampling of information-rich training locations
1: Randomly select n′ samples on the wafer as initial training set: S = {x1|t1, · · · , xn′ |tn′ }
2: Build spatial GP model using set S and predict values and confidence at unobserved die

locations (set U)
3: while until k locations are added to the training set do
4: For each xi in U , calculate di = min{|xi − xj |2,∀xj ∈ S}
5: Select location xi which has the highest variance and maximum Euclidean distance from

current training set
6: Add xi to the set S and remove it from set U and obtain corresponding true value txi
7: end
8: Augment the training set S = {S, xh1 |th1 , · · · , xhk |thk }
9: Repeat steps 2–8, until stopping criterion is reached

The stopping criterion of Algorithm 3 depends on the application and prediction
problem. There are two standard methods: (1) when the highest uncertainty of
prediction drops below a given threshold, or (2) when a given budget of samples,
n, is reached. The number of samples added in each iteration, k, is also problem-
dependent.

5.2.8 Spatiotemporal Feature Inclusion (GP-ST)

During the manufacturing process, wafers processed together, such as those within
the same lot, will exhibit similar intra-wafer spatial variation and will also exhibit
time-dependent inter-wafer variation which would be beneficial to include in our
correlation model. Thus, we extend the GP modeling over spatial coordinates to a
joint spatiotemporal space, capturing our intuition that wafer-level spatial variance
is also time-dependent. Essentially, we conjecture that a single spatiotemporal
model learned from samples across all wafers in a lot could be more accurate

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 139

Highest variance

New sample

0 2 4 6 8 10

0 2 4 6 8 10

-5

5

15

25

-5

5

15

25

(a)

(b)

Fig. 5.12 Example of progressive sampling with prediction at (a) iteration i and (b) iteration i+1

than individual models learned from the same samples for each wafer [1]. To
accommodate this in our GP model, we can directly update our coordinates from
x = [x, y] to include a time feature t :

x = [
x, y, t

]
Applying Gaussian process regression over this space will result in a model

that takes the time-dependent variation into account. In Fig. 5.13, we illustrate
the concept of time-dependent wafer-level spatial variation. Evidently, the spatial
variation exhibited by each of these three consecutively produced wafers is not only
similar but also exhibits a temporal trend (i.e., a linear gradient that intensifies over
time).

140 C. Xanthopoulos et al.

Time t1 t2 t3

Fig. 5.13 Time-dependent spatial variation

5.2.9 Spatiotemporal GP w. Progressive Sampling (GP-ST-PS)

Combining progressive sampling with spatiotemporal correlation modeling is also a
plausible direction. Specifically, it is possible that the accuracy of a spatiotemporal
model can be improved by employing progressive sampling. Indeed, these two
enhancements are orthogonal, in the sense that progressive sampling seeks to
provide a training set which better reflects the underlying statistics of the problem,
while spatiotemporal modeling explores the correlation which exists both within a
wafer (spatial variation) and across wafers (time-dependent variation), to establish
a more comprehensive model. In order to assist GP in learning time-dependent
variation, we modify the sampling strategy such that the initial portion of the
sampling budget covers common locations over all the wafers in a lot. Then,
the progressive sampling method is applied to the entire lot as a whole for the
remaining portion of the sampling budget. Again, our conjecture is that wafers in a
lot have both spatial and temporal correlations which can be efficiently learned by
a spatiotemporal GP model; hence, we train one GP model for all the wafers in a
lot [1].

5.2.10 Considerations for Production Test Deployment

Spatial correlation models have primarily been seeking to achieve test-cost/test-
time reduction at probe, by landing on a limited set of die locations and then
using the correlation models to predict the performances of the unobserved die.
The progressive sampling method outlined in Sect. 5.2.7 complicates this flow,
since the wafer will need to remain on the probe equipment while the models are
constructed and applied, and samples will need to be obtained iteratively through
multiple passes. This iterative procedure may become overly time consuming and
may eventually counterbalance the time reduction achieved by the spatial correlation
model. Clearly, this trade-off between test time and prediction accuracy needs to be

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 141

considered in order to decide whether progressive sampling makes sense in an HVM
test.

Spatiotemporal modeling, on the other hand, as described in Sect. 5.2.8, brings
about a different challenge. Specifically, after measurements on a sparse sample of
die are obtained at probe, the wafer will leave the probe equipment without the
ability to make decisions on the unobserved locations. Indeed, one will have to
wait until all wafers have passed through the probe equipment so that the obtained
samples can be used to build the spatiotemporal model, which will then be used to
predict the unobserved measurements for all wafers in the lot. While the technical
capabilities for coding this in modern ATE are available, if the overall confidence
of the model is low and the rest of the locations on each wafer need to be explicitly
measured, then the wafers will have to be subjected to a second test insertion.

5.2.11 High-Volume Manufacturing Yield Estimation

In the process of developing a new product and prior to high-volume manufacturing
(HVM), die samples from early silicon wafers are obtained and characterized. The
objective of such characterization is mainly the post-silicon design validation as
well as HVM performance and yield estimation. Indeed, such tasks are crucial as
they rely on a few die in order to make both manufacturing and marketing decisions
that affect the production lifetime of a device. In reality, only few engineering
wafers are available for such analysis, and only a small number of die are measured
from each such wafer. Typically, only a few iterations of this early silicon are
produced in a relatively short period prior to HVM. However, analysis of such die
is extensive and is done in dedicated characterization labs without the time and
throughput constraints and requirements of production testing. This setting lends
itself naturally to the spatiotemporal Gaussian process with progressive sampling
(GP-ST-PS) method. With this, it is possible to progressively sample die across
available wafers and repeat the process every time new engineering wafers are
received, in order to obtain a coherent picture of the performance distribution and
expected yield of the product [1].

Essentially, given a small set of observations over a few wafers, the objective is to
infer the probability density function (PDF) of the entire population from the limited
observations available. In general, density estimation approaches are categorized
into parametric and nonparametric. In parametric methods, assumptions about the
form of density are made, while in the nonparametric no such assumptions are made.
Herein, the latter will be used, since usually there is no information regarding the
form of the density function. Two options are explored, namely a simple histogram-
based estimation method and a more advanced kernel density estimation method.

142 C. Xanthopoulos et al.

5.2.11.1 Histogram with Random Sampling

A simple and straightforward method for density estimation from a small set of
samples is a histogram. Creating a histogram requires the range of n observations to
be divided into bins and the number of samples which fall in each bin to be counted.
The probability density is, then, estimated as:

f ′(x) = nb

n ∗ h f or lb ≤ x ≤ ub (5.26)

where nb is the number of observations in bin b, ub and lb are the upper and lower
limits of bin b, and h = ub − lb.

Evidently, the accuracy of this estimate depends on the choice of the random
sample and, more specifically, by how accurately it reflects the statistics underlying
the observed phenomenon. In the context of our problem, the randomly chosen die
may not adequately represent the statistical distribution across the available wafers,
let alone across the entire HVM production, especially since no notion of spatial or
temporal correlation is captured in a histogram.

5.2.11.2 Histogram with GP-ST-PS

To address this limitation, we can improve the quality of the sample that is used to
generate the histogram by employing the spatiotemporal Gaussian process method
with progressive sampling (GP-ST-PS). Instead of estimating the histogram using
a random set of n samples from few available wafers, we employ the GP-ST-
PS method to intelligently select these n samples in order to build an accurate
spatiotemporal GP model which can subsequently be used to accurately predict the
values of all unobserved die locations across the available wafers. In this sense, we
increase the number and utility of available points (i.e., both observed and predicted)
for building the histogram and estimating the probability density function, without
increasing the cost of sampling as expressed by the total number of sampled
locations. Assuming that the GP-ST-PS method provides accurate estimates by
leveraging the spatiotemporal correlation across the available wafers, the new
histogram should yield a more accurate density function than the one obtained from
only the n observed die samples.

5.2.11.3 Kernel Density Estimation

While the histogram method is easy to implement and straightforward to interpret, it
has several disadvantages. First, the size and the number of bins dominantly affects
the estimation. Furthermore, the tails of the distribution, which have a very low
likelihood of being represented in the sample, will remain insufficiently modeled.
To address these issues, the concept of kernel density estimation (KDE) has been

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 143

proposed for density estimation and enhanced synthetic population generation. In
order to generate a large volume of synthetic data which accurately reflects the
distribution of measurements in high-volume production from a small number of
observations, we use a nonparametric KDE method [27]. This method relies on the
estimation of the densities f̂ (t), using the available observations ti , i = 1, · · · ,M ,
where M is the number of available samples used to build the density. We do not
make any assumption regarding its parametric form (e.g., normal). Instead, we use
nonparametric KDE, which allows the observations to speak for themselves. The
kernel density estimate is defined as [25]:

f̂ (t) = 1

M × hd
M∑
i=1

Ke

(
1

h
(t− ti)

)
(5.27)

where h is a parameter called bandwidth, d = nm is the dimension of t, and Ke(m)
is the Epanechnikov kernel:

Ke(m) =
{

1
2c
−1
d (d + 2)(1−mTm) if mTm < 1

0 otherwise
(5.28)

and cd = 2πd/2/(d · Γ (d/2)) is the volume of the unit d-dimensional sphere.
The kernel density estimate can be interpreted as the normalized sum of a set of
identical kernels centered on the available observations for the 1-dimensional case.
The bandwidth h corresponds to the distance between the center of the kernel and
the kernel’s edge, where the kernel’s density becomes zero.

In this work, we use an adaptive version of (5.27). In particular, we allow the
bandwidth h to vary from one observation ti to another, allowing larger bandwidths
for the observations that lie at the tails of the distribution. The adaptive kernel
density estimate is defined as [25]:

f̂α(t) = 1

M

M∑
i=1

1

(h · λi)d Ke
(

1

h · λi (t− ti)
)

(5.29)

where the local bandwidth factors λi are defined as:

λi = {f̂ (ti)/g}−α, (5.30)

f̂ (ti) is the pilot density estimate given in (5.27), g is the geometric mean:

log g = M−1
M∑
i=1

log f̂ (ti) (5.31)

144 C. Xanthopoulos et al.

and α is a parameter which controls the local bandwidths. The larger the α, the
larger the diagnostic measurement space where the density f̂ (t) is nonzero.

Once the probability density f̂ (t) is estimated, we can sample f̂ (t) to generate
a large synthetic dataset sn = {t1, . . . , tM ′ },M ′ � M , which will better reflect the
distribution tails.

Of course, in the context of our problem, KDE can be used either with the
initial n die samples as the starting point (i.e., KDE with random sampling) or with
the enhanced sample as predicted by the GP-ST-PS method (KDE with GP-ST-
PS sampling). The expectation here is that GP-ST-PS method will provide a better
starting point for KDE, which will ultimately lead to a more accurate estimation of
the probability density.

5.2.12 Prediction Evaluation

To evaluate effectiveness of predictive models, we compute the mean absolute
percent error across all predictions:

εjh = 1

ntest

ntest∑
i=1

∣∣∣(m̂(h)i −m(h)i)/m(h)i
∣∣∣ (5.32)

where εjh represents the mean percent error of predicting the h-th measurement for
all unmeasured die locations on a particular wafer j , and ntest denotes the number
of predicted die locations on the j -th wafer. Then, we can summarize the mean
prediction error over all considered wafers as:

εh = 1

Nwaf ers

Nwaf ers∑
i=1

εih (5.33)

where Nwaf ers denotes the number of considered wafers.
To gain insight into the prediction outcome, it is also worthwhile to compute the

Test Escape (TE) and Yield Loss (YL) incurred by applying the spatial correlation
models. For a particular measurement, let the indicator functions I (i)1 and I (i)2
be equal to “1” if the predicted value of the i-th die location passes/fails its
specification, while the actual value fails/passes the specification, and let I (i)1 and

I
(i)
2 be equal to “0” otherwise. Then, the overall TE and YL are defined as:

ˆT E = 1

N

N∑
i=1

I
(i)
1 (5.34)

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 145

ˆYL = 1

N

N∑
i=1

I
(i)
2 (5.35)

where N is the number of predicted die locations on all wafers.

5.3 Applications

Having talked about the theoretical underpinnings of the Gaussian process-based
modeling, we will now focus on a number of actual applications that seek to reduce
test cost, improve test quality, and predict yield. Evaluation of all these applications
has been performed using industrial datasets, containing thousands of devices each.

5.3.1 Spatial Correlation Modeling of E-Test Measurement

The first application involves spatial correlation modeling of e-test data collected
from industry high-volume manufacturing. E-test measurements are a set of process
characterization parameters collected from scribe line test structures [20]. These
test structures are drawn in the areas of the wafer that are destroyed during wafer
dicing, as shown in Fig. 5.14, and therefore can only be measured at wafer level,
before dicing. A subset of e-test measurements may be typically collected from
these structures after completing a layer or two of metallization, and the remainder
are collected later, during wafer acceptance testing. The e-test structure is often
associated with several die within a reticle, as it is typically drawn to the full height
of the reticle. For example, the illustration of Fig. 5.14 shows a 2 × 2 die reticle
and, consequently, the e-test structure spans two die in the y-dimension. The e-test
measurements collected from these scribe-line structures are designed to capture a
very broad set of process statistics and, generally, include parameters such as:

• Vth, Tox , Gm, Ioff , and measurements for all types of NMOS/PMOS transistors
(e.g., high Vth and low Vth)

• N-well/poly resistor measurements
• Diode Vf and parasitics
• Capacitor unit cell measurements and parasitics
• Inductor L andQ and parasitics
• General parasitics
• Physical process dimensions

These types of measurements capture a great deal of information regarding
the health of the process and particular wafers. However, most semiconductor
manufacturers are collecting only a few samples of these measurements from around
the wafer. As shown in Fig. 5.15, the e-test sites can be sparsely measured with

146 C. Xanthopoulos et al.

Device

Device

Sampled e-Test SiteReticle

Fig. 5.14 e-Test measurement site diagram

e-Test Measurement
Samples

Fig. 5.15 e-Test measurements

sampling rates of few percentage points being the standard practice. This has
effectively limited the scope of statistical models that can be applied using this data
to perform wafer-level correlation or zonal analysis of the wafer. By extrapolating
the sparsely sampled e-test measurements to every die location on a wafer, we enable
test engineers to examine e-test measurement outcomes at the die level and make no
assumptions about wafer-to-wafer similarity or stationarity of process statistics over
time.

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 147

Fig. 5.16 Virtual probe prediction error across all wafers

The dataset that was used for the experimental results presented here has in
total 8440 wafers. Each wafer has 269 e-test measurements collected from 21 sites
sampled across the wafer. Increasing the number of sites per wafer would provide
more information about the health of the process and particular wafers, at the
expense of longer testing time. The solution presented here bridges this gap by
enhancing the granularity of information without affecting the time spent testing
each wafer.

Leave-one-out cross-validation was used to characterize the prediction error at
each of the 21 sites. Specifically, we train the spatial model using 20 available sites,
predict on the 21st site, and compute the mean prediction error across all wafers
using Eq. (5.33). Then, we repeat the process for every e-test site, leaving out a
single observation as a test set and training on the rest to produce an estimate for the
test observation, and the mean cross-validation error across all 21 sites was collected
for each e-test measurement.

5.3.1.1 Virtual Probe

As a baseline reference, let’s first provide experimental results for virtual probe
(VP) [10]. In Fig. 5.16, we present a histogram of mean prediction errors across all
wafers. The black line overlaid on the histogram represents the cumulative percent
of e-test measurements included in each successive bin. Virtual probe performs quite
well, with more than 85% of the e-test measurements realizing less than 4% mean
prediction error.

148 C. Xanthopoulos et al.

Fig. 5.17 Virtual probe prediction error for each e-test measurement

In Fig. 5.17, we present an overview of the prediction errors with 10–90% error
bars shown for all 269 e-test measurements, sorted by median VP prediction error.
Each index on the x-axis corresponds to a single e-test measurement, and the y-axis
shows the prediction error in percent incurred by VP.

5.3.1.2 Proposed Method: Gaussian Process Models

In Fig. 5.18, we display a histogram of the mean e-test measurement prediction
errors across all wafers. As can be seen from the figure, the Gaussian process model
prediction errors are even lower than VP, with more than 90% of e-test measurement
predictions below 4% error.

In Fig. 5.19, we present the GP model prediction errors with 10–90% error bars.
Again, a qualitative comparison to Fig. 5.17 shows that the errors are generally lower
and the error bars tighter than for VP. The error ranges are quite small across the
majority of e-test measurements, demonstrating that the variance of the errors is
low over the entire set of 8440 wafers. Importantly, this shows that the models are
insensitive to process shifts over time, a result that is attributable to the fact that we
train and deploy our models on a per-wafer basis.

Figure 5.20 presents a zoomed-in version of Fig. 5.19 with the best-predicted
30 measurements, e.g., the left-hand side of Fig. 5.19. The x-axis shows the 30
e-test parameters; these include a mixture of diode, capacitor, and NMOS/PMOS
transistor parameters. The y-axis is, again, percent error for these 30 measurements,

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 149

Fig. 5.18 Gaussian process model prediction error across all wafers

Fig. 5.19 Gaussian process prediction error for each e-test measurement

and the mean prediction error is less than 0.2%, indicating that we can very
successfully interpolate these parameters across the surface of the wafer.

In Fig. 5.21, we present another zoomed-in version of Fig. 5.19, in this case with
the worst-predicted 30 e-test measurements, or the right-hand side of Fig. 5.19.
The parameters shown here are the most challenging for us to predict with our GP

150 C. Xanthopoulos et al.

Fig. 5.20 Prediction error for best 30 e-test measurements

Fig. 5.21 Prediction error for worst 30 e-test measurements

models, in some cases reaching more than 40% prediction error. These parameters
are largely comprised of: (a) Gds drain–source conductance measurements of
various transistors, and (b) various resistance measurements. Both tend to have high
cross-wafer or even die-to-die variation. Consequently, the high prediction error for
these parameters is relatively unsurprising. However, for most of these worst-case
prediction errors, the error is under 10%, which is still within an acceptable range for
most use cases. A possibility to improve the prediction errors for these parameters
is to increase the number of samples during the training.

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 151

5.3.1.3 Comparison to Virtual Probe

In Fig. 5.22, we present a comparison of the two methodologies, with VP set as
the baseline at 0%. The proposed methodology consistently outperforms VP by an
average of 0.5%, and in some cases, by almost 5%. The overall mean prediction
error of VP across all e-test measurements and all wafers is 2.68%, and the overall
mean prediction error for Gaussian process-based spatial models is 2.09%.

A tabular comparison of the proposed GP model approach versus VP is provided
in Table 5.1, with overall mean error reported alongside mean training and predic-
tion time per wafer across all e-test measurements. The timing measurements were
collected on a 2010 Core i5 2.4 GHz, and represent the mean total time required to
construct and predict with all 269× 21 = 5649 models for a given wafer. Note that
the proposed methodology consistently has a lower error than VP, while incurring
an order of magnitude less runtime to construct and evaluate the predictive models.

Fig. 5.22 Comparison between Gaussian process regression and virtual probe

Table 5.1 Virtual probe and
Gaussian process models
comparison

Overall mean Avg. running time

Method percent error (per wafer)

Virtual probe 2.68% 116.2 s

Gaussian process model 2.09% 16.43 s

152 C. Xanthopoulos et al.

5.3.2 Spatial Correlation Modeling of Probe-Test Specification
Measurements

The second application presented here involves spatial correlation modeling of
probe-test specification measurements of an RF transceiver with multiple radios,
built in a 65-nm technology. The dataset contains a total of 3406 wafers, each of
which has approximately 2000 devices, with 71 probe-test specification measure-
ments collected on each device.

Discontinuous spatial patterns are present for specific measurements in this case
study. Thus, we apply the k-means clustering algorithm shown in Algorithm 2, to
partition the wafer into k distinct regions when a measurement exhibits discontin-
uous spatial effects. The number of clusters, k, and the shape of the clusters are
computed as explained in Sect. 5.2.6 during the pretraining stage, using only the first
wafer. The minimum and maximum values of k obtained for the 71 measurements
are 2 and 5, respectively, with an average of 3.9. Once the k clusters are known, we
use a randomly chosen training sample of 20 devices from each cluster in order to
train the spatial correlation models. Thus, a total number of 20× k devices are used
for training in each wafer. The trained models are then used to predict the untested
probe-test outcomes at the remaining die coordinates, and the mean prediction error
across all wafers is computed through Eq. (5.33).

5.3.2.1 Stationarity Verification of Discontinuous Spatial Patterns

The procedure outlined above relies on the assumption that the discontinuous spatial
patterns are stationary over time, i.e., the clusters for a given measurement remain
the same across wafers. To illustrate that this is, indeed, the case, Fig. 5.23 shows
the wafer maps of a measurement exhibiting discontinuous patterns, on randomly
chosen wafers from each of the four quarters of the total 3406 wafers. As can be
observed, the discontinuous patterns remain very similar across wafers. To further
investigate this issue, we performed the following experiment: for each of the four
wafers shown in Fig. 5.23, we ran the k-means clustering algorithm and used the
obtained clusters, instead of the ones learned from the first wafer, to build the
correlation models. What we found is that the number of clusters remained the same
(i.e., 4) and that for the vast majority of die, the cluster that they ended up belonging
to was the same. Most importantly, as shown in Table 5.2, the differences in error
rate, TE, and YL were insignificant, corroborating stationarity.

5.3.2.2 Prediction Errors Using the Proposed Approach

Figure 5.24 summarizes the prediction error, with 10–90% error bars shown, for
each of the 71 measurements. As can be observed in Fig. 5.24, the prediction error

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 153

(a)

(d)

0

1

0

1

0

1

(c)

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

(b)
0

1
wafer #25 wafer #1000

wafer #2110 wafer #3400

Fig. 5.23 Wafer maps of measurement 69 sampled randomly in the: (a) 1st, (b) 2nd, (c) 3rd, and
(d) 4th quarter of the 3406 wafers

Table 5.2 Stationarity verification

Wafer # 25 Wafer # 1000 Wafer # 2110 Wafer # 3400

Clustering on wafer #1 #25 #1 #1000 #1 #2110 #1 #3400

ε (%) 4.9 4 4.4 3.3 3.5 3.3 4.4 4.2

TE 0.03 0.03 0.02 0.02 0.03 0.03 0.04 0.03

YL 0 0 0.001 0.001 0 0 0.001 0

for most measurements is below 5%, verifying the excellent capability of the method
in capturing spatial wafer correlation.

154 C. Xanthopoulos et al.

0%

10%

20%

30%

40%

50%

60%
Pr

ed
ic

tio
n

Er
ro

r

71 Probe Measurements (sorted by median prediction error)

Fig. 5.24 Prediction error of proposed method for each probe measurement

0 10 20 30 40 50 60 70

0

-100%

-200%

-300%

-400%

-500%

-600%

-700%

-800%

-900%

VP baseline
���GP without clustering -VP)
���GP with clustering - VP)

Probe Measurements

Fig. 5.25 Prediction error comparison of VP, GP without clustering and GP with clustering

5.3.2.3 Comparison to Existing Approaches

In Fig. 5.25, we compare the prediction error, of the proposed approach to the
error of the VP [10, 34–36] and the GP models [16] without clustering, using
the same number of training samples per wafer and setting the VP error as
the baseline at 0%. As can be observed, the GP approach without clustering

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 155

outperforms the VP approach, and GP with clustering achieves a significant further
improvement in prediction error for several measurements. The measurements that
enjoy a substantial improvement in prediction error are those which exhibit spatial
discontinuous effects, yet we stress that even for the measurements which show no
discontinuous patterns, GP with clustering performs at least as well as GP without
clustering.

Figure 5.26 shows the prediction wafer map of measurement 11 which exhibits
discontinuous effects. Figure 5.26a shows the normalized actual wafer map, and
Fig. 5.26b/c/d show the prediction wafer map using the GP model with cluster-
ing/VP model/GP model without clustering, respectively. As can be observed, the
discontinuous effect is correctly captured by the GP model with clustering, while
the VP and GP models without clustering are not effective when such discontinuous
patterns exist on the wafer. This observation is further supported by the large
improvement in percentile prediction error.

5

10

15

20

25

30

35

40

45

50

5

10

15

20

25

30

35

40

45

50

(a)

(d)

0

1

5

10

15

20

25

30

35

40

45

50

(b)
0

1

0

1

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

10 20 30 40 5010 20 30 40 50

0

1

(c)

Actual

Fig. 5.26 Prediction of measurement 11: (a) Actual wafer map, (b) predicted wafer map using
the GP with clustering, (c) predicted wafer map using VP, and (d) predicted wafer map using GP
without clustering

156 C. Xanthopoulos et al.

Table 5.3 Test Escape (TE) and Yield Loss (YL) in parts per million (ppm) comparison

All measurements Measurement 53 Measurement 69

TE YL TE YL TE YL

VP 28,000 85,000 4.4 48 6.6 81

GP− 28,000 4400 3.9 7 6.3 32

GP+ 14,000 4400 0.19 2.8 6.3 0.19

Bold formatting denotes the best value per column

5.3.2.4 Test Escape and Yield Loss Improvement

To further elucidate the impact of the improved prediction error, in the 2nd and
3rd columns of Table 5.3 we compare the Test Escape (TE) and Yield Loss (YL)
computed using (5.34) and (5.35) for the VP, the GP without clustering (denoted by
GP-), and the GP with clustering (denoted by GP+), for all 71 measurements and
for all die of the 3406 wafers. Note that the high TE and YL values in the 2nd and
3rd column of Table 5.3 are mainly due to some poorly predicted measurements
such as those in the right-hand side shown in Fig. 5.24. For these measurements,
random variation dominates systematic wafer-level spatial variation. Nevertheless,
GP with clustering achieves a significant TE improvement as compared to VP and
GP without clustering, while maintaining the same YL as GP without clustering.

The 4th to 7th columns of Table 5.3 report the TE and YL for two individual
measurements, namely 53 and 69, where significant improvement in percentile
prediction error is observed. The TE and YL are computed using Eqs. (5.34)
and (5.35), respectively. As can be observed, GP with clustering consistently
outperforms VP and GP without clustering, which is in-line with the percentile
error improvement shown in Fig. 5.25, and justifies the use of k-means algorithm
in building spatial correlation models.

5.3.3 IC Laser Trimming Speedup Through Spatial
Correlation Modeling

The third application aims to speed up the lengthy trimming process by utilizing
the wafer-level spatial correlations of the trim-related probe measurements. Laser
trimming is the process by which several on-chip resistors are trimmed in order
to increase their resistance. Consequently, specific IC parameters are tuned, which
essentially enhances the manufacturing yield of a given design. To achieve this, laser
trimming burns away portions of these resistors using a laser trimming machine,
in order to raise their resistance values until a target is reached. This is a lengthy
procedure which is typically performed in a closed loop, where the laser is iteratively
fired and the IC parameter in question is monitored until a target condition is
satisfied.

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 157

In this special case of probe-test spatial correlation modeling, the goal is to
predict the trimming lengths of the laser-trimmable resistors from a small sample of
die locations on each wafer, thereby eliminating the time-consuming, closed-loop,
iterative measure-trim steps for the majority of the devices. Our dataset consists of
one wafer with 1924 devices, each of which contains two laser-trimmable resistors
that have been already trimmed. As is commonly practiced, each resistor is divided
into two parts that correspond to different trim stages, the coarse trim where the
trimming is performed faster but with limited accuracy and the fine trim which is
slower but with the best possible resolution allowing for the final target to be reached
without overshooting. The trimmable performances in these devices are two current
measurements which have to be finely tuned to a specific value in order to meet
the device specifications. For each die, the pre- and post-trim current values are
collected as well as the trim lengths and times for both coarse and fine trimming.
Two spatial correlation approaches have been proposed for predicting the trimming
lengths of the coarse trim, one in which the spatial model is directly trained by
using the trim lengths of the sampled locations and one where the trim rates (i.e., the
current difference over the trim length) are modeled and used to indirectly predict
the trim lengths. The latter approach allows for adaptive calibration of the coarse
target, resulting in further time savings especially when the hard-coded target has
been conservatively selected.

Figure 5.27 depicts the current closed-loop-based method as well as the two
spatial modeling-based methods described above. As explained earlier, the trimming
process is split into two stages, the coarse and the fine. During the coarse trimming,
for each laser pulse more material is removed in order to rapidly approach the final

Δt1

Current

Trimming Time

Initial Value

Coarse Target

Final Target

Closed-Loop, Original Target
Open-Loop, Original Target
Open-Loop, Optimized Target

Δt2

New Target

Coarse Trim End Point

Fig. 5.27 Current value vs trimmed time in a two-stage trimming process

158 C. Xanthopoulos et al.

target with the expense of lower accuracy. On the other hand, during fine trim
each pulse has the minimum possible length, thus achieving the highest possible
resolution. The horizontal sections of the progress lines represent the settling time
that is required after each laser pulse in order to accurately measure the resulting
current value. For all die locations that are sampled in order to train the wafer-
level spatial model, the normal closed-loop process is followed, and all the required
information is collected. Once we have trained the spatial models, we then have
the ability to predict the coarse trim length for each die, therefore eliminating the
settling times. This is shown in both the blue and green progress lines in Fig. 5.27, as
we reach the coarse target faster. The difference between the original and optimized
target open-loop methods is that in the latter the coarse target has been optimized
to be closer to the final, minimizing the trim time spent in the slow fine trimming
stage.

In order to illustrate the effectiveness of the proposed method, we split our
dataset into training and validation sets and simulated the testing process. The
training set includes 10% of devices which were uniformly sampled over the wafer.
Figures 5.28b and 5.29b show the sampled die locations for each resistor.

5.3.3.1 Length-Based, Original Target Prediction

As shown in Figs. 5.28a and 5.29a, the measurements of interest have variation that
is smoothly spatially correlated, with a prominent radial component. The existence
of spatial variation allows us to sample the length measurements sparsely and build
the GP model. Then, by using the trained model, we predict measurements for the
non-sampled die. Figure 5.28c shows the predicted length wafer map to be visually
compared with Fig. 5.28a. For further visualization, the prediction error, which is the
difference between the actual wafer map (Fig. 5.28a) and the predicted wafer map
(Fig. 5.28c), is shown in Fig. 5.28e. The first observation from the error map is that
the variance of error is balanced over the wafer. Moreover, positive errors (those
towards red color) can be interpreted as overpredicted lengths. Similar results for
resistor B are shown in Fig. 5.29. The maximum prediction error for resistors A and
B (which corresponds to the yellow colored die on the error maps) is less than 3%.

5.3.3.2 Rate-Based, Optimized Target Prediction

In order to evaluate the possible speedup between the standard closed-loop
laser trim, the length-based original-target prediction method, and the rate-based
optimized-target one, we performed a preliminary experiment only to measure the
various trimming times. Due to test time limitations, we collected data for only
200 die locations on a new untrimmed wafer. Since the goal of this experiment
was to assess the amount of speedup and not the prediction accuracy or potential
yield loss, the coarse trim target was selected by using an intelligent guess of the
trim rate, from the data collected for the previous experiments. Table 5.4 shows the
measured average trim times per die in each stage. As expected, there is a significant

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 159

0

1

0

1

0

1

0 0

Training
Set

Validation
Set

(a)

(c)

(e)

(d)

(f)

(b)

Resistor A

Fig. 5.28 Actual and predicted lengths using both methods for resistor A. (a) Actual trim length.
(b) Sampled locations. (c) Length-based, original target predicted length. (d) Rate-based, original
target predicted length. (e) Length-based, original target prediction error. (f) Rate-based, original
target prediction error

improvement of the coarse trim time, as a result of eliminating the time-consuming
measurement loop. The overall speedup is shown in Table 5.5, which is 1.25 for
Resistor A and 1.32 for B.

In addition to the results above, Tables 5.4 and 5.5 show the extrapolated
trimming times and speedup for rate-based prediction of length for a new opti-
mized target. This target was selected based on the previously reported maximum
prediction errors. The estimated speedup by using the rate-based, optimized target
prediction is 1.98 and 1.89 for each resistor, respectively.

160 C. Xanthopoulos et al.

0

1

0

1

0

1

Training
Set

Validation
Set

(a)

(c)

(e)

(d)

(f)

(b)

Resistor B

0 0

Fig. 5.29 Actual and predicted lengths using both methods for resistor B. (a) Actual trim length.
(b) Sampled locations. (c) Length-based, original target predicted length. (d) Rate-based, original
target predicted length. (e) Length-based, original target prediction error. (f) Rate-based, original
target prediction error

Table 5.4 Average trimming times per die

Length-based Rate-based

Closed-loop original target optimized target

Resistor Coarse Fine Coarse Fine Coarse Fine

A 312 ms 281 ms 190 ms 281 ms 233 ms 66 ms

B 338 ms 231 ms 200 ms 231 ms 244 ms 57 ms

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 161

Table 5.5 Total average trimming times and speedup per die

Open-loop

Closed-loop Original target Optimized target

Resistor Total time Total time Speedup Total time Speedup

A 593 ms 471 ms 1.25 299 ms 1.98

B 569 ms 431 ms 1.32 301 ms 1.89

5.3.4 HVM Yield Estimation

In this section, we demonstrate the utilization of correlation modeling for HVM
yield estimation. As we mentioned in Sect. 5.2.11, the spatiotemporal GP model
with progressive sampling is used to enhance yield estimation. Thus, we first
evaluate the effectiveness of progressive sampling and the inclusion of temporal
feature in enhancing the prediction accuracy of correlation models. Then, the spa-
tiotemporal GP model is used to estimate high-volume yield for a 65-nm analog/RF
device. Our dataset comprises a total of 300 time-stamped wafers, grouped in
lots of 8–12 wafers, and produced over a period of 6 months. Each wafer has
approximately 5500 devices, on which 39 parametric probe-test measurements are
collected. Our experiments seek to: (1) quantify the accuracy improvement achieved
by progressive sampling and spatiotemporal modeling in predicting probe tests
using wafer-level spatial correlation, and (2) assess the ability of the spatiotemporal
model in predicting HVM yield based on measurements from a small number of
early production wafers.

5.3.4.1 Accuracy Improvement of Enhanced Model

In all of the experiments described below, we sample 10% of the die locations
on each wafer for training the correlation models, which are subsequently used
to predict the values on the remaining 90% of non-sampled die locations. The
predicted values are then compared to the actual values that we have in our dataset,
in order to calculate and report the prediction error of each of the compared
models. In the case of the baseline spatial correlation model, which is used as a
reference point, the 10% sample is randomly selected across the wafer. In the case of
progressive sampling, this 10% sampling budget is reached in multiple steps, where
the selection of samples added in each step is guided by the models constructed
using the samples of all previous steps. In the case of the spatiotemporal models,
each lot of wafers is treated holistically. Specifically, we use the 10% sample of
(randomly or progressively selected) die from each wafer in the lot to construct one
spatiotemporal correlation model for the entire lot, which is subsequently used to
predict the values on the remaining 90% of die locations on each of the wafers in
the lot. In summary, the four prediction models that we compare in our experiment
are the following:

162 C. Xanthopoulos et al.

• Gaussian Process (GP): Given a wafer, randomly select 10% of the die on this
wafer, measure the parameter of interest, and train a GP model to predict this
parameter as a function of die coordinates on the wafer. Then, use this model to
predict this parameter for the remaining 90% of die on the wafer.

• GP with Progressive Sampling (GP-PS): Given a wafer, select die locations
using the progressive sampling algorithm (Algorithm 3) in increments of 2.5%.
In each iteration, use all available samples to identify the die locations where
model confidence is low, in order to select the next die sample increment. Once
the overall sampling budget of 10% is reached (i.e., after 4 iterations), use the
final model to predict this parameter for the remaining 90% of die on the wafer.

• GP with Spatiotemporal Features (GP-ST): Given a lot of wafers, randomly
select 10% of die from each wafer and train one spatiotemporal GP model (i.e.,
a model that expresses a parameter as a function of die coordinates as well as
the temporal order of a wafer within its lot) for the entire lot. Then, use this
spatiotemporal model to predict this parameter for the remaining 90% of die on
all wafers in the lot.

• GP with Spatiotemporal Features and Progressive Sampling (GP-ST-PS):
Given a lot of wafers, select die locations on each wafer using the progressive
sampling algorithm in increments of 2.5% per lot. In the first increment, the same
random locations are chosen on each wafer, in order to help the model capture
time-dependent correlation. Subsequent sample increments are chosen across all
wafers in the lot based on the prediction confidence level of the spatiotemporal
correlation model constructed using all previous samples from all the wafers.
Once the overall sampling budget of 10% is reached (i.e., after 4 iterations),
use the final spatiotemporal correlation model to predict this parameter for the
remaining 90% of die on all wafers in the lot.

In order to assess the accuracy of each model, we compare the values for the
predicted die locations (90%) to the actual probe-test outcomes and we capture the
discrepancy using the absolute percentile error metric:

ε = |t′ − t|
Specification Range

(5.36)

where t is the probe-test outcome for a die, t′ is the corresponding predicted value
for that die, and Specification Range is the range of that measurement for which the
device is operational.

Figure 5.30 presents the impact of the introduced correlation model enhancement
methods on a randomly chosen parameter (i.e., measurement 16) among the 39
probe tests in our dataset, on one randomly chosen wafer. Figure 5.30a shows the
actual wafer map, while Fig. 5.30b–e shows the predicted wafer maps using each of
the four methods, i.e., GP, GP-PS, GP-ST, and GP-ST-PS, respectively. Even though
the differences are subtle, they are still visible through the wafer maps, where it may
be observed that the predictions by GP-PS, GP-ST, and GP-ST-PS are better than the
prediction of the original GP and become progressively more accurate with respect

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 163

(a) (b)

(c) (d)

(e) (f)

Fig. 5.30 Actual and predicted wafer maps and prediction error for measurement 16. (a) Actual
wafer map. (b) Predicted wafer map (GP). (c) Predicted wafer map (GP-PS). (d) Predicted wafer
map (GP-ST). (e) Predicted wafer map (GP-ST-PS). (f) Prediction error

164 C. Xanthopoulos et al.

Fig. 5.31 Measurement 16 prediction error over all wafers

to the actual wafer map. The box plot in Fig. 5.30f makes all these subtle differences
evident by reporting the prediction error for each of the four models. The y-axis
shows the percentile prediction error, with the black dot on each bar representing
the mean of the prediction error across all die on the wafer.

Figure 5.31 shows the prediction error of the four methods for measurement 16
across all 300 wafers. The mean error is 7.3%, 6.9%, 5.9%, and 5.6% for GP, GP-
PS, GP-ST, and GP-ST-PS, respectively. We note that the proposed models not only
generate a lower prediction error in the test data but also result in tighter error bars
than the baseline model, which indicates that the variance of error is also smaller.

Finally, Fig. 5.32 summarizes the mean error of the four methods for all 39
measurements across all 300 wafers. As may be observed, the enhancements
presented herein consistently result in lower prediction error for all measurements.
In order to demonstrate the average improvement over the original GP model, we
use the difference in mean relative error as defined below:

δ-MRE =|∗| GP Error− Proposed Method Error

GP Error
× 100

Accordingly, we calculate the δ-MRE between GP and GP-PS, GP-ST, and GP-ST-
PS as 2.6%, 11%, and 16%, respectively. Based on the above results, we observe
the following:

• Enhancing the original Gaussian process-based wafer-level spatial correlation
method with temporal inter-wafer information and progressive sampling results
in a notable improvement in the accuracy of the prediction model.

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 165

12

11

10 GP

GP_PS GP_ST_PS

GP_ST

9

8

7

6

5

4

3

2
1 3 5 7 9 11 13

Measurement

P
re

di
ct

io
n

er
ro

r
(%

)

15 17 19 21 23 25 27 29 31 33 35 37 39

Fig. 5.32 Prediction error for 39 measurements over all wafers

• The improvement obtained by spatiotemporal modeling is significantly higher
than the improvement obtained by progressive sampling. This is attributed to the
fact that the locations sampled on each wafer in a lot are different; therefore,
since wafers in the same lot are expected to be affected by the same systematic
variation sources, sampled locations in a wafer carry valuable information
regarding the same locations on other wafers, which were not included in the
sample. Thereby, the collective statistics for the entire wafer are significantly
improved.

5.3.4.2 Yield Estimation Results

In the experiments described below, which seek to demonstrate the effectiveness of
the proposed method in estimating HVM yield from a few early silicon wafers, we
use the first wafer from each of the first 5 lots—chronologically—in our dataset, as
our early silicon samples. Our sampling budget remains 10% of the die locations
as in the previous experiments. Using these samples, we estimate the probability
density function (PDF), the cumulative distribution function (CDF), and the yield
for each of the 39 probe tests in our dataset using the methods described previously.
For the entire dataset of the remaining 295 wafers, we also calculate the actual
density and the actual yield for each of the 39 probe tests. For the purpose of this
study, since the specification limits for each probe test were not disclosed to us, the
actual yield is computed by setting the lower and upper specification limits at the
[L,U] = ±3σ range of each measurement across the 295 HVM wafers. The same

166 C. Xanthopoulos et al.

limits are also used to predict the yield from the estimated PDF/CDF and compare
to the actual yield so that the accuracy of the proposed methods can be assessed.

The actual data and the four estimation methods considered in our experiment
are summarized below:

• Actual: All die of all HVM wafers (295 wafers) are used to compute the actual
yield and density for each of the 39 probe tests.

• Histogram with Random Sampling (Hist-RS): Given the 5 early silicon
wafers, randomly select 10% of the die from each wafer and create a histogram
with 20 uniformly distributed bins. The percentage of sampled die across these 5
wafers that falls in the [L,U] range will reflect the yield for each probe test.

• Histogram with Spatiotemporal GP and Progressive Sampling (Hist-GP-ST-
PS): Given the 5 early silicon wafers, select die locations on every wafer using
the progressive sampling algorithm in increments of 2.5%. Ensure that the same
die locations are picked on each wafer in the first iteration and guide the selection
of subsequent iterations using the prediction confidence level of a spatiotemporal
GP model built using all previously selected samples. Once the 10% sample
budget is reached (i.e., after 4 iterations), use the final GP-ST-PS model to predict
the parameter of interest for the unobserved 90% die across the 5 early wafers.
Finally, use both the sampled and the predicted die to create a histogram with 20
uniformly distributed bins. The percentage of all die across these 5 wafers that
falls in the [L,U] range will reflect the yield for each probe test.

• KDE with Random Sampling (KDE-RS): Given the 5 early silicon wafers,
randomly select 10% of the die from each wafer and estimate the density of these
samples using KDE. Then, sample the estimated distribution in order to generate
one million synthetic die instances. The percentage of synthetic die instances that
falls in the [L,U] range will reflect the yield for each probe test.

• KDE with Spatiotemporal GP and Progressive Sampling (KDE-GP-ST-PS):
Given the 5 early silicon wafers, select die locations on every wafer using the
progressive sampling algorithm in increments of 2.5% until the 10% sampling
budget is reached, following the same procedure described above for Hist-GP-
ST-PS. Then, use the final GP-ST-PS model to predict the parameter of interest
for the unobserved 90% die across the 5 early wafers. Subsequently, use all
sampled and predicted values to estimate the density of the distribution using
KDE. Then, sample the estimated distribution in order to generate one million
synthetic die instances. The percentage of synthetic die instances that falls in the
[L,U] range will reflect the yield for each probe test.

To evaluate the effectiveness of these methods, we first compare the estimated
distributions. Figure 5.33a shows the actual PDF and the estimated PDFs using
the Hist-RS and the Hist-GP-ST-PS methods for a randomly selected measurement
among the 39 probe tests (i.e., measurement 24). Similarly, Fig. 5.33b shows the
actual PDF and the estimated PDFs using the KDE-RS and the KDE-GP-ST-PS
methods for the same measurement. Although the differences are subtle, one can
still observe that the GP-ST-PS method provides a more accurate sample and results
in a better estimation both with the simple histogram method and with the advanced

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 167

Actual
RS
GP_ST_PS

(a)

Actual
RS
GP_ST_PS

Actual
RS
GP_ST_PS

(c)

(b)

Actual
RS
GP_ST_PS

(d)

Fig. 5.33 PDF and CDF estimated by histogram-based and KDE methods for measurement 24.
(a) Estimated PDF using histogram-based approach. (b) Estimated PDF of KDE-based approach.
(c) CDF of histogram-based estimation approach. (d) CDF of KDE-based estimation approach

KDE method. As expected, one can also observe that KDE is a compelling method
for estimating the actual distribution. Nevertheless, it still benefits from having a
better starting point, as provided by the GP-ST-PS method.

In order to quantitatively compare the quality of estimation, we use the
Kolmogorov–Smirnov (KS) test [12] as a goodness-of-fit metric. KS test is a
nonparametric test for one-dimensional probability distributions that can be used
to compare a sample to a reference. In KS, the comparison metric is the maximum
distance between the CDF of the estimated density and the actual CDF. A smaller
distance (i.e., closer to 0) indicates a better fit between the real distribution and the
estimated one. Figure 5.33c shows the actual CDF and the estimated CDFs using
the Hist-RS and the Hist-GP-ST-PS methods for measurement 24, while Fig. 5.33d
shows the actual CDF and the estimated CDFs using the KDE-RS and the KDE-
GP-ST-PS methods for the same measurement. Based on these CDFs, in Table 5.6
we compute the KS metric for each of the four predicted CDFs in contrast to the
actual. The results corroborate our claim that the information added by GP-ST-PS

168 C. Xanthopoulos et al.

Table 5.6 KS metric of
estimated CDFs for
measurement 24

Histogram KDE

RS GP-ST-PS RS GP-ST-PS

Distance 0.25 0.23 0.11 0.087

5.0

4.5

4.0

KDE(GP_ST_PS)KDE(RS)

Hist(GP_ST_PS)Hist(RS)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
1 3 5 7 9 11 13

Measurement

Y
ie

ld
 e

st
im

at
io

n
er

ro
r

(%
)

15 17 19 21 23 25 27 29 31 33 35 37 39

Fig. 5.34 Yield estimation error for 39 measurements

Table 5.7 Average error of
HVM yield estimation

Histogram KDE

RS GP-ST-PS RS GP-ST-PS

Yield error 1.16% 0.63% 0.61% 0.21%

helps in better estimating the actual distribution, both for the histogram-based and
for the KDE-based method.

Finally, we compare the yield estimated by each of the four methods to the
actual HVM yield and we compute the corresponding yield estimation error as the
absolute difference between the two. Figure 5.34 shows the yield estimation error
for each of the four aforementioned methods for each of the 39 probe tests, as a
percentage on the y-axis. Additionally, Table 5.7 shows the average yield error for
all 39 measurements. Once again, the results confirm the effectiveness of enhancing
the initial sample using the GP-ST-PS method towards improving the accuracy of
HVM yield estimation.

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 169

5.4 Conclusions

In the beginning of this chapter, we presented the benefits of spatial correlation
modeling that enable the extrapolation of wafer-level measurements via sparse
sampling of test data. The Gaussian process models were presented in detail, with
emphasis to the various parameters as well as to the domain-specific improvements
that affect the modeling accuracy. A k-means clustering algorithm was presented
to handle discontinuous effects in modeling spatial correlation, which partitions
the wafer into separate regions to avoid training discontinuous data using a
unique continuous model. Progressive sampling and inclusion of spatiotemporal
feature constitute powerful enhancements to spatial correlation modeling. Finally,
we discussed application of GP in estimating HVM yield. In Sect. 5.3, several
case studies of high-volume manufacturing data demonstrated the effectiveness
of the proposed approach in modeling various wafer-level measurements. These
applications included extrapolation of sparsely sampled e-test measurements, test
cost reduction for probe-test specification measurements, speedup of the IC laser
trimming process, and HVM yield estimation. The effectiveness of each of these
applications has been evaluated using sizable industrial datasets. Employing spatial
and spatiotemporal correlation models has been shown to provide significant insight
into the variation of the semiconductor manufacturing process, thus enabling
previously inaccessible, optimal regions of the quality-cost trade-off.

Appendix 1: Proof of Positive Semi-Definite for Covariance
Matrix

Proof To show that covariance matrices are always positive semi-definite, let Σ be
the covariance matrix for some vector x, and μ the mean of x. Then, by definition,
Σ = E[(x − μ)�(x − μ)]. Now, proof that Σ is positive semi-definite requires us
to show that a�Σa ≥ 0 for all vectors a. So, we have

a�Σa = a�E[(x− μ)(x− μ)�]a
= E[a�(x− μ)(x− μ)�a]
= E[b2] ≥ 0,

where we have defined b = a�(x− μ).

170 C. Xanthopoulos et al.

Appendix 2: Marginal and Conditional Distribution of
Multivariate Normal Distribution

The multivariate Gaussian (or Normal) distribution has a joint probability density
given by:

p(x|μ,Σ) = (2π)d/2 exp
(− 1

2
(x− μ)T Σ−1(x− μ)

)
, (5.37)

where μ is themean vector (of length d) andΣ is the (symmetric, positive definite)
covariance matrix (of size d × d). As a shorthand, we write x ∼ N (m,Σ).

Let x and y be jointly Gaussian random vectors:

[
x
y

]
∼ N

⎛
⎝0,

[
A C

C� B

]⎞⎠ (5.38)

where A and B are the covariances for x and y, respectively, and C is the covariance
between x and y.

Now, we would like to be able to write out the form for the inverse covariance
matrix in (5.38). We can make use of the Schur complement and write this as:

[
A C

C� B

]−1

=
[

I 0
−B−1C� I

]
[
(A− CB−1C�)−1 0

0 B−1

]
[

I 0
−B−1C� I

]
(5.39)

Now, the joint distribution p(x, y) can be written as:

p(x, y) ∝ exp
(
− 1

2

[
x
y

]� [
A C

C� B

]−1 [
x
y

])
(5.40)

Then, we can substitute in the above expression of the inverse of the block
covariance matrix defined in (5.39), and we obtain

p(x, y) ∝ exp
(
− 1

2

[
x− CB−1y

y

]�

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 171

[
(A− CB−1C�)−1 0

0 B−1

]
[

x− CB−1y
y

])
(5.41)

Using the fact that the center matrix is block diagonal, we have

p(x, y) ∝ exp
(
− 1

2
(x− CB−1y)�(A− CB−1C�)−1

(x− CB−1y)
)

exp
(
− 1

2
y�B−1y

)
(5.42)

If we condition equation (5.42) on y, then the second exponential term drops out
as a constant, and we have

p(x|y) ∼ N
(
CB−1y, A− CB−1C�

)
(5.43)

Appendix 3: Summary of Commonly Used Kernel Functions

A kernel function k(x, x′) can be either expressed as a function of the distance
between any input pair: r = |x− x′|, if it is stationary, or as a function individual x
and x′, where x is a D-dimensional vector in the input space: x = (x1, x2, . . . , xD).
Some commonly used include:

– Linear (LI) kernel function:

k(x, x′) =
D∑
d=1

σ 2
d xdx

′
d (5.44)

where σd is the hyperparameter of the function.
– Polynomial (POLY) kernel function:

k(x, x′) = (x · x′ + σ 2
0)
p (5.45)

where σ0 and p are the hyperparameters of the function.
– Squared exponential (SE) kernel function:

k(x, x′) = exp

(
− 1

2l2
|x− x′|2

)
(5.46)

where l is the hyperparameter of the function.

172 C. Xanthopoulos et al.

– Absolute exponential (AE) kernel function:

k(x, x′) = exp

(
− 1

2l2
|x− x′|p

)
(5.47)

where l and p are the hyperparameters of the function.

References

1. A. Ahmadi, K. Huang, S. Natarajan, J. Carulli, Y. Makris, Spatio-temporal wafer-level
correlation modeling with progressive sampling: a pathway to HVM yield estimation, in IEEE
International Test Conference (2014), pp. 1–10

2. A. Ahmadi, A. Nahar, B. Orr, M. Pas, Y. Makris, Wafer-level process variation-driven probe-
test flow selection for test cost reduction in Analog/RF ICs, in IEEE VLSI Test Symposium
(2016), pp. 1–6

3. A. Ahmadi, C. Xanthopoulos, A. Nahar, B. Orr, M. Pas, Y. Makris, Harnessing process
variations for optimizing wafer-level probe-test flow, in IEEE International Test Conference
(2016)

4. M.A. Aizerman, E.A. Braverman, L. Rozonoer, Theoretical foundations of the potential
function method in pattern recognition learning. Autom. Remote Control 25, 821–837 (1964)

5. S.S. Akbay, A. Chatterjee, Fault-based alternate test of RF components, in IEEE International
Conference on Computer Design (2007), pp. 518–525

6. D. Bertsimas, J. Tsitsiklis, Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)
7. S. Biswas, R.D. Blanton, Test compaction for mixed-signal circuits using pass-fail test data, in

IEEE VLSI Test Symposium (2008), pp. 299–308
8. J.B. Brockman, S.W. Director, Predictive subset testing: optimizing IC parametric performance

testing for quality, cost, and yield. IEEE Trans. Semicond. Manuf. 2(3), 104–113 (1989)
9. T. Calinski, J. Harabasz, A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27

(1974)
10. H.M. Chang, K.T. Cheng, W. Zhang, X. Li, K.M. Butler, Test cost reduction through

performance prediction using virtual probe, in IEEE International Test Conference (2011),
pp. 1–9

11. S. Duane, A.D. Kennedy, B.J. Pendleton, D. Roweth, Hybrid monte carlo. Phys. Lett. B 195(2),
216–222 (1987)

12. J. Durbin, Distribution Theory for Tests Based on Sample Distribution Function, vol. 9 (SIAM,
Philadelphia, 1973)

13. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction (Springer, New York, 2001)

14. K. Huang, N. Kupp, J. Carulli, Y. Makris, Handling discontinuous effects in modeling spatial
correlation of wafer-level analog/RF tests, in IEEE Design, Automation and Test in Europe
Conference (2013), pp. 553–558

15. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

16. N. Kupp, K. Huang, J. Carulli, Y. Makris, Spatial correlation modeling for probe test cost
reduction, in IEEE/ACM International Conference on Computer-Aided Design (2012), pp. 23–
29

17. N. Kupp, K. Huang, J. Carulli, Y. Makris, Spatial estimation of wafer measurement parameters
using Gaussian process models, in IEEE International Test Conference (2012), pp. 1–8

18. F. Liu, A general framework for spatial correlation modeling in VLSI design, in IEEE/ACM
Design Automation Conference (2007), pp. 817–822

5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications 173

19. D. MacKay, Information Theory, Inference and Learning Algorithms (Cambridge University
Press, Cambridge, 2003)

20. W. Maly, A.J. Strojwas, S.W. Director, VLSI yield prediction and estimation: a unified
framework. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 5(1), 114–130 (1986)

21. G.W. Milligan, M.C. Cooper, An examination of procedures for determining the number of
clusters in a data set. Psychometrica 50(2), 159–179 (1985)

22. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (MIT Press,
Cambridge, 2006)

23. S. Reda, S.R. Nassif, Accurate spatial estimation and decomposition techniques for variability
characterization. IEEE Trans. Semicond. Manuf. 23(3), 345–357 (2010)

24. B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond (MIT Press, Cambridge, 2001)

25. B.W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall/CRC,
Boca Raton, 1986)

26. H.G. Stratigopoulos, Y. Makris, Error moderation in low-cost machine-learning-based Ana-
log/RF testing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(2), 339–351 (2008)

27. H.G. Stratigopoulos, S. Mir, A. Bounceur, Evaluation of analog/RF test measurements at the
design stage. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(4), 582–590 (2009)

28. H.G. Stratigopoulos, P. Drineas, M. Slamani, Y. Makris, RF specification test compaction using
learning machines. IEEE Trans. Very Large Scale Integration Syst. 18(6), 998–1002 (2010)

29. V. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 1995)
30. V. Vapnik, Statistical Learning Theory (Wiley, New York, 1998)
31. P.N. Variyam, S. Cherubal, A. Chatterjee, Prediction of analog performance parameters using

fast transient testing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(3), 349–361
(2002)

32. R. Voorakaranam, S.S. Akbay, S. Bhattacharya, S. Cherubal, A. Chatterjee, Signature testing
of analog and RF circuits: algorithms and methodology. IEEE Trans. Circuits Syst. I 54(5),
1018–1031 (2007)

33. C.K.I. Williams, C.E. Rasmussen, Gaussian processes for regression, in Advances in Neural
Information Processing Systems 8 (MIT Press, Cambridge, 1996), pp. 514–520

34. W. Zhang, X. Li, E. Acar, F. Liu, R. Rutenbar, Multi-wafer virtual probe: minimum-cost
variation characterization by exploring wafer-to-wafer correlation, in IEEE/ACM International
Conference on Computer-Aided Design (2010), pp. 47–54

35. W. Zhang, K. Balakrishnan, X. Li, D. Boning, R. Rutenbar, Toward efficient spatial variation
decomposition via sparse regression, in IEEE/ACM International Conference on Computer-
Aided Design (2011), pp. 162–169

36. W. Zhang, X. Li, F. Liu, E. Acar, R. Rutenbar, R.D. Blanton, Virtual probe: a statistical
framework for low-cost silicon characterization of nanoscale integrated circuits. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 30(12), 1814–1827 (2011)

Chapter 6
Machine Learning Approaches for IC
Manufacturing Yield Enhancement

Hongge Chen and Duane S. Boning

6.1 Introduction

Semiconductor manufacturing processes are highly automated with large amounts
of available data. Due to the uncertainty in nanoscale fabrication and the growing
complexity of the process, various machine learning and data mining techniques
have been proposed to improve different steps of manufacturing [1–3]. In this
chapter, we consider machine learning to predict and enhance the yield of integrated
circuit (IC) manufacturing. More specifically, we want to predict the results of final
device tests from early stage data. The results of the final test are assumed to be
binary, for example, pass/fail or good/bad. Two main challenges, class imbalance
and concept drift, in building machine learning models for integrated circuit yield
enhancement are discussed and addressed in this chapter, based on and extending
the work presented in [4] and [5].

6.1.1 Challenge One: Imbalanced Classification

In high-volume semiconductor manufacturing, high manufacturing yield is often
achieved. As a result, the number of failure devices may only be a very small fraction
of the sample set. The issue of extreme differences in prior class probabilities
is called class imbalance [6]; building classifiers on highly imbalanced datasets
is challenging. In scenarios we consider here, class imbalance arises because we
have much smaller numbers of dies belonging to the “failure” class compared to

H. Chen · D. S. Boning (�)
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: chenhg@mit.edu; boning@mtl.mit.edu

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_6

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_6&domain=pdf
mailto:chenhg@mit.edu
mailto:boning@mtl.mit.edu
https://doi.org/10.1007/978-3-030-04666-8_6

176 H. Chen and D. S. Boning

those in the “good die” class. In this chapter, we discuss batch and online learning
ensemble methods to learn on highly imbalanced datasets from IC manufacturing.
Our approach will be presented in Sects. 6.4.1 and 6.4.2.

6.1.2 Challenge Two: Concept Drift

The data from a manufacturing process is often available in a data stream manner.
Due to subtle changes in the process, the underling probability distributions of the
data are expected to change over time. This issue is called concept drift, with the
unfortunate effect that learning models trained on old data may be inconsistent
with new data [7]. To overcome this challenge, we present an incremental learning
approach to learn in nonstationary environments. Our approach for incremental
learning and continuous classifier updating is discussed in Sect. 6.4.3.

6.1.3 Application

As an application, our learning methods for class imbalance and concept drift are
tested on a flash memory packaging process. There are two main reasons why a
packaging process, the last step of semiconductor device fabrication, is a good
and important object of study. First, packaging is almost the last chance for a
semiconductor manufacturing company to improve its product quality before the
final test. Second, at packaging, we have more input features, including unpackaged
die electrical test results, for the learning model than at most other previous
manufacturing stages. Opportunities for machine learning-based yield improvement
in packaging processes have not attracted much attention with few previous works
reported. In this chapter, we build on our previous discussion in [4] and [5] to show
that with a good machine learning model classifying the flash memory dies before
packaging, we can improve the final part yield significantly. Our key ideas in this
chapter are as follows:

1. Batch and online ensemble machine learning techniques are explained to address
the class imbalance problem.

2. An incremental learning framework is designed to overcome the problem of
concept drift.

3. We build a mathematical model and demonstrate the possibility of yield improve-
ment using a classifier to detect bad dies before packaging.

4. The experimental results show the potential for significant improvement of yield
using industrial data.

The rest of this chapter is organized as follows. Section 6.2 is an introduction to the
flash memory manufacturing process. Section 6.3 provides the preliminaries of the
problem, including evaluation metrics and mathematical formulation. In Sect. 6.4,

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 177

the batch, online, and incremental learning frameworks are discussed. Then, the
experimental results are presented in Sect. 6.5. Section 6.6 concludes this chapter.

6.2 Background of the Manufacturing Process

As illustrated in Fig. 6.1, there are six high-level steps in the IC memory manufac-
turing process [8], Wafer Fabrication, Cherry Pick, KGD, Assembly (Packaging),
Die Preparation, and Memory Test. In flash memory chip manufacturing, wafers
are fabricated in wafer fab facilities, after which dies on each wafer go through a
standard electrical test process. Based on the results of these tests, wafers and dies
are marked with different parameters and bins. The two main tests in the fabrication
facility are SME1 and SME2. These two tests are various electrical tests at two
different temperatures. Note that in order to reduce cost, SME1 and SME2 are
performed in a sequential manner, meaning that dies that fail SME1 will not be
tested in SME2. Dies that fail either SME1 or SME2 are marked on the wafer by
the fab. Then, the wafers, together with their data, are shipped to an assembly and
test facility. This facility can then bin or “cherry pick,” by sorting the wafers into
different quality tiers according to the test data from the fab. A further testing step
called the known good die (KGD) test is carried out. KGD is product-oriented: dies
from wafers in different tiers undergo different KGD procedures. Those dies on
the “prime” wafers identified in the cherry pick go through a strict KGD test and
will be packaged into high-end products. Then, the packaging process begins. After
necessary preparations and processing steps, the wafers are diced into singular dies.
Then, wire bonding attaches the dies to the substrate, with other passive components
mounted on. Importantly, multiple dies are typically stacked together. Then, the
device is encapsulated and separated [8]. After packaging, there is a final memory
test which verifies the functionality of the product in the extreme environment of
the real world. Though the dies are packaged into products, memory test also still
assesses the performances of each die within the package. For each die, the output
of the memory test is pass (good) or fail (bad). Note that all dies selected for

Wire bonding

Fig. 6.1 Flash memory chip manufacturing process as discussed in [8]

178 H. Chen and D. S. Boning

packaging have already passed earlier strict die electrical tests, but some of them still
fail the high-performance final memory test after packaging. In other words, there
exists “actually” bad or low-performance dies despite being judged by the earlier
tests as good or high-performance, and given the limitations of the existing test
decision process they can only be detected later by the final memory test. Because
the dies are sequentially connected in the package, if one die in the package fails, the
whole package is considered as fail. The company does not necessarily discard such
“failed” packages, but rather downgrades them to low-end products with less profit.
Since the total number of packages is fixed, to achieve high profit, the company
desires more high-end products. Because a single fail die will lead to the failure
(downgrading) of the whole package, good (high-performance) dies stacked in that
package may be wasted. If we know that the failure probability of a single die is
pdie fail, which is usually very small, the failure rate of the final packages will be

ppackage fail = 1− (1− pdie fail)
s ≈ spdie fail, (6.1)

where s (= 4, 8, or even 16) is the number of dies in a package. Thus, the real failure
rate of the product can be much higher than the failure rate of dies.

The conceptual goal of a machine learning-based classifier is shown in Fig. 6.2.
Each die from wafer fab (shown at left in Fig. 6.2) has a large number of features
based on electrical test measurements. Based on these measurements, some dies are
identified by the test program to be bad (e.g., red dies in Fig. 6.2), while the rest
are assumed to be good dies and are sent to packaging, having passed earlier SME1
and SME2 electrical tests. So, the packaging process proceeds on the assumption
that all of these dies are good and will meet high-performance specifications. But,
actually some of these dies are not good (pictured as orange dies in Fig. 6.2), and
presently these failures can only be detected by the final memory test. If we can
build a classifier to predict the result of the final memory test based on the available
die electrical test data from the fab, more good dies (shown as blue dies in Fig. 6.2)
will be stacked together for more high-end products.

Fig. 6.2 Manufacturing process with a classifier

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 179

6.3 Preliminaries

As mentioned in Sect. 6.1, a good classifier for memory test results before packaging
will help to increase yield and profit for the following reasons.

• One can stack predicted good dies together for high-end products and package
predicted lower-performance (“bad”) dies together for low-end products. If the
classifier is good enough, the number of good packages will increase.

• Dies predicted as “bad” can go through a lower-cost low-end packaging and test
process directly and the cost of downgrading is saved.

For each die, all of its early test results and fabrication parameters can be used
as the input of the classifier. In our data, approximately 1000 measured features
(including results from SME1, SME2, and KGD) are available for each die. The
output of the classifier is a prediction of the die’s memory test result. Figures 6.3
and 6.4 illustrate the packaging and testing process without and with a classifier,
respectively. In these two simple examples, 4 out of 16 incoming dies (all of which
passed the fab die tests) are actually bad. If we have a fairly good classifier (even if
imperfect as illustrated in Fig. 6.4) to predict the memory test result and package
dies predicted as good together as high-end products and dies predicted as bad
together as low-end products, our high-end yield can be improved from 25% to
50% in this example. A similar issue also exists in the novel 3D integrated circuit
packaging technology: if one chip in a stack fails, the whole package fails. In 3D IC
packaging cases, where different types of chips or devices are stacked in a package,
we would need classifiers for each kind of chip.

Fig. 6.3 The packaging and memory testing process without a classifier

Fig. 6.4 The packaging and memory testing process with a classifier

180 H. Chen and D. S. Boning

In Sects. 6.3.1 and 6.3.2, we next introduce terms and evaluation metrics used in
this work. Then, the mathematical insight of the yield improvement and profit gain
will be provided in Sect. 6.3.3.

6.3.1 Evaluation Metric: Confusion Matrix

Confusion matrices are perhaps the easiest and most widely used performance
metric in classification problems. Suppose we have a classification problem with
two possible classes; the confusion matrix is a 2 × 2 matrix visualizing the
performance of a supervised learning method. Each column of a confusion matrix
represents a possible predicted condition (output of the classifier), while each row of
the matrix represents a possible true condition (ground truth). The confusion matrix
and corresponding terminology with respect to a binary classification problem are
shown in Table 6.1. In our problem, fail dies are labeled as 1 (positive or signaling
a failure) in the final memory test and pass dies are labeled as 0 (negative). The
confusion matrix is constructed based on the results of a classifier and known final
memory test on a test set of N dies. Each die in the test set must be placed into one
cell in the matrix. Fail dies that are correctly predicted as fail are placed into the true
positive (TP) cell, and those that are incorrectly predicted as pass are placed into the
false negative (FN) cell. Good dies that are correctly predicted as pass are placed
into the true negative (TN) cell, while those incorrectly predicted as fail are placed
into the false positive (FP) cell. Then, we sum up the number of dies in each cell
and obtain the confusion matrix of the classifier. FN is also called Type II error and
FP is also called Type I error.

Based on the confusion matrix, some terminology and derivations are developed.
First, it is obvious that we have Nfail = TP+FN true fail dies and Npass = FP+TN
true pass dies, where total number of dies N = Nfail + Npass. The classification
accuracy is defined as:

Acc = TP+ TN

TP+ TN+ FP+ FN
= TP+ TN

N
.

In our high manufacturing yield and highly imbalanced classification scenario,
classification accuracy is in fact not a good metric since we can achieve fairly high

Table 6.1 The confusion matrix and corresponding terminology with respect to a binary
classification problem

Predicted condition

Predicted positive (fail) Predicted negative (pass)

True condition
Condition positive (fail) True positive (TP) False negative (FN)

Condition negative (pass) False positive (FP) True negative (TN)

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 181

accuracy by simply labeling all dies as pass. For example, if in our data Nfail = 10
and Npass = 990 (which means that the yield is 99%), then a trivial classifier
predicting all dies as good can achieve 99% classification accuracy since TN = 990,
FN = 10, and TP = FP = 0. However, this trivial classifier cannot give any useful
information.

To overcome this, we instead need to consider both true and false positive rates.
The true positive rate (TPR) is defined as:

TPR = TP

TP+ FN
,

which gives the fraction of positive instances that are correctly detected as positive.
The false positive rate (FPR) is defined as:

FPR = FP

FP+ TN
,

which gives the fraction of negative instances that are sacrificed or lost to false
alarms. In the aforementioned example, the trivial classifier has TPR = FPR = 0.
If our classifier detects 8 out of 10 bad dies while mistakenly labels 99 good dies as
bad, we have TPR = 0.8 and FPR = 0.1. In general, a good classifier is expected to
have both low FPR and high TPR.

6.3.2 Evaluation Metric: ROC Curves

The receiver operating characteristic (ROC) curve is a graphic illustration of the
performance of a binary classifier based on TPR and FPR. We denote “positive” or
fail by 1, and “negative” or pass by 0.

For a given die, the vector of input features of our classifiers is denoted as x ∈ X,
where X is the space of input features. The prediction result y belongs to Y , the set
of all possible prediction results. In our binary classification, Y = {0, 1}. A classifier
h(x, y) is assumed to output a nonnegative real value, the score of an instance with
features x to be classified in a class y ∈ Y . Moreover, we have

∑
y

h(x, y) = 1 and h(x, y) ∈ [0, 1]. (6.2)

Then, h(x, y) can be interpreted as the probability of x to be classified into class y.
To make a prediction, a threshold η is set to map the scores to {1, 0}. For example,
when η = 0.6, a die with feature vector x is predicted to be a member of class 1
if h(x, 1) > 0.6 and to be a member of class 0 otherwise. Under each threshold,
we thus have different TPR and FPR. The receiver operating characteristic (ROC)

182 H. Chen and D. S. Boning

0 0.2 0.4 0.6 0.8 1
False Positive Rate (FPR)

0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

(T
P

R
)

AUC
Practical Classifier
Ideal Classifier
Random Guess

Fig. 6.5 Receiver operating characteristic (ROC) curves and the area under ROC curve, or AUC

curve is obtained by plotting TPR against FPR under different thresholds. Note that
when η = 1, all instances will be classified as 0, thus TPR = FPR = 0; and when
η = 0, we have TPR = FPR = 1. So, an ROC curve must go through (0, 0)
and (1, 1). Figure 6.5 shows different example ROC curves. An ideal ROC curve
goes through TPR = 1,FPR = 0, which means that under some threshold, we can
achieve 100% accuracy in classification with an ideal classifier. A classifier based
purely on a random guess is a straight line, while a practical classifier is somewhere
in between these two cases.

The area under an ROC curve (AUC) is a useful overall metric for classifier
performances with all possible thresholds, as presented in Fig. 6.5. For an ideal
classifier, AUC = 1; for random guess, AUC = 0.5; and for a practical classifier,
AUC ∈ (0.5, 1).

6.3.3 Mathematical Formulation

With a large number of testing dies, we can estimate the underlying positive and
negative probabilities by the relative frequency. Let H be the true condition and y
be the predicted condition. For given input features x and threshold η, y = 1 if
h(x, y) > η and 0 otherwise. Then, the joint distribution of true condition H and
predicted condition y can be estimated by:

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 183

p(H = 1, y = 1) = TP

N
, p(H = 1, y = 0) = FN

N

p(H = 0, y = 1) = FP

N
, p(H = 0, y = 0) = TN

N
.

(6.3)

Here, p(E) indicates the probability of event E. Without any classifiers, if we
randomly package the dies into packages of s chips in each stack the failure rate
of the packages is

ppackage fail = 1− p(H = 0)s . (6.4)

Then, if n dies are produced, we can produce n/s packages in total. The expected
number of good packages is

E[m1(s)] = n
s
p(H = 0)s, (6.5)

where round-off error is neglected (number of leftover dies < s not packaged).
With a classifier to predict the memory test result before packaging, we can stack
the dies predicted as fail together and the dies predicted as pass together. Recall
that our “fail” classification still indicates that the die will work in low-performance
products, while “pass” dies are required for high-performance products. Using the
law of total expectation, the expected number of good (high-performance) packages
in this case is given by:

E[m2(s)] = Ek[E[m2(s)|k]] = E[kp(H = 0|y = 0)s]
= n

s
p(H = 0|y = 0)sp(y = 0), (6.6)

where k is the number of stacks packaged as high-end products and is subject to
a binomial distribution B(n

s
, p(y = 0)). Again, round-off error is neglected. If

the classifier is ideal, all good dies are packaged into high-end products and the
maximum number of high-end products is achieved:

E[m∗2(s)] =
n

s
p(y = 0) = n

s
p(H = 0). (6.7)

It is easy to prove that E[m∗2] ≥ E[m1] and E[m∗2] ≥ E[m2]. The expected yield
improvement is E[m2(s)]−E[m1(s)] which can be either positive or negative. Note
that TP, TN, FP, and FN are uniquely determined by Npass, Nfail, FPR, and TPR.
Subtracting (6.5) from (6.6), plugging in (6.3), and with a little manipulation, we
have the expected yield improvement:

184 H. Chen and D. S. Boning

E[m2(s)−m1(s)]
n/s

= p(H = 0, y = 0)s

p(y = 0)s−1 − p(H = 0)s

= (p(H = 0)p(y = 0|H = 0))s

[(p(H = 0)p(y = 0|H = 0)+ (p(H = 1)p(y = 0|H = 1)]s−1

− p(H = 0)s

= [Npass(1− FPR)]s
N [Npass(1− FPR)+Nfail(1− TPR)]s−1 −

Nspass

Ns
,

(6.8)

which is a function of TPR and FPR. In this work’s imbalanced classification
scenario, we have Nfail � Npass. As shown in Fig. 6.5, TPR ≥ FPR should hold, so
we also have Nfail(1− TPR)� Npass(1− FPR). Then, (6.8) can be linearized as:

E[m2(s)−m1(s)]
n/s

= [Npass(1− FPR)]s
N [Npass(1− FPR)+Nfail(1− TPR)]s−1

− N
s
pass

Ns

≈ Npass

N
(1− FPR)

[
1− (s − 1)

Nfail(1− TPR)

Npass(1− FPR)

]

−
(

1− sNfail

N

)

= (s − 1)
Nfail

N
TPR− Npass

N
FPR

= 1

N
[(s − 1)TP− FP],

(6.9)

where we use the fact that (1+ x)n ≈ 1+ nx when |x| � 1. This gives us an easy
way to estimate the yield improvement. For example, when we have four dies in a
package, the yield improvement will be positive if the number of bad dies correctly
detected is at least 1

3 of the number of good dies mistakenly predicted as bad.
Here, we implicitly assume that the underlying joint probability distribution

p(H, y) does not change over time. If it does, as in Sects. 6.1.2 and 6.4.3, Eq. (6.8)
from old data may not be valid for future prediction.

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 185

6.4 Learning Models

Here, we describe the learning models used to overcome imbalanced classification
and concept drift. The goal is to increase TPR and reduce FPR so as to maximize
the expected yield improvement as in Eq. (6.8).

6.4.1 Imbalanced Classification and Batch RUSBoost
Learning

The imbalanced classification problem is pervasive in many real-world problems,
especially when connected with anomaly detection [6, 9], such as in Email fraud
detection, medical diagnosis, or computer intrusion detections. Since most conven-
tional learning techniques assume fairly balanced distributions, their performances
may be compromised on a highly imbalanced dataset. Class imbalance is a classical
problem with some state-of-the-art solutions [10]. In our flash memory data, the fail
dies only consist of around 2% of total dies and the problem is highly imbalanced.

A fundamental approach is to not make any changes in the learning algorithm,
and instead to modify the dataset itself to provide a balanced training set for the
classifier. The easiest and most intuitive ways to alleviate class imbalance are
oversampling the minority class or undersampling the majority class. Though these
seem to be equivalent in function, both oversampling and undersampling have
problems that may be harmful to the performance of learning. For undersampling,
reducing the number of the training instances means that some important patterns
or information may be lost and the data becomes noisy. Oversampling, on the other
hand, may lead to an increase in computation time and overfitting due to a large
number of identical minority training instances. To tackle the problems of simple
oversampling and undersampling, more sophisticated techniques are available.

Sampling techniques can be integrated with ensemble methods to interact with
the models. Ensemble methods combine the results from multiple base classifiers
(simple classifiers such as decision trees and naive Bayes classifiers) to achieve
better performance. One of the most well-known ensemble methods to combine
classifiers is Adaptive Boosting (AdaBoost) [11]. In AdaBoost, the first base
classifier is trained on the original dataset. Then, when training the subsequent
base classifiers, instances misclassified by previous classifiers will be assigned
larger weights (i.e., boosted). After training all the base classifiers, the ensemble
classifier’s final result is a weighted average of the base classifiers’ output. The
individual base classifiers may be very weak, but as long as the classification
performances of each of them are slightly better than random guessing, the final
ensemble classifier can be proven to converge to a strong classifier.

In our problem, RUSBoost is used to tackle the problem of imbalanced dataset
in classification. Here, RUS stands for “random undersampling” [12], which means
removing instances in the majority class at random. RUSBoost is a widely used

186 H. Chen and D. S. Boning

hybrid approach embedding under-sampling in the AdaBoost framework. Before
training each new base classifier, the instances in the majority class are randomly
undersampled without replacement as in step 4 of Algorithm 1. For example, if the
desired class ratio for training is 50 : 50, then instances in the majority class are
randomly removed until the number of majority instances equals to the number of
minority instances. The class ratio here is a hyper-parameter to be determined by
cross validation. The main advantage of random undersampling is its simplicity.
With multiple classifiers in an ensemble, the problem of noisy base classifiers can
be alleviated. Random undersampling the majority class generates a new training
set S′t with weight distribution D′t , which is used to train base classifier ht . Then,
the pseudo-loss on the original dataset S with weights Dt is calculated as in step 7.
In step 9, we update the weights. Misclassified instances at t will have large weights
at t + 1, so the training of the base classifier at t + 1 will concentrate more on these
instances.

Algorithm 1 Batch RUSBoost [12]
1: input: S instances: (x1, y1), (x2, y2), . . . , (xm, ym), yi ∈ {1, 0} with majority class yi = 0 and

minority class yi = 1; base classifiers h1, . . . , hT
2: initialize D1(i) = 1

m
for any i

3: for t = 1, 2, . . . , T do
4: Create new training set S′t by undersampling the majority class, the weight distribution of

the remaining instances is D′t
5: Train base classifier ht with S′t and D′t
6: Test ht on S, ht (xi , yi) ∈ [0, 1]
7: Calculate pseudo-loss on S and Dt : εt =∑

i:yi �=y Dt (i)(1− ht (xi , yi)+ ht (xt , y)).
8: αt = εt

1−εt
9: Update Dt+1(i) = Dt(i)α

1
2 (1+ht (xi ,yi)−ht (xt ,y))
t

10: Normalize Dt+1(i) : Dt+1(i) = Dt+1(i)∑
j Dt+1(j)

11: output: H(x, y) =∑T
t=1 ht (x, y)log 1

αt
with normalization

6.4.2 Online RUSBoost Learning

Conventional batch machine learning models are trained on a fixed training set. In
our problem, however, all dies, no matter predicted as pass or fail, go through the
memory test as either high-end or low-end products and thus we eventually have
access to the true labels for all test instances. This enables us to further improve our
classifier with new test data in an online approach, as shown in Fig. 6.4. Due to the
large number of dies produced each day, it is expensive to store all the old training
data and retrain a new classifier with both old and new data when more data is
available. Therefore, we use an online learning model to update our existing model

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 187

when the information about new dies arrives. A similar model updating technique
has also been studied in the CAD community, such as for hotspot detection in [13].

Online machine learning is a vibrant subarea in machine learning research.
Online learning methods have been proven to be very powerful in applications where
training data becomes available with a sequential order. In contrast with traditional
batch learning which needs to see the entire training dataset before giving an output,
online learning requires instant output after seeing each datum. The online classifier
is built to output prediction pt for input xt at each time step t , t = 1, 2, . . . , T . At
time t , classifier receives xt from “nature.” In our work, “nature” refers to the early
test data from SME1, SME2, or KGD. The classifier is asked for a prediction pt for
this xt . Then at some later point, the classifier receives the true label yt . Comparing
pt and yt , the classifier then updates its internal model.

The online learning model used in our work is an online version of RUSBoost
proposed in [14], as shown in Algorithm 2. This Online RUSBoost is based on the
online boosting framework proposed in [15]. The online versions of bagging and
boosting approaches are discussed in [15]. The key idea of these approaches is to
approximate the corresponding batch bagging and boosting version with the training
dataset observed as a data stream. Mathematically, this approximation depends
on the well-known limiting case of a binomial distribution (when the number of
samples is very large and the probability of success is very small) approaching
a Poisson distribution. Indeed, for a given data point, if we draw N independent
samples with probability of success λ

N
, the probability of having n copies is

pn =
(
N

n

)(
λ

N

)n (
1− λ

N

)N−n
→ e−λλn

n! (6.10)

when N →∞. The reason for this approximation is that in the online learning, we
may not know the length of the whole data stream before observing all the data. But
with this approximation, we do not need the number of data points N when it is
very large. Then instead of changing the probability distribution on the samples as
in batch RUSBoost, we simply change the λ values as in Algorithm 2. Experimental
results have shown that the online learning can achieve comparable performance to
the corresponding batch learning method [15].

6.4.3 Incremental Learning for Concept Drift and Class
Imbalance

The classical setup of a batch machine learning problem is based on learning from
data drawn from an unknown but fixed distribution. However, problems in the real
world are usually more complicated, especially with parameters in the learning
scenario involving time. The data we receive may not be generated at the same time,
and a critical issue is that the underling probability distribution of the training data

188 H. Chen and D. S. Boning

Algorithm 2 Online RUSBoost [14]
1: input: Data stream: (x1, y1), (x2, y2), . . . , (xm, ym), yi ∈ {1, 0} with majority class yi = 0

and minority class yi = 1; sampling rate C
2: Base classifiers h1, . . . , hK , λSCk = λSWk = 0 for all k.
3: Initialize λSCk = λSWk = λPOSk = λNEGk = 0 for all k, n+ = n− = 0
4: when (xi , yi) arrives:
5: Reset λ = 1
6: for k = 1, 2, . . . , K do
7: if yi = 1 then
8: λPOSk ← λPOSk + λ, n+ = n+ + 1

9: λRUSk ← λ n+
n++n− /

λPOSk

λPOSk +λNEGk

10: else
11: λNEGk ← λNEGk + λ, n− = n− + 1

12: λRUSk ← λ Cn+
n++n− /

λNEGk

λPOSk +λNEGk

13: Generate random variable ai according to Poisson(λRUS)
14: Do ai times: train base classifier hk with (xi , yi)
15: if hk(xi) = yi then
16: λSCk ← λSCk + λ
17: εk ← λSWk

λSWk +λSCk
18: λ← λ

2(1−εk)
19: else
20: λSWk ← λSWk + λ
21: εk ← λSWk

λSWk +λSCk
22: λ← λ

2εk

23: output: H(x) = arg maxy
∑T
t=1 1{hk(x)=y}log 1−εk

εt

may change with time [7]. The issue of concept drift in the statistics community
refers to the unexpected or unknown changes in the statistical properties of the
dataset used to train and test the model. The most obvious problem caused by
concept drift is that the model built on previous training data may lose its accuracy
over time, as illustrated in Fig. 6.6. In this figure, the blue crosses and circles are
data points at t1, while the red crosses and circles are data points at t2. The blue
dashed line is the decision boundary at t1, which successfully classifies most blue
data points at t1. However, as the distribution of the data changes in t2 (concept
drift), if we still use the blue dashed line as the decision boundary, red data points
in the right upper corner will be misclassified. In fact, at t2, our decision boundary
should be changed to the red dashed line. In the data stream from a semiconductor
manufacturing process, concept drift also exists. One obvious reason is inherent
change in the manufacturing process, due to continued improvement, equipment
aging, or environmental changes in the fabrication, in assembly, or in the testing
process.

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 189

Class A at t
1

Class B at t
1

Class A at t
2

Class B at t
2

Decision Boundry at t
1

Decision Boundry at t
2

If at t
2
 we still use the

decision boundary in t
1
,

points in this region will be
misclassified.

Fig. 6.6 Example of concept drift at two time steps t1 and t2. If at t2 we still use the decision
boundary at t1, points in the ellipse will be misclassified

It is believed that dealing with concept drift and class imbalance simultaneously
is an inherently difficult problem [16]. Due to the scarcity of fail dies (instances from
minority class), the time interval between two consecutive fail dies can be large.
Substantial changes in the manufacturing process may happen in this interval, and
the underlying distribution of these two fail dies’ parameters may not be identical.
With this problem formulation, Online RUSBoost in Algorithm 2 is not the best
choice to handle a nonstationary environment since it is designed to approximate
the batch learning algorithm.

Intuitively, in an evolving environment, learning models should only be trained
on the more “recent” data and should only be used to predict the near future. How-
ever, as the concept drift can be very fast, the qualified recent data may be inadequate
to train a good classifier due to overfitting. This problem is amplified in the class
imbalance scenario where the qualified recent minority instances are even fewer.
To learn in a nonstationary environment, the idea of incremental learning has been
proposed. In contrast to the online learning scenario, where the information from
old instances is discarded after training, incremental learning emphasizes extending
the model’s knowledge by leveraging new data while preserving information from
old data. To implement this idea, we store only the classifiers trained on old data
(since storing all old data is expensive) and invoke those classifiers together with
the new classifiers to help us to make predictions in the future. While a new
classifier trained only on recent data may be incapable of making a good prediction,
old classifiers trained on a similar pattern may participate in decision-making and
improve performance.

190 H. Chen and D. S. Boning

In this area, the Learn++.NIE [17] algorithm is a state-of-the-art ensemble
method. Learn++.NIE assumes that there is a data stream of chunks (mini batches).
For example, in our case, each data chunk can be dies produced on one day. At
each time step t , a new chunk Dt = {(x1, y1), (x2, y2), . . . , (xm(t) , ym(t))}
arrives. A new base classifier ht is trained on Dt in a batch manner, as shown in
Fig. 6.7. The final ensemble combines the base classifiers by calculating a weighted
average of each base classifier’s output. The weight of the base classifier trained
at time step k ≤ t is determined by that base classifier’s overall performance on
Dk, Dk+1, . . . , Dt . Then, a sigmoid error weighting is used to emphasize the
performance on recent data chunks as shown in Fig. 6.8. The sigmoid values a and b
are hyper-parameters to be tuned by cross validation, where a controls the slope and
b controls the halfway crossing point. A detailed introduction of the Learn++.NIE
is available in [17].

Fig. 6.7 The idea of incremental learning is that we divide our data stream into data chunks. Then,
we train base classifiers on each data chunk and combine them to predict dies in the new data chunk

Time, t

E
rr

o
r

o
f

th
e

K
th
 c

la
ss

if
ie

r
h k

t
kε

1/2

1

t-4

C
u

rr
en

t e
rr

o
r
o

f
th

e
k

th
cl

as
si

fi
er

 i
s

w
ei

g
h
te

d
m

o
st

 h
ea

v
il

y

k
Classifier hk had its lowest error

when it was first generated

Error truncated to ½ when

si
g
m

o
id

al
 e

rr
o
r

w
ei

g
h
ti

n
g
 f

u
n
ct

io
n

actual error exceeded this threshold

Errors of hk on past environments
are weighted less heavily

E
rr

o
r

w
ei

g
h

ti
n

g
1

1

2

0

ω t
k

t-3 t-2 t-1 t

Fig. 6.8 An illustration of the sigmoidal error weighting in [18]. Learn++.NIE in [17] uses a
similar error weighting

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 191

Algorithm 3 Modified Learn++.NIE
1: input: Data chunks: Dt = {(xi , yi)}, i = 1, 2, . . . , m(t) with majority class yi = 0 and

minority class yi = 1; positive sigmoid parameters a and b.
2: for t = 1, 2, . . . do
3: when Dt arrives:
4: Call RUSBoost on Dt to generate a new base classifier

ht (·, ·) : X × Y → [0, 1]
5: For k ∈ {1, 2, . . . , t}, evaluate auc(t)k , area under

ROC curve obtained by hk on Dt .
6: For k ∈ {1, 2, . . . , t}, calculate pseudo-loss

ε
(t)
k = 1− auc(t)k .

7: if ε(t)t > 0.5 then
8: Discard ht and train a new one as in line 4 and redo lines 5 and 6.
9: if ε(t)k > 0.5 and k < t then

10: Set ε(t)k = 0.5

11: β
(t)
k = ε(t)k /(1− ε(t)k)

12: For k ∈ {1, 2, . . . , t}, calculate weights:
Define: ω(t)k = [1+ exp(−a(t − k − b))]−1

Normalize: ω̂(t)k = ω(t)k /
∑t−k
j=0 ω

(t−j)
k

β̂
(t)
k =∑t−k

j=0 ω̂
(t−j)
k β

(t−j)
k

13: W
(t)
k = log 1

β̂
(t)
k

14: output: H(t)(x, y) =∑t
k=1W

(t)
k hk(x, y) with normalization

In order to make it more suitable to our problem, we discuss a modified version of
Learn++.NIE in this chapter, as expressed in Algorithm 3. Key ideas in this approach
include the following:

• Instead of undersampling bagging as in [17], we use RUSBoost as our base
classifier. Note that each RUSBoost base classifier is again an ensemble model
with its own base classifiers.

• Since the output of the base classifier is a probability, we use auc(t)k , the area
under ROC curve, to evaluate the performance of the base classifier. The pseudo-
loss is obtained by ε(t)k = 1− auc(t)k ∈ [0, 1].

• The final output of the ensemble is a weighted average of the probability from
each base classifier.

6.5 Experimental Results

The proposed batch, online, and incremental learning methods are implemented and
applied to memory die test data from our industrial partner. We choose a decision
tree [19] as the base classifier in this work due to its simplicity, minimal assumptions
required, and potential robustness against class imbalance with sampling [20].

192 H. Chen and D. S. Boning

One RUSBoost ensemble model consists of 40 decision tree base classifiers. In
Sects. 6.5.1 and 6.5.2, as the batch and online learning methods in this chapter are
not designed for concept drift, we use the data of around 100 k dies (2.5% actual
failure rate) produced in a short period of time, 8 days, to implement the algorithms.
We assume that no major change in the manufacturing process takes place in this
period and thus the concept drift in the data stream over this interval is negligible. In
Sect. 6.5.3, the data of dies produced in a larger time span, 1 month, is used (around
370 k dies in total), and the modified Learn++.NIE is used to handle concept drift
and class imbalance simultaneously.

6.5.1 RUSBoost on Imbalanced Dataset

This section examines the performance of RUSBoost on the imbalanced memory
test dataset. Our first experiment is to show the effectiveness of RUSBoost on an
extremely imbalanced memory test dataset. We use 40 decision trees in an ensemble,
and the learning rate in fitting is set as 0.15. Figure 6.9 shows typical ROC curves of
RUSBoost and AdaBoost on an imbalanced memory test dataset; AdaBoost largely
fails on the dataset, while RUSBoost maintains high performance. Since AdaBoost
tends to classify nearly all dies as pass, its TPR is very low. For example, typical
confusion matrices by setting threshold to 0.5 are shown in Tables 6.2 and 6.3. As
expected, AdaBoost tends to label nearly all dies as pass to achieve both simplicity

0 0.2 0.4 0.6 0.8 1
False Positive Rate (FPR)

0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

(T
P

R
)

RUSBoost
AdaBoost

Fig. 6.9 The ROC curves of RUSBoost and AdaBoost on an imbalanced memory test dataset

Table 6.2 A typical confusion matrix using AdaBoost, threshold 0.5

Predicted as fail Predicted as pass

True fail 1 633 TPR = 0.2%

True pass 6 29,360 FPR = 0.0%

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 193

Table 6.3 A typical confusion matrix using RUSBoost, threshold 0.5

Predicted as fail Predicted as pass

True fail 523 111 TPR = 82.5%

True pass 2518 26,848 FPR = 8.8%

and high accuracy. Then, only 0.2% (1 out of 634) of the real bad dies are detected
by the classifier, and the economic benefit generated is negligible, or even negative.
In contrast, RUSBoost identifies 523 of 634 bad dies, with significant potential
economic saving as a result.

Recalling Eq. (6.8), the expected packaged memory yield improvement is a
function of TPR and FPR. However, FPR and TPR are constrained by the ROC curve
of the classifier. Then, the optimal point (FPR∗, TPR∗) is where the contour plot
of expected yield improvement is tangent to the ROC curve, and the corresponding
optimal threshold η∗ is determined for future prediction. Figure 6.10 gives the ROC
curve and contour plots of expected yield improvement E[m2(s)−m1(s)]

n/s
with different

s (number of dies in a package) for the data in our application. As expected, with
larger s, we can achieve a larger yield improvement with more dies in a package.
When s = 16, the maximum yield improvement is as large as 20.48% for this case of
no concept drift, over an 8-day period. With smaller s, the yield without a classifier
itself is very high, so even 1% of improvement is difficult, though still economically
valuable. Also, the optimal threshold η∗ decreases as s increases, which means that
more dies will be classified as fail. Intuitively, as s increases, the cost of mistakenly
labeling a real bad die as a good die increases, since more good dies in its package
will be wasted. Then, the optimal classifier tends to decrease the threshold to detect
more real bad dies. Additionally, note that the contour plots of the expected yield
improvement using (6.8) are approximately straight lines, which proves that the
linearization in (6.9) is valid in our case.

6.5.2 The Effectiveness of Online Learning

With the same dataset, once we know the memory test result of a die in the test
set, it becomes our new training instance for updating the online learning classifier
in Algorithm 2. As online boosting methods are designed to approximate the batch
learning asymptotically, each die in the test set is predicted by a classifier trained on
the training set and all the test instances before it. As shown in Fig. 6.11, all base
classifiers of both batch and online models are trained on the training set. In the
batch learning scenario, these base classifiers are combined to test the dies in the test
set without any further training. In the online learning scenario, however, the dies
in the test set are received sequentially. The test results are then used to update the
online classifiers to achieve higher prediction accuracy. The online classifier is tested
on the same dataset we use in Sect. 6.5.1. As Fig. 6.12 indicates, online learning

194 H. Chen and D. S. Boning

0 0.05 0.1 0.15
False Positive Rate (FPR)

0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

(T
P

R
)

0.01
-0.01

-0.02

-0.04

-0.04

-0.04

-0.04

-0.04

-0.04

-0.03

-0.03

-0.03

-0.03

-0.03

-0.03

-0.02

-0.02

-0.02

-0.02

-0.02

-0.01

-0.01

-0.01

-0.01

-0.01

0

0

0

0

0

0

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.02

0.03

0.03

0.03

0.03

0.04

0.04

0.04

0.05

0.05

0.06

0.06
0.07

ROC Curve of Batch Learning
Contour Plot of Expected Yield Improvement

max
FPR, TPR

E[m2(4) − m1(4)]
n/4

= 2.72%

s= 4, yield without a classifier is 88.06%, yield with a classifier is 90.78%, η∗ = 0.75.

0 0.05 0.1 0.15
False Positive Rate (FPR)

0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

(T
P

R
)

0.07

0.08

0.09

0.09

0.08 0.07 0.06 0.05
0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.04

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.06

0.06

0.06

0.06

0.06

0.06

0.07

0.07

0.07

0.07

0.07

0.08

0.08

0.08

0.08

0.09

0.09

0.09

0.09

0.1

0.1

0.1

0.1

0.1

0.11

0.11

0.11

0.11

0.12

0.12

0.12

0.12

0.13

0.13

0.13

0.14

0.14

0.14

ROC Curve
Contour Plot of Expected Yield Improvement

max
FPR, TPR

E[m2(8) − m1(8)]
n/8

= 8.99%

s= 8, yield without a classifier is 77.54%, yield with a classifier is 86.53%, η∗ = 0.68.

0 0.05 0.1 0.15
False Positive Rate (FPR)

0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

(T
P

R
)

0.1
0.1

0.1
0.1

0.1
0.1

0.1
0.1

0.12
0.12

0.12
0.12

0.12
0.12

0.12
0.12

0.14
0.14

0.14
0.14

0.14
0.14

0.14
0.14

0.16
0.16

0.16
0.16

0.16
0.16

0.16
0.16

0.18
0.18

0.18
0.18

0.18
0.18

0.18
0.18

0.2
0.2

0.2
0.2

0.2
0.2

0.2
0.2

0.22
0.22

0.22
0.22

0.22
0.22

0.22
0.22

0.24
0.24

0.24
0.24

0.24
0.24

0.24

0.26
0.26

0.26
0.26

0.26
0.26

0.28
0.28

0.28
0.28

0.28

0.3
0.3

0.3
0.3

ROC Curve
Contour Plot of Expected Yield Improvement

max
FPR, TPR

E[m2(16) − m1(16)]
n/16

= 20.48%

s= 16, yield without a classifier is 60.12%, yield with a classifier is 80.60%, η∗ = 0.60.

Fig. 6.10 Contour plots of yield improvement E[m2(s)−m1(s)]
n/s

with the number of dies in a package
s = 4, s = 8, and s = 16. The yield improvement is optimized under the constraint of ROC curve
that is determined by the classifier. With more dies in a package, we can potentially achieve larger
yield improvement

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 195

Fig. 6.11 The batch and online learning scenarios. All base classifiers of both batch and online
models are trained on the training set. In the batch learning scenario, these base classifiers are
combined to test the dies in the test set without any further training. In the online learning scenario,
however, the test results are then used to update the model

0 0.05 0.1 0.15
False Positive Rate (FPR)

0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

(T
P

R
)

-0
.0

4

-0
.04

-0
.04

-0
.04

-0
.04

-0
.0

3

-0
.03

-0
.03

-0
.03

-0
.03

-0
.02

-0
.02

-0
.02

-0
.02

-0
.02

-0
.01

-0
.01

-0
.01

-0
.01

-0
.01

0

0

0

0

0

0

0.0
1

0.0
1

0.0
1

0.0
1

0.0
2

0.0
2

0.0
2

0.02

0.0
3

0.0
3

0.03

0.0
4

0.0
4

0.04

0.0
5

0.05

0.0
6

0.07

ROC Curve of Batch Learning
ROC Curve of Online Learning
Contour Plot of Expected Yield Improvement

max
F P R, T P R

E [m2(4) − m1(4)]
n/4

= 7.22%

Fig. 6.12 Contour plots of yield improvement with the number of dies in a package s = 4. Yield
with a batch classifier is 90.78%, while yield with an online classifier is 95.28%, compared to yield
with no classifier of 88.06%

could enable as much as an extra 4.5% of expected yield improvement compared
to the batch classifier when s = 4, primarily by a much improved classifier and
corresponding ROC curve, when there is no concept drift present.

6.5.3 Incremental Learning with Concept Drift

Finally, we consider concept drift. We first show that concept drift is indeed present
in our data within relevant time intervals. We then demonstrate the effectiveness of
our incremental learning approach with this concept drift.

We consider the following experiment to prove the existence of concept drift.
In this experiment, our larger data stream (about 370 k dies) is divided into five
sequential chunks, each covering approximately one week. Half of the third chunk

196 H. Chen and D. S. Boning

Fig. 6.13 Existence of concept drift. The data stream is divided into five chunks. The training
set is randomly selected from chunk 3. The remaining dies in chunk 3 are used as test set 3. The
classifier is tested on all five test sets. The performance of the classifier decays over time (both
forward and backward) as the ROC curves show, confirming substantial concept drift

is randomly selected as the training set. The rest of the dies in chunk 3 are used
as test set 3. Then, the classifier is tested on all five test sets. Figure 6.13 shows
the ROC curves obtained on the five test sets. Clearly, the classifier’s performance
on test sets 1, 2, 4, and 5 are worse than on test set 3, especially in the low false
alarm region that we care about most. This phenomenon indicates the existence of
concept drift, where the earlier time periods (1 and 2) and the later time periods (4
and 5) have different underlying statistical structures than period 3 used to build the
classifier; indeed, the degradation in the ROC is quite large in our data. Figure 6.14
shows the degradation of AUC value over time. A RUSBoost classifier is trained
with data from week 0 and tested on data from week 1, 2, . . . , 9. If we choose 0.85
as the threshold of major concept drift, only data within two weeks may be used.

As mentioned in Sect. 6.3.3, in a drifting environment, expected yield improve-
ment E(m2−m1)

n/s
in the future can no longer be estimated by old data. The choice of

the optimal threshold in classification then requires expert advice or evaluation of
cost tradeoff [8]. Here, we assess the overall performance of the classifiers by their
AUC values over time. We compare the AUC value of our modified Learn++.NIE
ensemble (incremental learning) against a single RUSBoost classifier trained only
on the most recent data chunk. Note that instead of using decision trees, the
incremental learning takes RUSBoost classifiers trained on each data chunk as base
classifiers, since data chunks are imbalanced. We divide our 370 k dataset from one
month into 14 time steps with two to three days in a time step. As the number of
dies from each day may differ, we make sure that in each data chunk we have
approximately the same number of dies. Then, we test the incremental learning

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 197

1 2 3 4 5 6 7 8 9
Number of Weeks

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
U

C
 V

al
ue

Fig. 6.14 The AUC values obtained on test sets from each week. The model is trained on data
from week 0. The threshold of major concept drift is set as 0.85 (dashed line)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time Steps

0

0.2

0.4

0.6

0.8

1

A
re

a
un

de
r

R
O

C
 C

ur
ve

 (
A

U
C

)

Incremental Learning
Single Classifier

Fig. 6.15 Average area under ROC curves obtained on data chunks by incremental learning, and
by a single classifier trained only on the most recent data chunk

method and single classifier on this data stream. This procedure is repeated 30 times,
and the average AUC results are shown in Fig. 6.15.

With old base classifiers stored, incremental learning outperforms a single
RUSBoost classifier on the whole. The average AUC value with a 95% confidence
interval of the single classifier is 0.79±0.002, while that of the incremental learning
is 0.82 ± 0.001 (a 4% improvement). If we do have expert advice for the optimal
threshold, average expected yield improvement with a 95% confidence interval by
our incremental learning and a single classifier is given in Table 6.4, where our

198 H. Chen and D. S. Boning

Table 6.4 Average expected yield improvement with a 95% confidence interval by incremental
learning and by a single classifier when optimal thresholds are given

s Incremental learning Single classifier Improvement factor

4 0.36%± 0.03% 0.08%± 0.02% 4.2×
8 1.4%± 0.03% 0.6%± 0.1% 2.2×
16 3.4%± 0.05% 2.4%± 0.1% 1.4×

Table 6.5 Average expected yield improvement with a 95% confidence interval by incremental
learning and by a single classifier when FPR = 5% thresholds are given

s Incremental learning Single classifier Improvement factor

4 −3.6%± 0.02% −4.2%± 0.10% –

8 −2.9%± 0.03% −3.4%± 0.08% –

16 0.0%± 0.03% −1.9%± 0.08% –

incremental learning increases the average expected yield improvement by 1.4× to
4.2× compared to the single classifier.

It is important to note that, in a nonstationary environment with class imbalance,
a sophisticated method to choose the threshold for classification is necessary. For
example, an intuitive way is to fix the false positive rate (FPR). Though this
method also uses assumed or historical information about the joint distribution
of H (true condition) and y (predicted condition), we may not achieve expected
yield improvement with this intuitive naive approach. The result of expected yield
improvement using thresholds with fixed FPR at 5% for our dataset is shown in
Table 6.5, which indicates negative yield improvement for both incremental learning
and single classifier. In contrast, optimal selection of thresholds can generate
substantial yield improvements, as shown in Table 6.4.

6.6 Conclusions

In this chapter, we identify two key challenges in building practical learning models
for semiconductor manufacturing process yield improvement, class imbalance, and
concept drift. Batch, online, and incremental learning frameworks are presented
to resolve these challenges. As an application, we study the packaging process of
flash memory. We first show the possibility of memory package yield improvement
in expectation by adding a classifier before packaging. The effectiveness of the
algorithms are demonstrated on real data from industry. In the future, we will inves-
tigate methods to determine the optimal classification threshold in nonstationary
environments. We will also devise more sophisticated models to predict defect
categories. We hope that our work will attract more researchers in the CAD and
machine learning community to the semiconductor manufacturing area.

6 Machine Learning Approaches for IC Manufacturing Yield Enhancement 199

Acknowledgements We thank SanDisk Semiconductor (Shanghai) Co. Ltd. (SDSS) for assis-
tance and support. We also thank Professor Roy Welsch from MIT Sloan School of Management,
and Honghong Chen, Fangfang You, Wenting Zhang, and Yew Wee Cheong from SDSS for helpful
discussions.

References

1. A. Kusiak, Rough set theory: a data mining tool for semiconductor manufacturing. IEEE Trans.
Electron. Packag. Manuf. 24(1), 44–50 (2001)

2. C.K. Shin, S.C. Park, A machine learning approach to yield management in semiconductor
manufacturing. Int. J. Prod. Res. 38(17), 4261–4271 (2000)

3. S.M. Weiss, A. Dhurandhar, R.J. Baseman, Improving quality control by early prediction of
manufacturing outcomes, in Proceedings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2013), pp. 1258–1266

4. H. Chen, D.S. Boning, Online and incremental machine learning approaches for IC yield
improvement, in IEEE/ACM 36th International Conference on Computer-Aided Design (2017)

5. H. Chen, Novel machine learning approaches for modeling variations in semiconductor
manufacturing, Master’s thesis, Massachusetts Institute of Technology, 2017

6. N. Japkowicz, S. Stephen, The class imbalance problem: a systematic study. Intell. Data Anal.
6(5), 429–449 (2002)

7. A. Tsymbal, The problem of concept drift: definitions and related work, Technical Report,
vol. 106, no. 2, Computer Science Department, Trinity College Dublin, 2004

8. N.A. Arnold, Wafer defect prediction with statistical machine learning, Master’s thesis,
Massachusetts Institute of Technology, 2016

9. Y. Sun, A.K. Wong, M.S. Kamel, Classification of imbalanced data: a review. Int. J. Pattern
Recognit. Artif. Intell. 23(04), 687–719 (2009)

10. H. He, E.A. Garcia, Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9),
1263–1284 (2009)

11. Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in ICML, vol. 96 (1996),
pp. 148–156

12. C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, A. Napolitano, RUSBoost: a hybrid approach
to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 40(1),
185–197 (2010)

13. H. Zhang, B. Yu, E.F. Young, Enabling online learning in lithography hotspot detection with
information-theoretic feature optimization, in IEEE/ACM 35th International Conference on
Computer-Aided Design (2016)

14. B. Wang, J. Pineau, Online bagging and boosting for imbalanced data streams. IEEE Trans.
Knowl. Data Eng. 28(12), 3353–3366 (2016)

15. N.C. Oza, Online bagging and boosting, in IEEE International Conference on Systems, Man
and Cybernetics, 2005, vol. 3 (2005), pp. 2340–2345

16. T.R. Hoens, R. Polikar, N.V. Chawla, Learning from streaming data with concept drift and
imbalance: an overview. Prog. Artif. Intell. 1(1), 89–101 (2012)

17. G. Ditzler, R. Polikar, Incremental learning of concept drift from streaming imbalanced data.
IEEE Trans. Knowl. Data Eng. 25(10), 2283–2301 (2013)

18. R. Elwell, R. Polikar, Incremental learning of concept drift in nonstationary environments.
IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)

19. S.R. Safavian, D. Landgrebe, A survey of decision tree classifier methodology. IEEE Trans.
Syst. Man Cybern. 21(3), 660–674 (1991)

20. J. Van Hulse, T.M. Khoshgoftaar, A. Napolitano, Experimental perspectives on learning from
imbalanced data, in Proceedings of the 24th ICML (2007), pp. 935–942

Chapter 7
Efficient Process Variation
Characterization by Virtual Probe

Jun Tao, Wangyang Zhang, Xin Li, Frank Liu, Emrah Acar,
Rob A. Rutenbar, Ronald D. Blanton, and Xuan Zeng

7.1 Introduction

As integrated circuits (ICs) scale to finer feature size, it becomes increasingly diffi-
cult to control process variations for nanoscale technologies [1, 2]. The increasing
fluctuations in manufacturing process introduce unavoidable and significant uncer-
tainties in circuit performance. Hence, modeling and analyzing these variations to
ensure manufacturability and improve parametric yield has been identified as a top
priority for today’s IC design.

J. Tao (�) · X. Zeng (�)
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University,
Shanghai, China
e-mail: taojun@fudan.edu.cn; xzeng@fudan.edu.cn

W. Zhang
Cadence Design Systems, Inc., Pittsburgh, PA, USA

X. Li (�)
Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
e-mail: xinli.ece@duke.edu

F. Liu
IBM Research Laboratory, Austin, TX, USA
e-mail: frankliu@us.ibm.com

E. Acar
IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
e-mail: emrah@us.ibm.com

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_7

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_7&domain=pdf
mailto:taojun@fudan.edu.cn
mailto:xzeng@fudan.edu.cn
mailto:xinli.ece@duke.edu
mailto:frankliu@us.ibm.com
mailto:emrah@us.ibm.com
https://doi.org/10.1007/978-3-030-04666-8_7

202 J. Tao et al.

Towards this goal, various techniques have been proposed for statistical IC
analysis and optimization, e.g., design centering, statistical timing analysis [3–6],
and post-silicon tuning [7–9]. These techniques aim to predict and, consequently,
minimize circuit-level performance variations in order to create a robust design with
high parametric yield. The efficiency of these methods relies heavily on the accuracy
of the variation model (e.g., distribution and correlation) that provides the important
information about manufacturing uncertainties.

Accurately extracting the variation model, however, is not trivial. Silicon
wafers/chips must be carefully tested and characterized using multiple test structures
(e.g., I-V structures and ring oscillators) deployed in wafer scribe lines and/or within
product chips [10–14]. The traditional silicon characterization suffers from three
major issues:

• Large area overhead: Today’s advanced microprocessor chips typically contain
hundreds of on-chip ring oscillators to characterize and monitor parametric
variations, resulting in significant overhead in silicon area [11].

• Long testing time: Physically measuring all test structures through a limited
number of I/O ports consumes a large amount of testing time [12]. In nanoscale
technologies, IC testing has contributed to a significant portion of the total
manufacturing cost [15].

• Low testing reliability: IC testing may even damage the wafer/chip being
tested. For instance, wafer probe test may permanently damage the wafer due
to mechanical stress [12].

The combination of these critical issues results in continuously growing silicon
characterization cost, as more and more test structures must be added to capture the
complicated spatial variations of small devices. Even though silicon characterization
has been extensively studied in the past, there is an immediate need to revisit this
area and develop a more efficient methodology to reduce cost.

To this end, we ask the following fundamental question: How many test
structures are minimally required to fully capture the spatial variation information?
A quick answer to this question can be made based on the well-known Nyquist–
Shannon sampling theorem [16]. Namely, if the variations contain no spatial
frequency higher than fMAX, the sampling frequency must be at least 2 · fMAX,
i.e., test structures must be spaced at most 1/(2 · fMAX) apart.

The Nyquist sampling theorem generally assumes that all frequency compo-
nents below the maximum frequency fMAX may exist. However, this is not true

R. A. Rutenbar
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
e-mail: rutenbar@illinois.edu

R. D. Blanton
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA,
USA
e-mail: blanton@ece.cmu.edu

mailto:rutenbar@illinois.edu
mailto:blanton@ece.cmu.edu

7 Efficient Process Variation Characterization by Virtual Probe 203

for most silicon characterization applications. As will be demonstrated by the
industrial measurement data in Sect. 7.5, spatial variations typically have a sparse
representation in frequency domain (i.e., a large number of Fourier coefficients
are almost zero). In this case, simply sampling at Nyquist rate generates a large
number of redundant data. Such redundancy has been observed in many other
application domains. For example, the key idea of image compression is to remove
the redundancy and represent the information in a compact form [17]. However, our
silicon characterization problem is substantially different from image compression,
as we do not want to fully sample spatial variations at Nyquist rate and then
“compress” them. Instead, we want to avoid redundant sampling in the first place to
reduce characterization cost. The challenging issue here is how to efficiently sample
few test structures on a wafer/chip and then accurately recover the essential spatial
variation information.

In this chapter, we exploit recent advances in statistics (known as compressed
sensing [18–21]) to develop a novel framework of virtual probe (VP) for low-cost
silicon testing and characterization. Our goal is to accurately predict the spatial
variations of a wafer/chip by measuring very few test structures at a set of selected
locations. The proposed VP algorithm is derived from maximum a posteriori
(MAP) estimation [22]. It is mathematically formulated as a linear programming
problem that can be solved both robustly and efficiently. Most importantly, several
theoretical studies from the statistics community have proved that by exploring the
sparse pattern in spatial frequency domain, VP can fully reconstruct the spatial
variations with probability nearly equal to 1, even if the spatial sampling frequency
is much lower than the Nyquist rate [18–21]. As will be demonstrated by the
industrial examples in Sect. 7.5, VP shows superior accuracy over several traditional
methods, e.g., two-dimensional interpolation [23], Kriging prediction [24], and k-
LSE estimation [25].

The remainder of this chapter is organized as follows. In Sect. 7.2, we develop
the mathematical formulation of VP and, then, discuss the implementation details in
Sect. 7.3. Next, several possible applications of VP are briefly discussed in Sect. 7.4.
The efficacy of VP is demonstrated by a number of examples with industrial
measurement data in Sect. 7.5. Finally, we conclude in Sect. 7.6.

7.2 Virtual Probe

The key idea of virtual probe (VP) is to deploy and measure very few test structures
at a set of selected locations of a wafer/chip. The parametric variations at other
locations are not directly measured by silicon testing. Instead, virtual probes are
conceptually added at these locations to predict the variation information through
the use of a statistical algorithm, as shown in Fig. 7.1. In other words, unlike the
traditional approach that uses a large number of test structures, we propose to
physically monitor the variability at very few locations and then apply a “smart”
algorithm to accurately predict the complete spatial variation. In this section, we

204 J. Tao et al.

Test structure Virtual probe

Fig. 7.1 An example of the proposed virtual probes. (Left) Traditionally, a large number of test
structures are deployed and measured to fully characterize process variations. (Right) We propose
to deploy and measure very few test structures, and virtual probes are conceptually added to fully
recover spatial variations through the use of a statistical algorithm

first derive the mathematical formulation of VP based on spatial frequency-domain
analysis. Next, we derive a maximum a posteriori (MAP) algorithm to solve the VP
problem by exploring the unique sparse pattern in frequency domain. Finally, the
accuracy of the MAP estimation is justified by studying several important theorems
recently developed in the statistics community [18–21].

7.2.1 Mathematical Formulation

Mathematically, the spatial variations of a performance of interest (e.g., the fre-
quency of a ring oscillator) can be expressed as a two-dimensional function g(x, y),
where x and y represent the coordinates of a spatial location on a wafer or chip.
If g(x, y) contains no spatial frequency higher than fMAX, the Nyquist–Shannon
sampling theorem [16] tells us to sample g(x, y) with a frequency of 2 · fMAX in
order to perfectly recover the continuous function g(x, y).

Mathematically, the function g(x, y) can be mapped to the frequency domain
by a number of two-dimensional linear transforms such as Fourier transform [16],
discrete cosine transform (DCT) [17], and wavelet transform [17]. In this chapter,
we use DCT to illustrate the basic idea of VP. It should be noted, however, that the
proposed VP framework can also be implemented with other linear transformations.

We discretize the two-dimensional function g(x, y) at a spatial frequency higher
than the Nyquist rate. Without loss of generality, we denote the coordinates x and y
as integers x ∈ {1, 2, . . . , P } and y ∈ {1, 2, . . . ,Q} after discretization. The DCT
transform can be represented as [17]:

7 Efficient Process Variation Characterization by Virtual Probe 205

G(u, v) =
P∑
x=1

Q∑
y=1

αu · βv · g(x, y) · cos
π · (2x − 1) · (u− 1)

2 · P
· cos

π · (2y − 1) · (v − 1)

2 ·Q

, (7.1)

where:

αu =
⎧⎨
⎩
√

1/P (u = 1)
√

2/P (2 ≤ u ≤ P) , (7.2)

βv =
⎧⎨
⎩
√

1/Q (v = 1)
√

2/Q (2 ≤ v ≤ Q) . (7.3)

In (7.1), {G(u, v); u = 1, 2, . . . , P ; v = 1, 2, . . . ,Q} represents a set of DCT
coefficients. Equivalently, the sampling values {g(x, y); x = 1, 2, . . . , P ; y =
1, 2, . . . ,Q} can be expressed as the linear combination of {G(u, v); u =
1, 2, . . . , P ; v = 1, 2, . . . ,Q} by the inverse discrete cosine transform (IDCT)
[17]:

g(x, y) =
P∑
u=1

Q∑
v=1

αu · βv ·G(u, v) · cos
π · (2x − 1) · (u− 1)

2 · P
· cos

π · (2y − 1) · (v − 1)

2 ·Q

. (7.4)

From (7.1)–(7.4), it is easy to verify that once the sampling values {g(x, y); x =
1, 2, . . . , P ; y = 1, 2, . . . ,Q} are known, the DCT coefficients {G(u, v); u =
1, 2, . . . , P ; v = 1, 2, . . . ,Q} are uniquely determined, and vice versa.

The proposed VP framework, however, will go one step further. Our objective
is to accurately recover {g(x, y); x = 1, 2, . . . , P ; y = 1, 2, . . . ,Q} from a very
small number of (say, M) samples at the locations {(xm, ym);m = 1, 2, . . . ,M}
where M � PQ. In other words, the recovery can be formulated as the following
linear equation:

A · η = b, (7.5)

where:

A =

⎡
⎢⎢⎢⎢⎣
A1,1,1 A1,1,2 · · · A1,P ,Q

A2,1,1 A2,1,2 · · · A2,P ,Q
...

...
. . .

...

AM,1,1 AM,1,2 · · · AM,P,Q

⎤
⎥⎥⎥⎥⎦ , (7.6)

206 J. Tao et al.

Am,u,v = αu·βv ·cos
π · (2xm − 1) · (u− 1)

2 · P ·cos
π · (2ym − 1) · (v − 1)

2 ·Q , (7.7)

η =
[
G(1, 1) G(1, 2) · · · G(P,Q)

]T
, (7.8)

b =
[
g(x1, y1) g(x2, y2) · · · g(xM, yM)

]T
. (7.9)

In (7.5)–(7.9), the DCT coefficients {G(u, v); u = 1, 2, . . . , P ; v = 1, 2, . . . ,Q}
are the problem unknowns. In other words, we need to determine {G(u, v); u =
1, 2, . . . , P ; v = 1, 2, . . . ,Q} based on the measurement data {g(xm, ym);m =
1, 2, . . . ,M}. Once the DCT coefficients {G(u, v); u = 1, 2, . . . , P ; v =
1, 2, . . . ,Q} are known, the function {g(x, y); x = 1, 2, . . . , P ; y = 1, 2, . . . ,Q}
can be easily calculated by the IDCT in (7.4).

Solving the linear equation A · η = b in (7.5), however, is not trivial, since M
(i.e., the number of equations) is vastly less than PQ (i.e., the number of unknowns).
Namely, the linear equation in (7.5) is profoundly underdetermined. While Eq. (7.5)
cannot be uniquely solved by a simple matrix inverse, its solution can be statistically
determined by considering additional prior information via Bayesian inference, as
will be discussed in the next subsection.

7.2.2 Maximum A Posteriori (MAP) Estimation

In this subsection, we describe an efficient algorithm using maximum a posteriori
(MAP) estimation to statistically solve the linear equation in (7.5). Although the
result of this subsection can be derived by applying a number of elegant statistics
theorems [18–22, 26], we attempt to describe the MAP algorithm at a level that is
intuitive to the CAD community. More mathematical details of MAP can be found
in [18–21, 26] and [22].

To solve (7.5), we first define a so-called prior distribution for η [22]. Intuitively,
the prior distribution represents our prior knowledge about η without seeing
any measurement data. Such prior information helps us to further constrain the
underdetermined linear equation A ·η = b in (7.5) so that a meaningful solution can
be uniquely found. At first glance, this seems impossible, since we would expect that
the spatial variations and, hence, the DCT coefficients in η are substantially different
from wafer to wafer and from chip to chip. However, we will show in this chapter
that η has a unique property that we can exploit to define the prior distribution.

Before moving forward, let us first examine the following example of an
industrial IC design. We measure the flush delay of this circuit from 17 wafers, each
containing 282 chips. Flush delay is the time for a transition to propagate across
a scan chain. We calculate the DCT coefficients and plot the histogram of them in
Fig. 7.2. We notice that the distribution has a sharp peak at zero. This implies that

7 Efficient Process Variation Characterization by Virtual Probe 207

Fig. 7.2 Histogram of the
normalized DCT coefficients
calculated from 17 wafers for
an industrial IC design
example

-3 -2 -1 0 1 2 3
0

500

1000

1500

2000

2500

3000

Normalized DCT Coefficients

N
um

be
r

of
 S

am
pl

es
most DCT coefficients are close to zero. In general, if the performance variations
{g(x, y); x = 1, 2, . . . , P ; y = 1, 2, . . . ,Q} present a spatial pattern, i.e., the
variations are spatially correlated, the vector η that contains the corresponding DCT
coefficients {G(u, v); u = 1, 2, . . . , P ; v = 1, 2, . . . ,Q} is sparse. This unique
property of sparseness has been observed in many image processing tasks [17],
and has motivated the compressed sensing research for image recovery using a
minimum number of samples [18–21, 26]. The previous research in compressed
sensing shows that if most of these DCT coefficients are expected to be zero, we can
reconstruct the image from a surprisingly small (i.e., compressed) set of samples.
As will be demonstrated by several industrial examples in Sect. 7.5, this assumption
of sparseness is also valid for our silicon characterization application.

While we assume that a large number of DCT coefficients are close to zero,
we do not know the exact locations of these zeros. Otherwise, solving η from the
linear equation A · η = b in (7.5) becomes trivial. To find the unique solution η

of the underdetermined linear equation A · η = b, we need to statistically model
the histogram in Fig. 7.2 by using a zero-mean Laplace distribution to approximate
the probability density function (PDF) of each DCT coefficient {ηi; i = 1, 2,
. . . , PQ} [22]:

pdf (ηi) = 1

2λ
· exp

(
−
∣∣ηi∣∣
λ

)
(i = 1, 2, . . . , PQ), (7.10)

where pdf (ηi) stands for the PDF of ηi , and λ > 0 is a parameter that controls
the variance of the distribution. The parameter λ in (7.10) can be optimally found
by maximum likelihood estimation (MLE) [22]. Figure 7.3 shows the optimally
fitted Laplace distribution for the data set in Fig. 7.2 . In practice, however, it is
not necessary to know the value of λ. As will be shown in (7.17), the solution η is
independent of the actual value of λ.

To completely define the prior distribution, we further assume that all DCT
coefficients in the vector η ∈ R

PQ are mutually independent. Hence, the joint PDF
of η is represented as:

208 J. Tao et al.

Fig. 7.3 Optimally fitted
Laplace distribution for the
normalized DCT coefficients
calculated from 17 wafers for
an industrial IC design
example

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized DCT Coefficient �
i

P
D

F
 (

La
pl

ac
e)

pdf (η) =
(

1

2λ

)PQ
·
PQ∏
i=1

exp

(
−
∣∣ηi∣∣
λ

)

=
(

1

2λ

)PQ
· exp

(
−
∥∥η∥∥1

λ

) , (7.11)

where ‖ • ‖1 denotes the L1-norm, i.e., the summation of the absolute value of all
elements in the vector. The prior PDF in (7.11) has a threefold meaning:

1. The DCT coefficients {ηi; i = 1, 2, . . . , PQ} have a high probability to equal
zero. This, in turn, implies the sparseness of η.

2. The prior PDF in (7.11) treats each ηi equally. In other words, the prior PDF
does not tell us which ηi is zero or nonzero. We need a “smart” algorithm
to automatically find the nonzero coefficients based on a limited number of
sampling points {g(xm, ym);m = 1, 2, . . . ,M}.

3. The independence assumption in (7.11) simply means that we do not know
the correlation of η in advance. The correlation information will be taken into
account by the posterior distribution (see (7.14)), once the measurement data are
available.

Next, to derive the MAP algorithm, we need to introduce another important
terminology—likelihood function—that is mathematically defined as the condi-
tional probability pdf (b

∣∣η). It models the relationship between the measurement
data in b and the unknown DCT coefficients in η. Given the linear equation A·η = b
in (7.5), the measurement data in b and the DCT coefficients in η must satisfy the
linear equation A · η = b in (7.5). In other words, it is impossible to observe a
set of variables η and b for which the equation A · η = b does not hold. Hence,
the likelihood function is a Dirac delta function where the conditional probability
pdf (b

∣∣η) is nonzero if and only if A · η equals b:

7 Efficient Process Variation Characterization by Virtual Probe 209

pdf
(

b
∣∣η)

=
{
∞ (A · η = b)
0 (A · η �= b)

, (7.12)

where ∫
A·η=b

pdf (b
∣∣η) · db = 1. (7.13)

After defining the prior distribution in (7.11) and the likelihood function
in (7.12), we are now ready to describe the MAP algorithm to uniquely determine
the unknown DCT coefficients in η. The key idea of MAP is to find the optimal
solution η that maximizes the posterior distribution, i.e., the conditional PDF
pdf (η

∣∣b). Namely, it aims to find the solution η that is most likely to occur. Based
on Bayes’ theorem [22], the posterior distribution pdf (η

∣∣b) is proportional to the
prior distribution pdf (η) and the likelihood function pdf (b

∣∣η):
pdf

(
η
∣∣b)

∝ pdf (η) · pdf
(

b
∣∣η)

. (7.14)

Hence, the MAP algorithm attempts to solve the following optimization problem:

max
η

pdf (η) · pdf
(

b
∣∣η)

. (7.15)

In our case, the likelihood function is a Dirac delta function, as shown in (7.12).
Therefore, maximizing the posterior probability in (7.14) is equivalent to maximiz-
ing the prior probability in (7.11) subject to the linear constraint A · η = b:

max
η

1

(2λ)PQ
· exp

(
−
∥∥η

∥∥
1

λ

)

s.t. A · η = b

. (7.16)

Since the exponential function exp(−‖η‖1/λ) where λ > 0 monotonically
decreases in ‖η‖1, the optimization in (7.16) can be rewritten as:

max
η

∥∥η∥∥1

s.t. A · η = b
. (7.17)

Note that the optimization in (7.17) is independent of the parameter λ in (7.11).
Equation (7.17) is referred to as L1-norm regularization in the literature [18–

21, 26]. To illustrate the connection between L1-norm regularization and sparse
solution, we consider a simple two-dimensional example (i.e., η = [η1 η2]T), as
shown in Fig. 7.4. In this example, the equality constraint only consists of one linear
equation and, hence, the feasible space of the constrained optimization problem can

210 J. Tao et al.

Fig. 7.4 The proposed
L1-norm regularization
results in a sparse solution η,
as illustrated by the simple
two-dimensional example

η1

η

η =

2

BA •

1
η

be represented by a line A · η = b in the two-dimensional space. On the other
hand, the contour lines of the cost function ‖η‖1 correspond to a number of rotated
squares. It can be seen from Fig. 7.4 that the optimal solution solved by L1-norm
regularization is located at one of the vertices of the contour lines. This observation
implies that one of the coefficients (i.e., η1 in this example) is exactly zero and,
therefore, a sparse solution η is achieved.

Equation (7.17) can be converted to an equivalent linear programming problem
and solved both robustly (i.e., with guaranteed global optimum) and efficiently (i.e.,
with low computational cost). The detailed algorithm of solving (7.17), as well as
several other implementation issues, will be discussed in Sect. 7.3.

7.2.3 Accuracy of MAP Estimation

Given the prior distribution in (7.11), the MAP estimation, i.e., the L1-norm
regularization in (7.17), is statistically optimal, since it finds the solution η that
maximizes the posterior probability, as shown in (7.15). However, it remains an open
question if the accuracy of the MAP estimation can be quantitatively measured. In
other words, we need to answer the following two questions:

1. Can the MAP estimation find the exact solution η for the underdetermined linear
equation A · η = b?

2. If the answer is yes, what are the sufficient conditions to guarantee the finding of
the exact solution η?

In this subsection, we will answer these open questions by studying several
important statistics theorems.

It has been proven in [18–21] that given the linear equation A · η = b in (7.5),
the accuracy of the MAP estimation depends on the orthonormality of the column

7 Efficient Process Variation Characterization by Virtual Probe 211

vectors of the matrix A ∈ R
M×PQ. To intuitively illustrate this concept, we first

consider a trivial case where the number of equations (i.e., M) equals the number
of unknowns (i.e., PQ) and, hence, A is a square matrix. Furthermore, we assume
that all column vectors of A are orthonormal, i.e., A is an orthogonal matrix with
AT · A = I where I is an identity matrix. In this trivial case, the exact solution η of
A · η = b can be accurately determined as:

η = AT · b. (7.18)

In practice, since VP aims to predict the spatial variations from very few samples,
the linear equation A·η = b in (7.5) is underdetermined and the matrix A ∈ R

M×PQ
has more columns than rows (i.e., M < PQ). It is impossible for all columns
of A to be orthonormal. In this case, it turns out that the solution η can be
accurately found if the columns of A are approximately orthonormal. Based on the
theorems of compressed sensing [18–21], the “orthonormality” of a matrix A can
be quantitatively measured by its restricted isometry property (RIP).

Definition 7.1 A matrix A satisfies the restricted isometry property (RIP) of order
K with constant δK < 1, if the inequality:

(1− δK) ·
∥∥η∥∥2

2 ≤
∥∥A · η∥∥2 ≤ (1+ δK) ·

∥∥η∥∥2
2 (7.19)

holds for every vector η that contains only K nonzero elements. In (7.19), ‖ • ‖2
denotes the L2-norm, i.e., the square root of the summation of the squares of all
elements in the vector.

If all columns of the matrix A ∈ R
M×PQ are almost orthonormal, RIP should be

satisfied with a large K and a small δK . In the extreme case where A is exactly an
orthogonal matrix,

∥∥A · η∥∥2 is equal to
∥∥η∥∥2 for every vector η ∈ R

PQ, since the
linear transformation by an orthogonal matrix does not change the L2-norm of the
vector η [27]. Hence, RIP is satisfied with K = PQ and δK = 0.

The concept of RIP has been successfully applied to assess the inherent difficulty
of finding the exact solution η from the underdetermined linear equation A · η = b
in (7.5). From example, the following theorem has been shown in [19].

Theorem 7.1 The L1-norm regularization in (7.17) guarantees to find the exact
solution η of the underdetermined linear equation A · η = b in (5), if the following
three conditions are all satisfied:

1. The solution vector η contains at most S nonzeros.
2. The matrix A satisfies the RIP of order 2S with constant δ2S < 1 and the RIP of

order 3S with constant δ3S < 1.
3. The two RIP constants δ2S and δ3S further satisfy the inequality δ2S + δ3S < 1.

Note that the conditions in Theorem 7.1 are sufficient but not necessary. A
number of other sufficient conditions have also been derived in the literature. More
details can be found in [19].

212 J. Tao et al.

While RIP offers a solid theoretical foundation to assess the accuracy of the
MAP estimation, computing the RIP constant δK for a given matrix A is an NP-
hard problem [18–21]. For this reason, an alternative metric, coherence, has been
proposed to measure the orthonormality of a matrix A [20].

Definition 7.2 Given a matrix A for which every column vector has unit length
(i.e., unit L2-norm), its coherence is defined as:

μ = max
i �=j

∣∣〈ai , aj 〉∣∣ , (7.20)

where ai and aj denote the ith and j th columns of A respectively, and 〈•, •〉 stands
for the inner product of two vectors.

Similar to RIP, the coherence value μ in (7.20) offers a quantitative criterion to
judge if the columns of the matrix A are approximately orthonormal. For instance,
if all columns of A are orthonormal, the coherence value μ reaches the minimum
(i.e., zero); otherwise, the coherence value μ is always greater than zero.

While the RIP constant δK in (7.19) is difficult to compute, the coherence value
μ in (7.20) can be easily calculated by the inner product of column vectors. Once μ
is known, the RIP constant δK is bounded by [20]:

δK ≤ μ · (K − 1) , (7.21)

where K denotes the order of RIP. In other words, while the exact value of
the RIP constant δK is unknown, its upper bound can be efficiently estimated
by coherence. This, in turn, offers a computationally tractable way to verify the
sufficient conditions in Theorem 7.1. More details on coherence and its applications
can be found in [20].

The aforementioned discussions summarize the theoretical framework to justify
the accuracy of the MAP estimation. It demonstrates a number of sufficient condi-
tions which guarantee to find the exact sparse solution η from the underdetermined
linear equation A · η = b. In our application of spatial variation characterization,
the number of nonzeros in the vector η is not known in advance. Hence, it can be
difficult to verify the conditions in Theorem 7.1 and then determine if the exact
solution η is accurately solved. However, the theoretical results summarized in this
subsection demonstrate the importance of column orthonormality for the matrix A
in (7.5). This, in turn, motivates us to develop efficient techniques to improve the
column orthonormality and, hence, enhance the accuracy of VP. The details of these
implementation issues will be discussed in Sect. 7.3.

7.3 Implementation Details

Our proposed VP technique is made of practical utility by carefully addressing
several important implementation issues, including:

7 Efficient Process Variation Characterization by Virtual Probe 213

1. A column normalization scheme to improve the orthonormality of the matrix A
for the underdetermined linear equation A · η = b in (7.5);

2. A linear programming formulation to efficiently solve the L1-norm regulariza-
tion problem in (7.17);

3. A modified Latin hypercube sampling (M-LHS) scheme to randomly select the
spatial sampling locations with small coherence; and

4. A DCT coefficient preselection scheme to further improve the prediction accu-
racy by carefully removing noncritical high-frequency DCT coefficients.

In this section, we describe these implementation details and highlight their
novelties.

7.3.1 Normalization

As discussed in Sect. 7.2.3, all columns of the matrix A of the linear equation A·η =
b should be approximately orthonormal so that the MAP estimation is capable of
accurately finding the solution η. The requirement on orthonormality has a twofold
meaning. First, the columns of the matrix A should be approximately orthogonal.
Second, all these columns should have unit length (i.e., unit L2-norm).

It is important to note that the column orthogonality of the matrix A cannot
be enhanced by applying a simple orthogonalization algorithm, e.g., the Gram–
Schmidt orthogonalization [27]. Such an orthogonalization process will change the
solution vector η and compromise its unique sparse pattern.

The requirement on unit length, however, can be easily satisfied, if we normalize
each column of the matrix A by its L2-norm. It has been demonstrated by the
statistics community that the aforementioned normalization can efficiently improve
the accuracy of the MAP estimation [20]. Hence, it is adopted in this chapter
and applied to (7.17), before the L1-norm regularization problem is solved by a
numerical solver.

7.3.2 Linear Programming

Once all columns of the matrix A are normalized to unit length, a numerical solver
should be applied to solve the L1-norm regularization problem in (7.17) and find
the optimal solution η. From (7.17), we would notice that the cost function ‖η‖1 is
not smooth and, hence, it cannot be easily minimized by a simple gradient-based
algorithm [28]. To address this issue, we introduce a set of slack variables {θi; i =
1, 2, . . . , PQ} and rewrite (7.17) as:

214 J. Tao et al.

min
η,θ

θ1 + θ2 + · · · + θPQ
s.t. A · η = b

−θi ≤ ηi ≤ θi (i = 1, 2, . . . , PQ)

. (7.22)

Intuitively, by minimizing the cost function in (7.22), all constraints {θi ≤ ηi ≤
θi; i = 1, 2, . . . , PQ} will become active, i.e., {|ηi | ≤ θi; i = 1, 2, . . . , PQ}. For
this reason, the optimizations in (7.17) and (7.22) are equivalent, i.e., they share
the same optimal solution η. This conclusion can be formally proven based on the
Karush–Kuhn–Tucker condition from optimization theory [28].

Note that both the cost function and the constraints in (7.22) are linear. Therefore,
it is a linear programming problem and can be solved both robustly (i.e., with
guaranteed global optimum) and efficiently (i.e., with low computational cost), e.g.,
by using the interior-point method with polynomial complexity [28]. For large-
scale problems, there exist a number of fast algorithms (e.g., TNIPM [29] with the
complexity O((PQ)1.2)) that can solve (7.22) with millions of variables in a few
minutes.

7.3.3 Latin Hypercube Sampling

The study in Sect. 7.2.3 shows that the accuracy of the MAP estimation depends on
the orthonormality of the matrix A in (7.5). According to the definition of the matrix
A, it can be easily seen that the value of A is determined by the sampling locations
{(xm, ym);m = 1, 2, . . . ,M}. In other words, different choices of sampling
locations will provide different values of the matrix A and, hence, different results
of the MAP estimation. It, in turn, motivates us to develop an efficient algorithm to
find a set of “good” sampling locations. As such, the orthonormality of the matrix
A is well approximated, thereby resulting in high prediction accuracy for the MAP
estimation.

While directly optimizing the orthonormality of the matrix A, e.g., minimizing
the coherence value μ in (7.20), is not trivial, it has been proven that random
sampling is able to result in a good matrix A [18–21]. In particular, the theoretical
results in [18–21] demonstrate that if the vector η ∈ R

PQ contains at most S
(S � PQ) nonzeros and M sampling locations are randomly selected where M is
in the order ofO

(
S · log (PQ)

)
, the sufficient conditions in Theorem 7.1 are almost

guaranteed to hold (i.e., with probability nearly equal to 1), implying that the exact
value of η can be accurately determined with extremely high probability. To the
best of our knowledge, there is no other sampling scheme that clearly outperforms
random sampling.

Based on these observations, we adopt the random sampling strategy in this
chapter. Our objective is to evenly distribute M random sampling points over the
entire wafer/chip. To achieve this goal, we borrow the idea of Latin hypercube
sampling (LHS) from the statistics community [30] and develop a modified

7 Efficient Process Variation Characterization by Virtual Probe 215

1

4 3 2
5 6 7 8 9

12 11 10
13

Fig. 7.5 A simple partition example for the modified Latin hypercube sampling (M-LHS)
algorithm where 13 possible sampling locations are labeled as {(xn, yn); n = 1, 2, . . . , 13} and
divided into 4 subsets {(xn, yn); n = 1, 2, 3}, {(xn, yn); n = 4, 5, 6}, {(xn, yn); n = 7, 8, 9}, and
{(xn, yn); n = 10, 11, 12, 13}

Latin hypercube sampling (M-LHS) algorithm to generate well-controlled random
samples.

Starting from N possible sampling locations on a wafer/chip, we first label each
sampling location by an index n ∈ {1, 2, . . . , N}. For illustration purpose, Fig. 7.5
shows a simple example where 13 sampling locations are sequentially labeled. This
simple example reveals two important properties of our labeling scheme. First, if
two different sampling locations (xi, yi) and (xj , yj) are in the same neighborhood,
their indexes i and j should be close to each other. Second, the number of possible
sampling locations (i.e., N) can be less than the total number of DCT coefficients
(i.e., PQ), since the shape of a wafer is close to a circle, instead of a rectangle.

Next, to evenly distribute the M sampling locations among the N possible
choices, we partition the index set {1, 2, . . . , N} into M nonoverlapped subsets.
There are two possible scenarios when we construct these subsets:

1. M is a factor of N (i.e., M divides N without leaving a remainder). In this
case, the partition of the set {1, 2, . . . , N} is simply determined by the order of
the indexes. Namely, the M subsets are: {1, 2, . . . , N/M}, {N/M + 1, N/M +
2, . . . , 2 ·N/M}, etc.

2. M is not a factor of N and M divides N leaving a nonzero remainder R. In this
case, we again divide the set {1, 2, . . . , N} intoM nonoverlapping subsets based
on the order of the indexes. However, the sizes of all subsets are different: either
�N/M� (the largest integer that is less than or equal to N/M) or �N/M� + 1.
The choices between �N/M� and �N/M� + 1 are randomly selected for each
subset with the constraint that only R subsets have the size of �N/M� + 1 and
the otherM −R subsets have the size of �N/M�. Hence, each of the N possible
sampling locations belongs to one of theM subsets.

Figure 7.5 shows a simple partition example with 13 possible sampling locations
and 4 subsets. In this case, since M = 4 is not a factor of N = 13, the sizes of
these 4 subsets are not identical. Studying Fig. 7.5, we would notice that each of the

216 J. Tao et al.

Algorithm 4 Modified Latin hypercube sampling (M-LHS)
1: Start from N possible sampling locations on a wafer/chip.
2: Label each sampling location by an index n ∈ {1, 2, . . . , N} so that the indexes i and j of two

different sampling locations (xi , yi) and (xj , yj) are close to each other if (xi , yi) and (xj , yj)
are in the same neighborhood.

3: Partition the index set {1, 2, . . . , N} intoM nonoverlapped subsets. IfM is a factor of N , the
partition is simply determined by the order of the indexes. Otherwise, ifM divides N leaving
a nonzero remainder R, the set {1, 2, . . . , N} is divided into M nonoverlapped subsets based
on the order of the indexes where only R subsets have the size of �N/M� + 1 and the other
M − R subsets have the size of �N/M�.

4: Randomly select one sampling location from each of the M subsets, resulting in M sampling
locations in total.

M subsets generated by our partition scheme contains the sampling locations in the
same neighborhood. In other words, the M subsets conceptually represent M local
clusters spatially distributed over the wafer/chip.

As the final step of the proposed M-LHS algorithm, we randomly select one
sampling location from each of the M subsets, thereby resulting in M sampling
locations in total. Algorithm 4 summarizes the major steps of our M-LHS algorithm.
Unlike the traditional LHS algorithm that aims to sample continuous random
variables [30], Algorithm 4 has been particularly tuned to randomly select M
choices out of N possible candidates. Hence, it is referred to as modified Latin
hypercube sampling (M-LHS) in this chapter.

Compared to brute-force random sampling, M-LHS guarantees to distribute the
M sampling locations over different local regions on the wafer/chip. Namely, it
eliminates the possibility that many sampling locations are selected from the same
local space. This, in turn, leads to superior prediction accuracy over brute-force
random sampling, as will be demonstrated by the numerical examples in Sect. 7.5.

7.3.4 DCT Coefficient Preselection

It is shown in the previous subsection that the number of samples required for VP
depends on the logarithm of the total number of DCT coefficients, i.e., log(PQ).
If we know that a subset of DCT coefficients must be zero, we no longer need
to consider these DCT coefficients as problem unknowns. Given a limited number
of sampling points, such a preselection strategy for DCT coefficients can further
improve the accuracy of the proposed VP algorithm.

As is demonstrated in the literature [14], spatial patterns of process variations are
often smooth. It, in turn, implies that the spatial variation patterns may be accurately
represented by a few dominant DCT coefficients at low frequencies. Namely, the
low-frequency DCT coefficients are more important than the high-frequency ones
when predicting spatial variations.

7 Efficient Process Variation Characterization by Virtual Probe 217

Fig. 7.6 The importance
ranking of DCT coefficients
defined in [25] where the rank
“1” corresponds to the most
important DCT coefficient

… … … … … … …
15 … … … … … …
10 14 … … … … …
6 9 13 … … … …
3 5 8 12 … … …
1 2 4 7 11 … …

X Axis

Y
 A

x
is

Motivated by this observation, we follow the idea proposed in [25] to rank the
importance of all DCT coefficients, as shown in Fig. 7.6. When solving the linear
equation A · η = b by (7.17), we only consider the first K low-frequency DCT
coefficients as problem unknowns. All other high-frequency DCT coefficients are
simply set to zero. In other words, the optimization in (7.17) only needs to solve the
sparse solution for K (instead of PQ) problem unknowns.

In our implementation, cross-validation [22] is further used to estimate the
optimal value of K . An F -fold cross-validation partitions the sampling points into
F groups. Prediction error is estimated from F independent runs. In each run, one of
the F groups is used to estimate the prediction error, and all other groups are used to
solve the L1-norm regularization problem in (7.17) to determine the unknown DCT
coefficients. Note that the training data for coefficient estimation and the testing data
for error estimation are not overlapped. Hence, over-fitting can be easily detected. In
addition, different groups are selected for error estimation in different runs. As such,
each run results in an error value εf (where f ∈ {1, 2, · · · , F }) that is measured
from a unique set of testing data. The final prediction error is computed as the
average of {εf ; f = 1, 2, . . . , F }, i.e., ε = (ε1 + ε2 + · · · + εF)/F . The optimal
value of K is determined to minimize the cross-validation error ε.

7.3.5 Summary

Algorithm 5 summarizes the major steps of the proposed VP method. It starts from
very few (i.e., M) sampling locations {g(xm, ym);m = 1, 2, . . . ,M} determined
by M-LHS. Next, it formulates an underdetermined linear equation based on these
measurement data and solves all DCT coefficients. Finally, the spatial variations
{g(x, y); x = 1, 2, . . . , P ; y = 1, 2, . . . ,Q} are recovered by the IDCT in (7.4).

In summary, the proposed VP method offers a number of important advantages
over other traditional techniques:

218 J. Tao et al.

Algorithm 5 Virtual probe (VP)
1: SelectM sampling locations {(xm, ym);m = 1, 2, . . . ,M} by M-LHS (i.e., Algorithm 4).
2: Collect the measurement data {g(xm, ym);m = 1, 2, . . . ,M} at these locations.
3: Formulate the underdetermined linear equation A · η = b in (7.5)–(7.9) for the first K DCT

coefficients where the optimal value of K is determined by cross-validation (see Sect. 7.3.4).
4: Normalize all columns of the matrix A (see Sect. 7.3.1) and formulate the linear programming

problem in (7.22).
5: Solve the optimization problem in (7.22) to determine η, i.e., the first K DCT coefficients. All

other DCT coefficients are set to zero.
6: Apply the IDCT in (7.4) to recover the spatial variations {g(x, y); x = 1, 2, . . . , P ; y =

1, 2, . . . ,Q} across the wafer/chip.

• Low cost: VP is developed to minimize the number of test structures required
to fully extract the spatial variation information. It, in turn, reduces the testing
and measurement cost, e.g., area overhead, testing and characterization time, and
yield loss during testing. In addition, the VP formulation in (7.22) is a linear
programming problem and it can be solved both robustly (i.e., with guaranteed
global optimum) and efficiently (i.e., with low computational cost).

• High accuracy: The accuracy of VP is guaranteed by the theoretical studies
from the statistics community [18–21, 26], as discussed in Sect. 7.2.3. Namely,
with several general assumptions, VP can fully reconstruct the spatial variations
with probability nearly equal to 1. In addition, the accuracy of VP can be
verified in real time by the cross-validation method mentioned in Sect. 7.3.4. This
error estimation scheme is extremely important, since it provides a practical,
quantitative criterion to determine whether the result of VP is sufficiently
accurate or not. Additional sampling points can be further collected to improve
accuracy, until the prediction error is sufficiently small.

• General purpose: VP can be used to predict the spatial pattern of both inter-
die and spatially correlated intra-die variations. The prediction by VP is based
on the measurement data collected from the current wafer/chip only. It does
not require any historical data for training and, hence, can efficiently handle
the nonstationary effects, e.g., process drifting caused by equipment aging.
The only assumption posed by VP is that the spatial variations must have
a sparse representation in frequency domain. This assumption is valid for
spatially correlated process variations. In other words, the variations of interest
are not dominated by independent random mismatches (e.g., random dopant
fluctuations). As will be demonstrated by the experimental examples in Sect. 7.5,
such a sparseness assumption holds for a number of performance variations (e.g.,
ring oscillator delay and full-chip leakage). The impact of independent random
mismatches on these performance metrics is averaged out and, hence, becomes
nondominant. In practice, the sparseness assumption can be verified by the error
estimation scheme we previously mentioned. Namely, if the frequency-domain
representation is not sparse, we will observe a large prediction error reported
by VP.

7 Efficient Process Variation Characterization by Virtual Probe 219

7.4 Applications of Virtual Probe

The proposed VP method can be applied to a broad range of applications related to
integrated circuits. In this section, we will briefly discuss these possible applications,
including: (1) wafer-level silicon characterization (for inter-die variations), (2)
chip-level silicon characterization (for intra-die variations), and (3) testing and self-
healing of integrated circuits. Note that the main objective of this section is to
motivate several possible future research directions based upon our VP technique.
The details of these new research problems are beyond the scope of this chapter and,
hence, are not discussed here.

7.4.1 Wafer-Level Silicon Characterization

To characterize parametric variations at wafer level (i.e., inter-die variations), test
structures are deployed in wafer scribe lines [10–12], as shown in Fig. 7.7. These
test structures do not have area overhead, as they are not within a product chip.
However, it does not simply mean that the characterization is free. Instead, wafer-
level characterization can still be expensive due to the following two reasons.

First, test structures in scribe lines must be measured by wafer probe test, as these
devices will be completely destroyed during wafer dicing before packaging. Within
this testing process, a probe card will contact the I/O pads of the test structures to
measure currents, voltages, or frequencies. Such a wafer probe testing, however, is
not perfectly safe. It may break the wafer being tested due to mechanical stress,
create additional yield loss, and eventually increase manufacturing cost. Second,
wafer probe test (e.g., aligning the probe card with the I/O pads and collecting all
measurement data) is time consuming. This, in turn, further increases manufacturing
cost, as the overall manufacturing time is increased.

For these two reasons, it is crucial to reduce the number of measured test
structures so that the overall testing and characterization cost is minimized. Our
proposed VP method perfectly fits this need. Namely, we propose to deploy and

Fig. 7.7 Test structures are
deployed in wafer scribe lines
to measure and characterize
inter-die variations at wafer
level

Chip
Test structure
in scribe line

220 J. Tao et al.

measure very few test structures randomly distributed over the scribe lines of
a wafer. Once the measurement data are collected, Algorithm 5 is applied to
reconstruct the spatial variations across the wafer. Note that since the test structures
are constrained within scribe lines, the aforementioned wafer-level characterization
may not provide sufficient resolution to predict intra-die variations. It, therefore,
implies that additional test structures are required for chip-level silicon characteri-
zation, as will be discussed in the next subsection.

7.4.2 Chip-Level Silicon Characterization

On-chip test structures are typically used to characterize intra-die variations at chip
level [10–12], as shown in Fig. 7.8. The cost of chip-level characterization consists
of two major portions: (1) area overhead and (2) testing time.

First, on-chip test structures are deployed within a product chip at a number of
preselected locations. If too many test structures are used, they lead to significant
area overhead and, hence, become financially intractable. Second, all on-chip test
structures must be measured through a limited number of I/O pads. This testing
process is time consuming and directly increases manufacturing cost.

Motivated by these observations, we propose to deploy and measure very few on-
chip test structures and then apply VP to reconstruct the complete spatial variation
pattern at chip level. As such, the characterization cost is substantially reduced.

7.4.3 Beyond Silicon Characterization

The silicon characterization results extracted by VP can be efficiently applied
to a number of practical applications. In this subsection, we briefly discuss two
important application examples: (1) speed binning and (2) post-silicon tuning.

In traditional speed binning, all manufactured chips are tested individually to
determine the maximum operation frequency [15]. This is expensive, since each
chip must be repeatedly tested with different speed setups. Given the proposed VP

Fig. 7.8 Test structures are
deployed within a product
chip to measure and
characterize intra-die
variations at chip level

On-chip test
structure

7 Efficient Process Variation Characterization by Virtual Probe 221

framework, we can potentially test a small number of chips to find their speed bins
and then use VP to predict the speed of other chips on the same wafer. Note that
even if the prediction by VP is not exact, it can still be used to optimize the testing
scheme to reduce cost. For instance, if the speed of an untested chip is estimated
by VP, the speed test should start from the nearest bin since this chip is most likely
to fall in that speed bin. Such a strategy helps us to find the appropriate speed bin
quickly and, hence, reduce testing cost.

On the other hand, post-silicon tuning is a recently developed technique to
improve parametric yield in the presence of large-scale process variations [7–9]. It
adaptively configures a number of tunable parameters (e.g., supply voltage and body
bias) so that a given circuit can work properly under different process conditions.
An important component of post-silicon tuning is to accurately measure the process
condition of a given chip so that the tunable parameters can be appropriately
configured to adjust the circuit behavior. Such measurement, however, is not trivial,
since it often requires a large number of on-chip sensors. We believe that the
proposed VP framework can be used to predict the process condition from a
significantly reduced number of on-chip sensors. By minimizing the number of
required sensors, both the design complexity and the manufacturing cost can be
reduced.

7.5 Numerical Experiments

In this section, we demonstrate the efficacy of VP using several examples based
on industrial measurement data. All numerical experiments are performed on a 2.8-
GHz Linux server.

7.5.1 Flush Delay Measurement Data

We consider the flush delay values measured from 282 industrial chips on the same
wafer, as shown in Fig. 7.9. In this example, the measured delay significantly varies
from chip to chip due to process variations. Our goal is to capture these wafer-level
delay variations. We use a two-dimensional function g(x, y) to model the delay,
where x ∈ {1, 2, . . . , 18} and y ∈ {1, 2, . . . , 19}. Each coordinate point (x, y)
corresponds to a chip. Next, we apply a two-dimensional DCT to g(x, y), yielding
the frequency-domain components G(u, v) shown in Fig. 7.10.

Two important observations can be made from the result in Fig. 7.10. First,
G(u, v) contains substantial high-frequency components, implying that the spatial
sampling rate cannot be drastically reduced according to the well-known Nyquist–
Shannon sampling theorem. Second, G(u, v) is sparse, as its magnitude is almost
zero at a large number of frequencies. This sparse pattern is the essential necessary
condition that makes the proposed VP framework applicable to this example.

222 J. Tao et al.

Fig. 7.9 Measured flush
delay values (normalized by a
randomly selected constant)
of 282 industrial chips from
the same wafer show
significant spatial variations

5 10 15

5

10

15

20

X Axis

Y
 A

xi
s

5

6

7

8

9

10

11

Fig. 7.10 Discrete cosine
transform (DCT) coefficients
(magnitude) of the
normalized flush delay
measurement show a unique
sparse pattern

0
5

10
15

0
5

10
15

0

5

10

15

X AxisY Axis

D
C

T
 C

oe
ff

 (
M

ag
)

High-frequency
components

In what follows, we first use the data set in Fig. 7.9 to compare the modified Latin
hypercube sampling algorithm (i.e., M-LHS summarized in Algorithm 4) with two
brute-force sampling methods (i.e., grid sampling and random sampling), thereby
demonstrating the superior accuracy achieved by M-LHS. Next, we further apply the
proposed VP technique (i.e., Algorithm 5) and several traditional methods to predict
the spatial delay variations and compare the accuracy of these different approaches.

7.5.1.1 Spatial Sample Generation

For testing and comparison purposes, we implement three different sampling
schemes to select the spatial locations for silicon testing: (1) grid sampling, (2)
brute-force random sampling, and (3) modified Latin hypercube sampling (M-LHS).
Grid sampling deterministically picks up a set of spatial locations from a uniform
two-dimensional grid. Brute-force random sampling simply selects random spatial
locations by using a pseudo-random number generator. Finally, M-LHS follows
the partition and selection steps summarized in Algorithm 4 to determine random
sampling locations.

7 Efficient Process Variation Characterization by Virtual Probe 223

We apply the aforementioned three sampling schemes to select 128 chips out of
282 possible candidates on the same wafer. Next, we collect the flush delay data
for these 128 selected chips and apply the MAP estimation (see Algorithm 5) to
predict the spatial variations of the entire wafer. In Step 5 of Algorithm 5, the
linear optimization is efficiently solved by the l1-MAGIC package developed by
California Institute of Technology, taking about 8 s to finish in this example. Such
an experiment is repeated for 1000 times in order to accurately estimate the statistics
of prediction error.

Figure 7.11 shows the coherence (see Definition 7.2) and the average error
for these 1000 repeated runs. As discussed in Sect. 7.2.3, the value of coherence
provides a quantitative measure to assess the orthonormality of the matrix A in (7.5).
On the other hand, the average error of the MAP estimation is calculated by:

ErrorAVG =

√√√√√√√√

∑
x

∑
y

[
g(x, y)− g̃(x, y)]2

∑
x

∑
y

[
g(x, y)

]2
, (7.23)

where g(x, y) and g̃(x, y) denote the exact value and the estimated value of the
flush delay at the location (x, y), respectively. Note that since grid sampling is
deterministic, all 1000 runs yield the same result. Hence, only one data point is
plotted in Fig. 7.11. Table 7.1 further shows the statistics of both coherence and
error calculated from these 1000 repeated runs.

Fig. 7.11 Coherence and
average error calculated from
128 chips with 1000 repeated
runs for three different
sampling techniques: (1) grid
sampling (Grid), (2)
brute-force random sampling
(Random), and (3) modified
Latin hypercube sampling
(M-LHS)

0.4 0.6 0.8 1
0

2

4

6

8

10

12

Coherence

A
ve

ra
ge

 E
rr

or
 (

%
)

Grid
Random
M-LHS

Table 7.1 Statistics of
coherence and average error
calculated from 128 chips
with 1000 repeated runs

Coherence Average error (%)

Method Mean Std Mean Std

Grid 1.000 N/A 10.96 N/A

Random 0.545 0.040 1.90 0.41

M-LHS 0.521 0.020 1.54 0.20

224 J. Tao et al.

Studying Fig. 7.11 and Table 7.1, we would have two important observations.
First, grid sampling results in a large coherence value. It, in turn, implies that the
columns of the matrix A in (7.5) are not approximately orthonormal. According
to the discussions in Sect. 7.2.3, the MAP estimation cannot accurately predict
the spatial variations in this case. This conclusion is consistent with the results in
Fig. 7.11 where the average error associated with grid sampling is extremely large.

Second, both brute-force random sampling and M-LHS yield small coherence
values and, consequently, small prediction errors. These results demonstrate the fact
that compared to grid sampling, randomized sampling algorithms can efficiently
generate “good” spatial samples and need less samples to achieve similar prediction
accuracy. These results demonstrate the fact that a randomized algorithm can effi-
ciently generate good spatial samples. In addition, comparing brute-force random
sampling with M-LHS, we would notice that both methods result in similar mean
values for coherence and error. However, M-LHS is able to reduce the standard
deviation of both coherence and error by about 2× in this example. Such a reduction
in standard deviation occurs, because M-LHS well controls the random samples by
the partition and selection steps summarized in Algorithm 4. This is an important
benefit offered by M-LHS, since it reduces the probability that a set of “bad”
samples are randomly selected and, hence, result in large prediction error.

7.5.1.2 Spatial Variation Prediction

To quantitatively evaluate the accuracy of the proposed VP technique, we repeatedly
apply Algorithm 5 with M-LHS to predict the wafer-level spatial variations with
different numbers of spatial samples. For testing and comparison purposes, we
implemented a number of traditional methods: (1) the two-dimensional interpolation
method with uniform grid sampling [23], (2) the Kriging method with exponential
correlation function [24], (3) the k-LSE method based on DCT analysis [25], and
(4) the simple VP implementation without DCT coefficient preselection [31].

Figure 7.12 shows the average error calculated by (7.23) as a function of the
number of samples (i.e., M) for different algorithms. M-LHS is applied to select

Fig. 7.12 Average prediction
error (both mean and standard
deviation) of different
algorithms estimated by 100
repeated runs

0 50 100 150 200 250 300
0

5

10

15

20

Number of Samples (M)

A
ve

ra
ge

 E
rr

or
 (

%
)

Interpolation
k-LSE
Kriging
VP [1]
VP (Proposed)

7 Efficient Process Variation Characterization by Virtual Probe 225

the sampling locations for all methods except two-dimensional interpolation. To
account for the inherent randomness of M-LHS sampling, we repeatedly run each
algorithm for 100 times and plot the mean and the standard deviation of the
average error in Fig. 7.12. Note that Algorithm 5 achieves the highest accuracy
in this example. Compared to the simple VP implementation developed in [31],
our new implementation (i.e., Algorithm 5) achieves superior accuracy by carefully
preselecting the important DCT coefficients at low frequencies. Such a preselection
scheme is particularly important, if the number of available samples (i.e., M)
is small and, hence, it is difficult to accurately find the nonzeros from all DCT
coefficients by L1-norm regularization. On the other hand, the proposed VP algo-
rithm outperforms other traditional techniques (i.e., two-dimensional interpolation,
Kriging prediction, and k-LSE estimation), because all these traditional methods
assume a smooth spatial variation pattern and, therefore, cannot accurately capture
the high-frequency components of our measurement data shown in Fig. 7.10.

Figure 7.13 shows the flush delay values predicted from 60 tested chips (i.e.,
M = 60) by the proposed VP algorithm. In this example, 120 DCT coefficients
are preselected by the cross-validation algorithm in Sect. 7.3.4, before the final l1-
norm regularization step is applied. Figure 7.14 further plots the DCT coefficients
associated with the spatial variation pattern in Fig. 7.13. Comparing Figs. 7.10

Fig. 7.13 Flush delay values
predicted from 60 tested
chips by the proposed VP
algorithm

5 10 15

5

10

15

20

X Axis

Y
 A

xi
s

5

6

7

8

9

10

11

Fig. 7.14 The proposed VP
algorithm accurately captures
the low-frequency and
high-frequency DCT
coefficients by using 60 tested
chips

0
5

10
15

0
5

10
15

0

5

10

15

X AxisY Axis

D
C

T
 C

oe
ff

 (
M

ag
)

High-frequency
components

226 J. Tao et al.

and 7.14, we would notice that both the low-frequency and the high-frequency DCT
coefficients are accurately captured in this example.

To quantitatively assess the prediction accuracy of each chip, we calculate the
following relative error:

ErrorREL
(
x, y

) = ∣∣∣∣g(x, y)− g̃(x, y)g(x, y)

∣∣∣∣ , (7.24)

where g(x, y) and g̃(x, y) are similarly defined as those in (7.23). The error metric
in (7.24) measures the difference between the measurement data (i.e., Fig. 7.9) and
the prediction results (i.e., Fig. 7.13) for every chip. Figure 7.15 shows the histogram
of the relative error calculated for all chips on the same wafer. Note that the relative
error is less than 10% for most chips in this example.

7.5.2 Leakage Current Measurement Data

We consider the leakage current measurement data collected by IDDQ test for the
same industrial circuit design. Figure 7.16 shows the normalized leakage current
values log10(ILEAK) (after logarithmic transform) as a function of the location
(x, y). Figure 7.17 further shows the frequency-domain components after DCT.

Fig. 7.15 Histogram of the
relative error of the proposed
VP algorithm calculated
by (7.24) for all chips on the
same wafer

0 5 10 15 20
0

50

100

150

Relative Error (%)

N
um

be
r

of
 C

hi
ps

Fig. 7.16 Measured leakage
current values log10(ILEAK)

(normalized by a randomly
selected constant) of 282
industrial chips from the
same wafer show significant
spatial variations

5 10 15

5

10

15

20

X Axis

Y
 A

xi
s

5

6

7

8

9

10

11

7 Efficient Process Variation Characterization by Virtual Probe 227

Fig. 7.17 Discrete cosine
transform (DCT) coefficients
(magnitude) of the
normalized leakage current
measurement log10(ILEAK)

show a unique pattern that is
approximately sparse

0
5

10
15

0
5

10
15

0

5

10

15

X AxisY Axis

D
C

T
 C

oe
ff

 (
M

ag
)

High-frequency
components

Fig. 7.18 Average prediction
error (both mean and standard
deviation) of different
algorithms estimated by 100
repeated runs

0 50 100 150 200 250 300
0

5

10

15

20

25

Number of Samples (M)

A
ve

ra
ge

 E
rr

or
 (

%
)

Interpolation
k-LSE
Kriging
VP [1]
VP (Proposed)

Similar to the flush delay example, the DCT coefficients contain important high-
frequency components. In addition, a large number of small DCT coefficients are
observed and, hence, the frequency-domain representation is approximately (but not
exactly) sparse. This observation is consistent with the fact that the full-chip leakage
current partially depends on VTH mismatches that are not spatially correlated.

We apply different algorithms to predict the spatial variations based on a few
(i.e.,M) sampling points. Figure 7.18 shows the average error calculated by (7.23).
Similar to the previous example, both the mean and the standard deviation of
the average error are calculated from 100 repeated runs and they are plotted in
Fig. 7.18. Note that the proposed VP method (i.e., Algorithm 5) achieves better
accuracy than three traditional techniques: (1) two-dimensional interpolation, (2)
k-LSE estimation, and (3) the simple VP implementation in [31]. However, the
accuracy of VP is slightly worse than Kriging prediction, because the frequency-
domain representation is not exactly sparse in this example.

Figure 7.19 shows the leakage current values log10(ILEAK) (after logarithmic
transform) predicted from 100 tested chips by the proposed VP algorithm. In this
example, 240 DCT coefficients are preselected by the cross-validation algorithm in
Sect. 7.3.4, before the final l1-norm regularization step is applied. Figure 7.20 further
shows the histogram of the relative error calculated for all chips using (7.24). Note
that the relative error is less than 10% for most chips in this example.

228 J. Tao et al.

Fig. 7.19 Leakage current
values log10(ILEAK)

predicted from 100 tested
chips by the proposed VP
algorithm

5 10 15

5

10

15

20

X Axis

Y
 A

xi
s

5

6

7

8

9

10

11

Fig. 7.20 Histogram of the
relative error of the proposed
VP algorithm calculated
by (7.24) for all chips on the
same wafer

0 5 10 15 20
0

50

100

150

200

Relative Error (%)

N
um

be
r

of
 C

hi
ps

Fig. 7.21 Measured ring
oscillator (RO) period values
(normalized by a randomly
selected constant) of 117 ROs
from the same wafer show
significant spatial variations

2 4 6 8 10 12 14

2

4

6

8

10

12

X Axis

Y
 A

xi
s

17

18

19

20

21

22

7.5.3 Ring Oscillator Period Measurement Data

We consider the ring oscillator (RO) period measurement data collected from a
wafer at an advanced technology node. These RO measurement data are strongly
correlated with the final chip performance and, hence, are often used for process
monitoring and control [10, 11]. Our wafer contains 117 ROs distributed over
different spatial locations. Figure 7.21 shows the normalized RO period values as

7 Efficient Process Variation Characterization by Virtual Probe 229

Fig. 7.22 Discrete cosine
transform (DCT) coefficients
(magnitude) of the
normalized RO period show a
unique pattern that is
approximately sparse

0
5

10

0
5

10
0
1
2
3
4
5

X AxisY Axis

D
C

T
 C

oe
ff

 (
M

ag
)

High-frequency
components

Fig. 7.23 Average prediction
error (both mean and standard
deviation) of different
algorithms estimated by 100
repeated runs

20 40 60 80 100 120
0

5

10

15

20

Number of Samples (M)

A
ve

ra
ge

 E
rr

or
 (

%
)

Interpolation
k-LSE
Kriging
VP [1]
VP (Proposed)

a function of the location (x, y). Figure 7.22 further shows the frequency-domain
components after DCT. Similar to the leakage current example, the DCT coefficients
are approximately sparse and contain significant high-frequency components.

We apply different algorithms to recover the spatial variations based on a
few (i.e., M) sampling points. Figure 7.23 compares the average error calculated
by (7.23) for different methods. Both the mean and the standard deviation of the
average error are calculated from 100 repeated runs and they are plotted in Fig. 7.23.
Note that the proposed VP technique (i.e., Algorithm 5) achieves the best accuracy
in this example. The Kriging method shows large error, because it assumes an
exponential correlation model while the actual spatial correlation does not match
the model template. In general, the Kriging method needs to know the correlation
template in advance. If the prior knowledge of the correlation function is not correct,
the Kriging method may fail to predict the spatial variations accurately.

Figure 7.24 further shows the RO period values predicted from 40 tested ROs by
the proposed VP algorithm. The cross-validation algorithm in Sect. 7.3.4 preselects
all DCT coefficients in this example. Figure 7.25 shows the histogram of the relative
error calculated for all ROs using (7.24). Note that the relative error is less than 5%
for most chips in this example.

230 J. Tao et al.

Fig. 7.24 Ring oscillator
(RO) period values predicted
from 40 tested ROs by the
proposed VP algorithm

2 4 6 8 10 12 14

2

4

6

8

10

12

X Axis

Y
 A

xi
s

17

18

19

20

21

22

Fig. 7.25 Histogram of the
relative error of the proposed
VP algorithm calculated
by (7.24) for all ring
oscillators on the same wafer

0 2 4 6 8
0

10

20

30

40

50

Relative Error (%)

N
um

be
r

of
 R

O
s

7.6 Conclusions

In this chapter, we propose a novel virtual probe (VP) framework to efficiently
and accurately recover full-wafer/chip spatial variations from an extremely small
set of measurement data, thereby reducing the cost of silicon characterization and
testing. VP exploits recent breakthroughs in compressed sensing [18–21]. It is
formulated as a maximum a posteriori (MAP) problem and can be efficiently solved
via linear programming. Our numerical examples based on industrial measurement
data demonstrate that VP provides superior accuracy over other traditional methods,
including two-dimensional interpolation, Kriging prediction, and k-LSE estimation.

References

1. S. Nassif, Delay variability: sources, impacts and trends, in IEEE International Solid-State
Circuits Conference (2000), pp. 368–369

2. Semiconductor Industry Associate, 2007 International Technology Roadmap for Semiconduc-
tors (ITRS) (Semiconductor Industry Association, Washington, 2007)

3. H. Chang, S. Sapatnekar, Statistical timing analysis under spatial correlations. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 24(9), 1467–1482 (2005)

7 Efficient Process Variation Characterization by Virtual Probe 231

4. C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, S. Narayan, First-order incremental
block-based statistical timing analysis, in Design Automation Conference (2004), pp. 331–336

5. Y. Zhan, A. Strojwas, X. Li, L. Pileggi, D. Newmark, M. Sharma, Correlation aware statistical
timing analysis with non-Gaussian delay distributions, in Design Automation Conference
(2005), pp. 77–82

6. K. Heloue, F. Najm, Statistical timing analysis with two-sided constraints, in International
Conference on Computer-Aided Design (2005), pp. 829–836

7. M. Mani, A. Singh, M. Orshansky, Joint design-time and post-silicon minimization of
parametric yield loss using adjustable robust optimization, in International Conference on
Computer-Aided Design (2006), pp. 19–26

8. S. Kulkarni, D. Sylvester, D. Blaauw, A statistical framework for post-silicon tuning through
body bias clustering, in International Conference on Computer-Aided Design (2006), pp. 39–
46

9. Q. Liu, S. Sapatnekar, Synthesizing a representative critical path for post-silicon delay
prediction, in IEEE International Symposium on Physical Design (2009), pp. 183–190

10. M. Ketchen, M. Bhushan, D. Pearson, High speed test structures for in-line process monitoring
and model calibration, in IEEE International Conference on Microelectronic Test Structures
(2005), pp. 33–38

11. M. Bhushan, A. Gattiker, M. Ketchen, K. Das, Ring oscillators for CMOS process tuning and
variability control. IEEE Trans. Semicond. Manuf. 19(1), 10–18 (2006)

12. W. Mann, F. Taber, P. Seitzer, J. Broz, The leading edge of production wafer probe test
technology, in IEEE International Test Conference (2004), pp. 1168–1195

13. F. Koushanfar, P. Boufounos, D. Shamsi, Post-silicon timing characterization by compressed
sensing, in International Conference on Computer-Aided Design (2008), pp. 185–189

14. S. Reda, S. Nassif, Analyzing the impact of process variations on parametric measurements:
novel models and applications, in Design, Automation & Test in Europe (2009), pp. 375–380

15. M. Bushnell, V. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-
Signal VLSI Circuits (Kluwer Academic Publishers, Norwell, 2000)

16. A. Oppenheim, Signals and Systems (Prentice Hall, Upper Saddle River, 1996)
17. R. Gonzalez, R. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, 2007)
18. D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
19. E. Candes, Compressive sampling, in International Congress of Mathematicians (2006)
20. J. Tropp, S. Wright, Computational methods for sparse solution of linear inverse problems.

Proc. IEEE 98(6), 948–958 (2010)
21. D. Donoho, J. Tanner, Precise undersampling theorems. Proc. IEEE 98(6), 913–924 (2010)
22. C. Bishop, Pattern Recognition and Machine Learning (Prentice Hall, Upper Saddle River,

2007)
23. W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes: The Art of Scientific

Computing (Cambridge University Press, Cambridge, 2007)
24. F. Liu, A general framework for spatial correlation modeling in VLSI design, in Design

Automation Conference (2007), pp. 817–822
25. A. Nowroz, R. Cochran, S. Reda, Thermal monitoring of real processors: techniques for sensor

allocation and full characterization, in Design Automation Conference (2010), pp. 56–61
26. R. Tibshirani, Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. 58(1), 267–288

(1996)
27. G. Golub, C. Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, 1996)
28. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,

2004)
29. S. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, An interior-point method for large-scale
l1-regularized least squares. IEEE J. Sel. Top. Sign. Proces. 1(4), 606–617 (2007)

30. M. McKay, R. Beckman, W. Conover, A comparison of three methods for selecting values
of input variables in the analysis of output from computer code. Technometrics 42(1), 55–61
(1979)

31. X. Li, R. Rutenbar, R. Blanton, Virtual probe: a statistically optimal framework for minimum-
cost silicon characterization of nanoscale integrated circuits, in International Conference on
Computer-Aided Design (2009), pp. 433–440

Chapter 8
Machine Learning for VLSI Chip Testing
and Semiconductor Manufacturing
Process Monitoring and Improvement

Jinjun Xiong, Yada Zhu, and Jingrui He

8.1 Introduction

The recent disruptive advancement in mobile and information technologies has
fundamentally transformed business, industries, and society at large and has spurred
an exponential growth in data volume [1]. Machine learning and big data analytics
have thus become some of the hottest buzz phrases these days, and their growth in
popularity continues to expand from the mobile and IT industries into many other
industries, including finance, health care, medicine, science, and entertainment.
They were considered one of the fastest growing technology trends in 2014 [2], and
numerous anecdotes have led us to believe that the glamour of machine learning and
big data analytics has attracted many best and brightest away from their traditional
technological profession, including the $336 billion industry of semiconductor.

In this chapter, we argue that the semiconductor industry, however, also offers
many challenging and interesting machine learning and big data analytic problems,
and solutions to these problems would result in much higher business impact than
many of those trendy analytics business. The argument is almost self-evident.
For example, semiconductor manufacturing represents one of the most complex
manufacturing processes in the world [3], and large amount of data associated
with process variables monitored over time (e.g., temperature, impedance, gas flow,
electric bias) are collected and stored in a huge database. If those data are analyzed
for a variety of purposes, such as anomaly detection, quality control, and fault
diagnosis, it may lead to significant reduction in the manufacturing cost [4, 5].

J. Xiong (�) · Y. Zhu
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA
e-mail: jinjun@us.ibm.com; yzhu@us.ibm.com

J. He
Arizona State University, Tempe, AZ, USA
e-mail: jingrui.he@asu.edu

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_8

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_8&domain=pdf
mailto:jinjun@us.ibm.com
mailto:yzhu@us.ibm.com
mailto:jingrui.he@asu.edu
https://doi.org/10.1007/978-3-030-04666-8_8

234 J. Xiong et al.

Similar arguments can be made to other semiconductor-related businesses, including
electronic design automation (EDA) and fabless design houses where large amounts
of design data and reports are generated and processed on a regular basis. Deep
insights can be gained about designs and design process itself if those data can be
subject to machine learning and big data analytics.

This paper tries to illustrate this point through a number of practical but
challenging problems arising from the latest semiconductor manufacturing process.

We first show how machine learning techniques, especially those regression-
related problems, often under the “disguise” of optimization problems, have been
used frequently (often with nontrivial modeling skills and mathematical sophistica-
tions) to solve the semiconductor problems. For some other types of semiconductor
problems, such as manufacturing process monitoring and improvement, we show
that some existing machine learning algorithms are not necessarily well positioned
to solve them, and novel machine learning techniques involving temporal, structural
and hierarchical properties need to be further developed. In either scenario, we
convey the message that machine learning and existing semiconductor industry
research are closely related, and researchers often contribute to and benefit from
each other.

The remainder of this chapter is organized as follows. We first give some
background related to the topics of this chapter in Sect. 8.2. We then show how
the well-known nonlinear regression techniques from machine learning are used
to solve process variation modeling and chip testing problems in Sect. 8.3. Two
examples are then discussed in Sects. 8.4 and 8.5, respectively, to show how
existing machine learning techniques such as multitask learning and clustering need
to be extended to solve the manufacturing wafer quality prediction and process
monitoring problems, thus contributing back to the machine learning communities.
We conclude this chapter in Sect. 8.6.

8.2 Background

We briefly review a number of data mining and machine learning techniques that
are commonly used in solving many big data analytic problems. And, we will show
later that these techniques can also be used, sometimes with nontrivial extensions,
to solve problems resulting from semiconductor manufacturing process.

At a high level, machine learning can be thought of as minimizing some kind of
measure of errors for a model based on data such that the model can help to make
predictions.

One of the most frequently used machine learning techniques is regression,
where the model is in the form of some mathematical form, be it a linear function or
nonlinear function, to establish the relationship between input and output numerical
variables. As such, the regression problem is often formulated as a nonlinear
optimization problem. In semiconductor manufacturing, predicting wafer quality

8 Machine Learning for VLSI Chip Testing and Manufacturing 235

based on the process monitoring data is typically formulated as a regression
problem.

Another problem arising frequently in the big data world is to learn data represen-
tations that are common across multiple related learning tasks, such as collaborative
E-mail spam filtering in open membership systems [6], web search ranking data sets
from several countries [7], detecting multiple objects from images [8], prediction of
student test results for a collection of schools based on school demographics [9],
and the prediction of survival of patients in different clinics [10]. These problems
are typically formulated as a multitask learning (MTL) problem, where the goal
is to build good models for all target tasks. In doing so, the key is to leverage task
relatedness that affects the information shared among various tasks. To predict wafer
quality in semiconductor manufacturing, process monitoring data generated from
multiple machines (or chambers) that follow the same process receipts can also
be formulated as an MTL problem in order to improve prediction performance on
future unseen examples.

Another well-known machine learning technique is clustering, an unsupervised
learning technique to group objects such that objects in the same cluster are
more similar to each other than to those in other clusters. (It can be applied to
detect process anomalies based on the size of clusters or the change of cluster
memberships.) It has found applications, such as text, web-log, and market-basket
data analysis. Typically, those data can be arranged into a two-dimensional array
with some kind of co-occurrence relationship, for example, word-document or
webpage-user browsing co-occurrence arrays. Most existing clustering algorithms
focus on one-way clustering, i.e., cluster data along one dimension of the array
based on similarity measures of data along the other dimension.

Time series data is another popular subject in machine learning because of
its pervasive applicability to many modeling scenarios. As such, it is hardly
surprising to see that time series data mining has attracted significant attention
and research effort. Time series analysis aims at extracting meaningful information
from sequences of data points, measured at successive time stamps. For time series
data, researchers have studied a variety of problems, such as classification [11, 12],
clustering [13–15], search and indexing [16, 17], forecasting [18], and outlier
detection [19]. (In semiconductor manufacturing, process monitoring data is high-
dimensional time series that has been widely studied to improve process monitoring,
yield, and wafer quality control.)

In contrast to the recent booming phenomena of machine learning and big data
in many industries, the semiconductor industry, manufacturing process in particular,
has long (though less publicized than the former) embraced the challenges of
machine learning and big data and has developed many interesting machine
learning algorithms to address those challenges. One such example is called virtual
metrology [20], which develops methods to predict properties of a wafer based on
a large set of measured machine parameters and sensor data of the manufacturing
process, without performing the (costly) physical measurement of wafer properties.
Another example is statistical analysis of chip design quality, such as process
variability modeling and statistical chip test for yield improvement.

236 J. Xiong et al.

In the following sections, we will present a number of techniques developed
resulting from research in semiconductor chip designs and manufacturing. We
will show that some of those techniques are mainly published in semiconductor-
related conferences, while others are mainly published in machine learning-related
conferences. But in essence, their approaches and methodologies are very similar,
i.e., both bring in deep domain knowledge to model the issue in some mathematical
form, formulate the problem as an optimization problem, and then utilize the
data to solve the optimization problem. The major difference, however, is that
techniques published in the semiconductor area typically focus on applying existing
machine learning techniques, including nontrivial optimization techniques, to solve
the problem, while the machine learning papers focus more on the special structure
of the problem where extending existing machine learning techniques become
necessary. But, such distinction is not a major hurdle for many researchers working
in traditional semiconductor areas, as they easily understand the lingo from both
sides. For them, whether or not to catch the trend to shift their research focus to
machine learning is not that important. What is more important is to let research
problems themselves drive the right course of actions.

8.3 Machine Learning for Chip Testing and Yield
Optimization

In this section, we present a number of techniques developed in a subfield of
the semiconductor industry called electronic design automation (EDA), and, in
particular, an even smaller area within EDA called statistical chip testing and
yield optimization considering process variations. Though those techniques are
traditionally not being considered as machine learning techniques, we show, in
fact, that many techniques developed in that domain are closely related to machine
learning under the “disguise” of various optimization problems.

8.3.1 Robust Spatial Correlation Extraction

One of the main concerns in the semiconductor industry recently is the impact of
technology scaling. Aggressive scaling down of transistors and interconnects has
resulted in miraculous achievements in chip performance and functionality. This
deep scaling of semiconductor technology, however, has introduced the problem
of uncontrollable process variations. That is, we are unable to make transistors
and interconnects with accurately predictable characteristics, let alone to make
transistors the same on different copies of the same chip and even at different
locations of the same chip. Thus, the only way to cope with variability is to model
the variability based on data, a task closely related to machine learning. We discuss

8 Machine Learning for VLSI Chip Testing and Manufacturing 237

a technique to robustly model spatial correlation based on measurement data in this
section.

8.3.1.1 Problem Formulations

There are two orthogonal ways to classify process variations. The first one is to
classify the variations according to the scope of their occurrence as: (1) die-to-
die variation, which describes the variation that affects parameters in different
dies differently, but affects parameters within a die equally, and (2) within-die
variation (also called intra-die variation, across-chip variation, on-chip variation,
spatial variation, or spatial correlation), which describes the variation that affects
process parameters at different locations of the same die differently. The second
one is to classify the variations according to the scale of their causes, that is: (1)
systematic variation, which describes the deterministic portion of the variation, and
(2) random variation, which describes the variation that is independent of any other
conditions.

We denote F as the measurable process parameter of interest, which can be either
a physical parameter, like channel length, channel width, silicon oxide thickness,
and wire thickness, or a parametric quantity, such as gate delay and threshold
voltage. Because of manufacturing process variations, these process parameters are
no longer fixed values. We model the parameter as a random variable, which is
a complicated function of die-to-die (D2D) systematic and random variations, and
within-die (WID) systematic and random variations. Conceptually, we can represent
it as:

F = h(ZD2D, sys, ZD2D, rnd, ZWID, sys, ZWID, rnd), (8.1)

where ZD2D, sys models the die-to-die systematic variation; ZD2D, rnd models the
die-to-die random variation; ZWID, sys models the within-die systematic variation;
and ZWID, rnd models the within-die random variation. All variation components
are complicated functions of the manufacturing process, feature’s relative location in
the wafer, feature’s relative location in the die, and feature’s local geometry patterns,
to name just a few. Assuming that the impact of each variation component is linear,
we write (8.1) as follows:

F = h0 + h1(ZD2D, sys)+ h2(ZD2D, rnd)+ h3(ZWID, sys)+ h4(ZWID, rnd)+Xr,

where h0 is a function that models the nominal value of F under nominal
manufacturing conditions without any variation; h1, h2, h3, and h4 are functions
that model the impact of respective variation component on F ; and Xr is a residual
part that models the purely independent random variation that is not explainable by
other variation components. We further define

Fs = h1(ZD2D, sys)+ h3(ZWID, sys),

238 J. Xiong et al.

Fr = h2(ZD2D, rnd)+ h4(ZWID, rnd)+Xr,

where Fs models the systematic variation of F , while Fr is a zero-mean random
variable that models the random variation of F . Hence, we have

F = h0 + Fs + Fr. (8.2)

The variance of F , σ 2
F , is also called the overall chip variance.

Because the systematic variation is more like a deterministic variation, we lump
it with the nominal value h0, that is:

f0 = h0 + Fs, (8.3)

where f0 is the mean value of F with the systematic variation considered. The
extraction of mean value f0 is relatively easy and is essentially done through
averaging. In the following, we mainly concern ourselves in extracting the random
variation parts Fr . Towards this end, we rewrite the random variation Fr as follows:

Fr = Xg +Xs +Xr,

where Xg = h2(ZD2D, rnd) and Xs = h4(ZWID, rnd). Therefore, we have

F = f0 + Fr = f0 +Xg +Xs +Xr. (8.4)

The three types of random variations,Xg ,Xs , andXr , are independent by definition.
Hence, the variance of Fr is given by:

σ 2
Fr
= σ 2

G + σ 2
S + σ 2

R, (8.5)

where σ 2
G, σ 2

S , and σ 2
R are the variances of Xg , Xs , and Xr , respectively. When

the systematic variation is excluded, the overall chip variance is equivalent to the
random variance, i.e., σ 2

F = σ 2
Fr

.
It has been observed that devices that are physically close to each other are

more likely to have similar characteristics than devices that are far apart. This
phenomenon is captured by the modeling of spatial correlation.

We model the random part of process variation Fr as a homogeneous and
isotropic random filed, which is a real random function F(x, y) of position (x, y)
in the 2-dimensional space R2 with its mean and variance being constants, and its
correlation function ρ(xi, xj , yi, yj) between any two points depending only on the
distance v between them, that is:

ρ(xi, xj , yi, yj) = ρ(vi,j), (8.6)

8 Machine Learning for VLSI Chip Testing and Manufacturing 239

where vi,j =
√
(xi − xj)2 + (yi − yj)2. If the spatial variation follows a homo-

geneous and isotropic random field, the same distance vi,j always corresponds to
the same ρ(vi,j), regardless of their locations. Therefore, for simplicity, we denote
ρ(vi,j) as ρ(v) in the following whenever there is no ambiguity.

Formally, a valid spatial correlation function ρ(v) is a function such that the
correlation matrix generated from ρ(v) for arbitrary number of points on the two-
dimensional space is always positive semidefinite.

In its simplest way, a valid spatial correlation function should be a monotonically
decreasing function. But, not all monotonically decreasing functions qualify for
being a valid spatial correlation function. In fact, per [21], a necessary and sufficient
condition for the function ρ(v) to be a valid spatial correlation function of a
homogeneous and isotropic random field is that it can be represented in the form
of:

ρ(v) =
∫ ∞

0
J0(ωv)d(Φ(ω)), (8.7)

where J0(t) is the Bessel function of order zero and Φ(ω) is a real nondecreasing
function on [0,∞) such that for some nonnegative p:

∫ ∞

0

dΦ(ω)

(1+ ω2)p
<∞. (8.8)

Based on this, we propose the following problem formulation:

Extraction of Spatial Correlation Function Given noisy measurement data for
the parameter of interest with possible inconsistency, extract the inter-chip global
variation component σ 2

G, the intra-chip spatial variation component σ 2
S , the random

variation component σ 2
R , and the spatial correlation function ρ(v), so that the

extracted variation components accurately capture the underlying variation model,
and the spatial correlation function is always a valid correlation function satisfying
condition (8.7).

It’s easy to see that we can formulate the extraction of the spatial correlation
function ρ(v) as a regression problem with a set of measurements that give out
data set as (v, ρ(v)). The regression problem would be to determine a nonlinear
regression function as shown in (8.7). But, we will show soon that a direct
application of regression is not necessarily easy for this problem.

8.3.1.2 Extraction Algorithms

We treat each measurement of the parameter of interest F as a sampling of the
quantity in (8.4). Given N samples of a chip and M number of measurement
sites on each chip, we group the measured data fk,i by their chip locations as

240 J. Xiong et al.

follows: fk,.=[fk,1, ..., fk,M] for k = 1 to N , or by their site locations as follows:
f.,i = [f1,i , ..., fN,i] for i = 1 to M . For better presentation, we denote the
actual variance as σ 2 with an uppercase letter in subscript, like σ 2

G for the global
variation component, and denote the extracted variance as σ 2 with a lowercase letter
in subscript, like σ 2

g for the extracted global variation component.
Since the spatial variation is modeled as a homogeneous and isotropic random

field in a two-dimensional space R2, for the parameter of interest at arbitrary two
different points, their covariance is

cov(Fi, Fj) = cov(Xg,Xg)+ cov(Xs,i , Xs,j) = σ 2
G + ρ(v)σ 2

S , (8.9)

where ρ(v) is the spatial correlation coefficient between two locations that are
v distance apart. In other words, we can characterize the process variation by
extracting the inter-chip global variation σ 2

G, intra-chip spatial variation σ 2
S , and

the correlation function ρ(v).
For the parameter of interest at two different locations with distance of v, the

overall process correlation between them is thus given by:

ρv ≡ cov(Fi, Fj)

σFi σFj
= σ 2

G + ρ(v)σ 2
S

σ 2
G + σ 2

S + σ 2
R

. (8.10)

Because the spatial correlation ρ(v) is a function of the distance v, so is the overall
process correlation ρv . As ρ(v) is homogeneous and isotropic, so is ρv . Because
of the one-to-one correspondence between spatial correlation ρ(v) and the overall
process correlation ρv , extracting the spatial correlation function ρ(v) is equivalent
to extracting the overall process correlation function ρv .

We approximate the overall chip variance σ 2
F by computing the unbiased sample

variance of fk,i as follows:

σ 2
F ≈ σ 2

f =
1

MN − 1

⎛
⎝∑

i

∑
k

f 2
k,i −

(
∑
i

∑
k fk,i)

2

MN

⎞
⎠ . (8.11)

For all samples of the parameter of interest F within a particular chip c, because the
inter-chip global variation Xg changes the value of parameter for all samples with
the same chip by the same amount, the overall within-chip variance is thus given by:

σ 2
Fc
= σ 2

S + σ 2
R. (8.12)

We estimate the overall within-chip variation by computing the unbiased sample
variance of fk,. as follows:

8 Machine Learning for VLSI Chip Testing and Manufacturing 241

σ 2
Fc
≈ σ 2

fk
= 1

M − 1

⎛
⎝∑

i

f 2
k,i −

(
∑
i fk,i)

2

M

⎞
⎠ . (8.13)

For different fk,., we may get different estimation of σ 2
Fc

caused by inconsistent
measurement. To improve the accuracy, we estimate the overall within-chip variance
by taking the average value of σ 2

fk
. We denote the resulting average value as σ 2

fc
≈

σ 2
Fc

.

Knowing the estimation of the overall chip variance σ 2
f and the overall within-

chip variance σ 2
fc

, we extract the inter-chip global variation by:

σ 2
G = σ 2

F − σ 2
Fc
≈ σ 2

g = σ 2
f − σ 2

fc
. (8.14)

For any two different sets of f.,i and f.,j at two different sites that are v distance
apart, we estimate the covariance of Fi and Fj by computing the unbiased sample
covariance of f.,i and f.,j as follows:

cov(Fi, Fj) ≈ cov(f.,i , f.,j) =
∑
k fk,ifk,j

N − 1
−

∑
k fk,i

∑
k fk,j

N(N − 1)
. (8.15)

For simplicity, we also denote cov(f.,i , f.,j) as cov(v) to show that it is a function
of two points that are v distance apart.

According to (8.9) and (8.14), we estimate the product of spatial variation σ 2
S and

spatial correlation ρ(v) as follows:

σ 2
S · ρ(v) = cov(Fi, Fj)− σ 2

G ≈ cov(v)− σ 2
g . (8.16)

Because ρ(v) is a function of v, we need to compute ρ(v) for different pairs of sites
with different distances in order to obtain the full description of ρ(v). But, there are
two challenges in doing that: (1) we do not know the exact value of spatial variation
σ 2
S ; (2) because of unavoidable measurement errors, the data set computed as above

may not be consistent. Therefore, in the following, we propose a robust technique to
find the spatial correlation function ρ(v) and σ 2

S accurately. Moreover, the resulting
ρ(v) is guaranteed to be a valid spatial correlation function.

Given the data set (v, cov(v)) as computed from (8.15), we formulate the robust
spatial variation extraction problem as the following regression-like optimization
problem:

min
Φ,σ 2

s

: ‖ σ 2
s

∫∞
0 J0(ωv)d(Φ(ω))− cov(v)+ σ 2

g ‖, (8.17)

s.t. σ 2
s ≤ σ 2

fc
,∫∞

0
dΦ(ω)

(1+ω2)p
<∞.

242 J. Xiong et al.

In other words, we find a valid spatial correlation function by solving a constrained
nonlinear optimization problem, so that the resulting spatial correlation function
minimizes the total error with respect to measurement data. After obtaining Φ(ω),
we plug it into (8.7) to obtain the valid spatial correlation function ρ(v).

The above problem formulation is very general and applies to any real nonde-
creasing function Φ(ω). For practical use, however, there is no need to enumerate
all possible choices of Φ(ω) in order to find the optimal ρ(v).

Therefore, to make the above problem tractable, we can approximate the
experimentally measured correlation function with a function selected from a family
of functions that are proved to be valid spatial correlation functions. To serve such
a purpose, it is sufficient to choose a family of functions Φ(ω) so that the ρ(v)
obtained from (8.7) contains a rich set of functions for the purpose of modeling
spatial correlation.

It has been shown in [22] that by choosing a proper family function of Φ(ω), we
obtain a very general family of spatial correlation functions:

ρ(v) = 2

(
bv

2

)s−1

Ks−1(bv)Γ (s − 1)−1, (8.18)

where K is the modified Bessel function of the second kind, Γ is the gamma
function, and b and s are two real parameter numbers that regulate the shape of
the function. By varying b and s, we obtain different spatial correlation functions.

Without loss of generality, in the following, Eq. (8.18) will be used as the
candidate correlation function in (8.17). Moreover, 2-norm is used as a measure of
the objective function in (8.17). Therefore, we rewrite the regression optimization
problem as given in (8.17) as follows:

min
b,s,σ 2

s

: ∑[2σ 2
s (
bv
2)
s−1Ks−1(bv)Γ (s − 1)−1 − cov(v)+ σ 2

g]2, (8.19)

s.t. σ 2
s ≤ σ 2

fc
.

This is a constrained nonlinear least-square problem, and we can solve it
efficiently via any nonlinear least-square technique [23]. Note that problem (8.19) is
not a convex problem in general, hence we cannot guarantee to find a global optimal
solution. But, as this kind of least-square minimization problem is well studied in
the literature, good solvers are available to find a solution with high quality.

After solving the above problem, we obtain the estimated spatial variation
component σ 2

S ≈ σ 2
s , and the parameter b and s. By plugging b and s into (8.18), we

obtain the estimated spatial correlation function ρ(v) ≈ ρ(v). Therefore, we have
obtained all information about the spatial variation component: both the variance of
spatial variation and the spatial correlation function.

The overall algorithm for characterizing the process variation is summarized as
shown in Fig. 8.1:

8 Machine Learning for VLSI Chip Testing and Manufacturing 243

Fig. 8.1 Algorithm for
characterization of process
variation

1 Extract global variation σ 2
g by (8.14);

2 Solve (8.19) to obtain σ 2
s and b and s;

3 Extract ρ (v) by plugging b and s into (8.18);
4 Extract random variation σ 2

r by (8.20);
5 Extract overall process correlation by (8.10);

We first extract the global variation component σ 2
g by using formula (8.14). We

then solve the nonlinear least-square optimization problem as defined in (8.19) to
obtain the spatial variation component σ 2

s , and the parameter of b and s that define
the spatial correlation function for a homogeneous and isotropic random field as
shown in (8.18). According to (8.5), we extract the random variation component by
using the following formula:

σ 2
R = σ 2

F − σ 2
G − σ 2

S ≈ σ 2
r = σ 2

f − σ 2
g − σ 2

s . (8.20)

By plugging all variation components into (8.10), we obtain the overall process
correlation at any distance.

8.3.1.3 Experimental Results

Because of the sensitivity of manufacturing data, we employ a Monte Carlo model
of measurement to verify the robustness and accuracy of our extraction algorithms
in this section. One of the advantages of using Monte Carlo simulation is that it
allows us to simulate different variation scenarios and measurement settings that
are difficult to control in reality. By comparing the extracted variation components
with the known variation components used in the Monte Carlo model, we can
quantitatively examine how robust and how accurate our extraction algorithms are
in the presence of different amount of measurement errors. Such a study is useful
because it provides us the confidence in applying the algorithms to real wafer
measurement.

In this experiment, the Monte Carlo model is based on a valid correlation function
ρ(v) that follows a homogeneous and isotropic random field, but with different
variation amounts for the three variation components (σ 2

G, σ 2
S , and σ 2

R). We simulate
the measurement process by generating a set of measurement data from N number
of sample chips and M number of measurement sites on each chip. To model the
reality due to measurement error, we add a Gaussian noise with different variation
amounts during the Monte Carlo sampling.

We report the experiment results in Table 8.1. According to Table 8.1, we see
that our algorithm is very accurate in extracting different variation components, yet
very robust to different amount of random noise. For example, with N = 2000,
M = 60, and Noise = 10%, our extracted results have about 0.4% error for
the global variation, 1.9% error for the spatial variation, and 2.0% error for the
spatial correlation function. When the noise amount changes from 10% to 100%,

244 J. Xiong et al.

Table 8.1 Process variation
extraction

N M Noise err(σ 2
G) err(σ 2

S) err(ρ(v))

2000 60 10% 0.4% -1.9% 2.0%

50% 0.3% -2.8% 2.7%

100% 0.3% -2.6% 3.7%

1500 60 10% 4.1% 2.5% 0.9%

50% 3.9% 2.1% 1.0%

100% 3.8% 2.0% 1.2%

1000 60 10% 7.5% 1.2% 1.0%

50% 7.2% 1.0% 1.0%

100% 6.9% 1.4% 1.0%

500 60 10% 17.8% 10.9% 6.6%

50% 18.3% 6.1% 4.8%

100% 18.6% 4.7% 3.1%

1000 50 10% 6.5% 0.8% 2.8%

50% 5.7% -0.4% 3.0%

100% 5.1% -3.0% 3.5%

40 10% 8.6% -4.1% 6.5%

50% 8.7% -3.9% 7.0%

100% 8.9% -2.3% 8.4%

the accuracy of our results almost does not change at all. This convincingly shows
that our extraction algorithm is very resilient to the measurement noise.

We further test the robustness of our algorithm by reducing the number of chip
samplesN from 2000 to 1500, 1000, and 500. We see that when there are reasonable
number of chip samples (1500 and 1000), our algorithm still gives quite accurate
results, and the maximum error for the global variation is no more than 10%, and
the maximum error in either the spatial variation or spatial correlation function is
less than 5%. When the chip samples drop to 500, we start to see a larger error
(but no more than 20%) in the extracted global variation. These observations are
expected, because according to the statistical sampling theories, there is a lower
bound on the number of samples in order to obtain reasonably accurate statistics.

Moreover, we observe that because of the optimization procedure used to
extract the spatial variation and spatial correlation function as shown in (8.19), the
extraction of those two parts is not as sensitive to the number of sample chips as the
global variation extraction does.

We further fix the number of sample chips N to be 1000 and vary the number of
measurement sites M on the chip from 60 to 50 and 40 to study how the accuracy
of our algorithm changes. From Table 8.1, we see that our algorithm still gives quite
accurate results. When M changes from 60 to 40, we only see slight increase of
errors for all extracted variation components, and none of them has more than 10%
error.

8 Machine Learning for VLSI Chip Testing and Manufacturing 245

8.3.2 Statistical Chip Testing and Yield Optimization

Chip testing is an important step in the manufacturing of integrated circuits. The
fundamental task of chip testing is to determine whether a chip should be accepted
or discarded, i.e., chip disposition, by measuring various parameters of chips (called
surrogate metrics) and setting up their corresponding screening criteria (also called
chip disposition criteria). The accepted chip is assumed to have its target metrics
meeting the customer specification. Typical target metrics are operational frequency,
power consumption, and robustness, while the corresponding surrogate metrics may
be frequency of ring oscillators, IDDQ, and process windows. Target metrics are
usually difficult and too expensive to measure directly. If the decision is wrong,
we risk shipping “bad” chips to customers. Hence, the quality of chip disposition
criteria directly impacts both the manufacturing yield and contracted product quality
loss (PQL). This is particularly so with the increasingly large process variation in
nanoscale manufacturing.

Without considering variability, a circuit is typically optimized for a single com-
bination of process parameters. As a result of manufacturing, however, we receive
chips corresponding to various combinations of process parameters. Deterministic
optimization cannot guarantee that the chip satisfies design requirements for all
or most of these combinations. Statistical optimization would target to solve this
problem. The goal of statistical optimization is to maximize yield while satisfying
timing, area, power, and other design constraints. This goal can be achieved only by
considering the whole space of process variations.

In this section, we briefly discuss a number of techniques on statistical chip
testing and yield optimization resulting from the explicit modeling of process
variability from measurement data.

8.3.2.1 Statistical Test Margin Computation

In a sequential circuit, data signals are first launched from launching flip-flops at
the trigger of launching clocks, then propagated through combinational logic, and
lastly are latched at the capturing flip-flops at the trigger of capturing clocks. Data
signals can be latched by capturing flip-flops only if theirs arrival time TA are less
than the respective required times TR . The difference S = TR − TA between the
required and actual arrival times is timing slack. Zero slack is the minimum value
at which the circuit can operate correctly. The required time TR can be expressed
in terms of cycle time Tclk as TR = Tclk − τ , where τ accounts for such effects
as clock skew, latch setup time, and so on. Thus, timing slack can be expressed as
S = TR − TA = Tclk − τ − TA.

The timing slack of a collection of paths is defined as the minimum of their
individual slacks. chip slack is the timing slack of all paths of the chip; and test
slack is the timing slack of only those paths that are tested. test margin refers to the
additional slack required during testing.

246 J. Xiong et al.

Because of process variation, chip and test slacks are modeled as correlated ran-
dom variables. Parameterized statistical static timing analysis [24, 25] approximates
them as linear forms:

S = S0 +
n∑
i=1

aiΔXi + aRΔRa (8.21)

where ΔXi and ΔRa are zero-mean unit Gaussians. Variables ΔXi model globally
correlated variations of process parameters (including spatial correlation) and
ΔRa models uncorrelated variation. S0 is the mean or nominal value of the
slack. Coefficients ai and aR are sensitivities to the corresponding variations. For
techniques on how to obtain those coefficients from the extracted process variation
(including spatial variation) as discussed above can be found in [26]. The benefit
of this representation is that the correlation between two canonical forms can be
immediately judged based on sensitivities to common process variables.

Given chip and test slacks SC , ST in the form of (8.21) and a maximum allowed
shipped product quality loss (SPQL) q, compute a uniform test margin SM as the
solution of the optimization problem:

max
SM
P (ST ≥ SM) (8.22)

s.t. P(SC ≤ 0|ST ≥ SM) ≤ q, (8.23)

where P(ST ≥ SM) is the probability of shipping a chip and P(SC ≤ 0|ST ≥ SM)
is the conditional probability that a shipped chip is deficient (i.e., SPQL).

By taking advantage of the measurement of per-chip surrogate metrics, we can
also compute the test margin that is specific to each chip. Such a formulation will
look like as follows.

Given chip, test, and surrogate measurement’s slacks SC , ST , and SP in the form
of (8.21), for each value of the surrogate metric SP for individual chip, compute
the per-chip test margin SM(SP) to maximize the fraction of shipped chips without
exceeding the required SPQL q, that is:

max
SM(SP)

P
(
ST ≥ SM (SP)

)
(8.24)

s.t. P
(
SC ≤ 0|ST ≥ SM (SP)

) ≤ q. (8.25)

The objective function and constraint of this problem look similar to those of (8.22)
and (8.23). The only difference is the dependence of test margin on measured PSRO
slack. However, this difference dramatically changes the optimization problem.
Instead of computing a single optimal value of SM , we need to compute the function
SM(SP) that delivers the optimal solution for each chip. Now, both the objective
function and constraint are functionals.

8 Machine Learning for VLSI Chip Testing and Manufacturing 247

By going through some convolved mathematical manipulations (please refer
to [27] for detailed derivations), we can show that the above two statistical
optimization problems can all be reduced to some kind of root finding problems,
to which many numerical techniques can be readily applied.

8.4 Hierarchical Multitask Learning for Wafer Quality
Prediction

In this section, we present an optimization framework for hierarchical multitask
learning (MTL) for wafer quality prediction in semiconductor manufacturing. The
goal is to predict the wafer quality based on measured process variables.

8.4.1 Problem Formulation

Wafers are produced from multiple chambers, and each chamber has multiple sides.
We build a unique task model for each side of a chamber to predict the quality
of wafers produced therein based on the measured process variables. We also
treat tasks from the same chamber as a group of tasks, and the hierarchical task
relatedness is reflected in the fact that models of different sides of the same chamber
are more similar to each other (task-level relatedness) than those from different
chambers (group-level relatedness). Moreover, the measured process variables can
be grouped into two categories: the independent process variables corresponding
to controlled variables (such as pressure, power, temperature, and gas flows) that
are subject to advanced process control (APC), and the dependent process variables
that are heavily affected by those controlled variables in a complicate way (examples
include impedance, electric bias, and throttle valve positions).

This level of understanding of the semiconductor manufacturing process results
in some major differences between our formulation and many previous MTL
formulations, such as [28–31]. First, most previous formulations aim to uncover
the grouping of tasks, whereas the grouping of tasks is known in our setting ,
and the challenge is to model the hierarchical task relatedness. Second, previous
formulations focus on various amount of task-level relatedness, and are lack of
group-level relatedness, whereas we integrate both the task- level and the group-
level relatedness. Third, in previous formulations, the input features are treated
equally, whereas the input features are partitioned into two sets (independent vari-
ables and dependent variables) in our setting, which requires us imposing different
constraints on them to accommodate the task-level and group-level relatedness.

More formally, suppose that we have C chambers, i.e., C groups of tasks, and the
t th chamber, i.e., the t th group, has St sides (tasks). The process variables measured
for each wafer can be further partitioned into two sets: the set of d1 independent

248 J. Xiong et al.

variables and the set of d2 dependent variables. For the sth side of the t th chamber,
let nt,s denote the number of wafers produced therein; At,s ∈ R

nt,s×d1 denote
the measured independent variables for all the wafers; B t,s ∈ R

nt,s×d2 denote the
measured dependent variables; and yt,s ∈ R

nt,s denote the quality of the wafers
(such as the deposition thickness). Our goal is to leverage the relatedness among
multiple sides (tasks) and multiple chambers (groups) to better predict the wafer
quality of yt,s .

To predict the wafer quality yt,s , we adopt a linear model as is commonly used
in virtual metrology [32, 33] as follows:

ŷt,s = At,sαt + B t,sβ t,s ,

where ŷt,s is the predicted wafer quality for the sth side of the t th chamber; αt ∈
R
d1 and β t,s ∈ R

d2 are the coefficient vectors for the independent and dependent
variables, respectively. Note that the coefficient vectors for independent variables
are modeled the same for different sides of the same chamber because of the fact
that independent variables are controlled parameters with specific APC set points
during manufacturing.

Putting everything together, we have the following mathematical formulation of
the proposed MTL problem:

minQ(αt ,β t,s ,M) = min
T∑
t=1

{
St∑
s=1

[L (yt,s ,At,sαt ,B t,sβ t,s)

+ λ1‖β t,s −Mαt‖p]} + λ2R(α1, . . . ,αT) (8.26)

where L (·) denotes the loss function; M ∈ R
d2×d1 is the transformation matrix

to be determined that models the complicate relationship between independent
variables and dependent variables by connecting their coefficient vectors through
this transformation matrix; R(·) is a function of all the coefficient vectors for the
independent variables; and p, λ1, and λ2 are positive parameters.

Intuitively, the first term of the objective function Q measures the prediction
error; the second term measures the approximation error of the coefficient vector for
the dependent variables using the transformed coefficient vector for the independent
variables; and the last term imposes similarity on all the coefficient vectors for
the independent variables. Notice that various tasks are coupled in two different
ways, depending on whether they are in the same group or not, i.e., sharing the
same group index t . If two tasks come from the same group t , they share the same
coefficient vector αt for the independent variables, and their coefficient vectors for
the dependent variables are both close to Mαt ; on the other hand, if two tasks
come from different groups, they are related only by the coefficient vectors for the
independent variables. By minimizing such an objective function, we leverage the
hierarchical task relatedness to construct models for all the tasks.

8 Machine Learning for VLSI Chip Testing and Manufacturing 249

Many existing single-task and multitask learning methods can be seen as special
cases of the formulation as shown in (8.26). For example, if we only have
the dependent variables, and αt is fixed at 0, all the tasks are decoupled, and
solving (8.26) is equivalent to solving each task individually. If we only have the
independent variables, β t,s is fixed at 0, and M is a 0 matrix, all the tasks are coupled
such that: (1) tasks from the same group share the same coefficient vector, and (2)
tasks from different groups have similar coefficient vectors. In the case that each
group has only one task, this is consistent with the formulation in [34, 35].

The objective function (8.26) also relates to convex multitask feature learning
proposed in [29]. To see this, assume that we only have a set of dependent variables
B t,s , and let λ1 → ∞. In this way, tasks within the same group share the same
coefficient vector Mαt , and different groups have similar αt . Furthermore, if St = 1
(t = 1, . . . , T), and R() is the (2,1)-norm of the matrix consisting of α1, . . . ,αT ,
we get the same optimization problem in [29].

8.4.2 HEAR Algorithm

In this section, we study an instantiation of the formulation (8.26) as follows:

minQ(αt ,β t,s ,M,α0) = min
T∑
t=1

{
St∑
s=1

[(yt,s −At,sαt − B t,sβ t,s)
2

+ λ1‖β t,s −Mαt‖2]} + λ2

T∑
t=1

(αt − α0)
2, (8.27)

where p = 2 from (8.26) and α0 ∈ R
d1 is a common vector to be determined for

all αt , reflecting the fact that the APC process tries to find common set points for
independent variables across chambers.

Note that (8.27) is a nonconvex optimization problem. However, it is easy to see
that given αt and β t,s (t = 1, . . . , T , s = 1, . . . , St), Q is convex with respect
to M and α0; on the other hand, given M and α0, Q is convex with respect to αt
and β t,s (t = 1, . . . , T , s = 1, . . . , St). Therefore, we propose a block coordinate
descent-based algorithm to find the solution to (8.27), i.e., we repeatedly update M

and α0 based on the current αt and β t,s , and vice versa until convergence.
To do so, we first take the partial derivative of Q with respect to M and α0, and

set it to 0, obtaining:

M =
T∑
t=1

⎛
⎝ St∑
s=1

β t,s

⎞
⎠α′t

⎛
⎝ T∑
t=1

Stαtα
′
t

⎞
⎠
−1

(8.28)

250 J. Xiong et al.

α0 = 1

T

T∑
t=1

αt (8.29)

where α′t denotes the transpose of αt . From (8.28) and (8.29), we see that both M

and α0 are used by different groups of tasks, hence their estimation leverages the
information from all the tasks.

On the other hand, ∀t = 1, . . . , T , let γ t ∈ R
d1+St d2 denote [α′t ,β ′t,1, . . . ,β ′t,St]′,

γ 0 ∈ R
d1+St d2 denote [α0, 0, . . . , 0]′, yt ∈ R

∑St
s=1 nt,s denote [y′t,1, . . . , y′t,St]′, Xt ∈

R

(∑St
s=1 nt,s

)
×
(
d1+St d2

)
denote⎡

⎢⎢⎢⎢⎣
At,1 B t,1 0 · · · 0
At,2 0 B t,2 · · · 0
...

...
...
. . .

...

At,St 0 · · · 0 B t,St

⎤
⎥⎥⎥⎥⎦

I t ∈ R
(d1+St d2)×(d1+St d2) denote

⎡
⎢⎢⎢⎢⎣

I d1×d1 0 · · · 0
0 0 · · · 0
...

...
. . .
...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎦

where I d1×d1 denotes d1×d1 identity matrix, and M t ∈ R
(d1+St d2)×(d1+St d2) denote

⎡
⎢⎢⎢⎢⎣

M ′M −M ′ · · · −M ′
−M I d2×d2 · · · 0
...

...
. . .

...

−M 0 · · · I d2×d2

⎤
⎥⎥⎥⎥⎦

Given M and α0, Q can be written as a function of γ t (t = 1, . . . , T):

Q(γ t) =
T∑
t=1

{‖yt −Xtγ t‖2 + λ1γ
′
tM tγ t

+ λ2(γ t − γ 0)
′I t (γ t − γ 0)}

Taking the partial derivative of Q with respect to γ t and setting it to 0, we have

γ t = (X′
tXt + λ1M t + λ2I t)

−1(X′
tyt + λ2γ 0) (8.30)

where we make use of the fact that I tγ 0 = γ 0.

8 Machine Learning for VLSI Chip Testing and Manufacturing 251

From (8.30), we can see that if we fix M and α0, different groups of tasks are
decoupled. Therefore, the coefficient vector γ t for the t th task can be individually
estimated. However, the tasks within the same group are still coupled due to the
sharing of the coefficient vector αt for the independent variables as well as the
connection between the coefficient vectors αt and β t,s for the two sets of variables
via the transformation matrix M .

Since (8.30) involves computing the inverse of a (d1+Std2)×(d1+Std2)matrix,
it may be very time consuming when the number of tasks within each group is
large. To address this problem, we notice that the matrix inversion involves two
parts: X′

tX+ λ2I t which is fixed for each task, and λ1M t which is updated in each
iteration. Furthermore, M t can be rewritten as follows:

M t = M t1

[
I d2×d2 −I d2×d2

−I d2×d2 0

]
M ′
t1 (8.31)

where M t1 is defined as follows:

M t1 =

⎡
⎢⎢⎢⎢⎣

M ′ 0
0 I d2×d2
...

...

0 I d2×d2

⎤
⎥⎥⎥⎥⎦

Let Ct ∈ R
(d1+St d2)×(d1+St d2) denote (X′

tXt+λ2I t)
−1. In the following analysis,

when the context is clear, we omit the subscript of Ct , and let Ci,j denote its block
in the ith row and j th column, s.t., C1,1 ∈ R

d1×d1 , Ci,1 ∈ R
d2×d1 , C1,j ∈ R

d1×d2 ,
and Ci,j ∈ R

d2×d2 (i, j = 2, . . . , St). Then using Woodbury formula, we have

(X′
tXt + λ1M t + λ2I t)

−1 = C − CM t1D
−1M ′

t1C (8.32)

where D can be written as follows:

D =
[

MC1,1M
′ M

∑St+1
j=2 C1,j∑St+1

i=2 Ci,1M
′ ∑St+1

i=2

∑St+1
j=2 Ci,j

]

In this way, in each iteration, instead of computing the inverse of a (d1 + Std2) ×
(d1 + Std2) matrix, we only compute the inverse of a (2d2) × (2d2) matrix, which
is independent of the number of tasks within each group.

The proposed HEAR algorithm is presented in Algorithm 6. It works as follows.
In Step 1, we initialize the coefficient vectors to be vectors of all 1s. In Step 2, we
compute matrix Ct , which is the inverse of X′

tXt + λ2I t (t = 1, . . . , T). It will
be used to update the coefficient vectors via (8.32). Next, we repeatedly update M ,
α0, as well as all the coefficient vectors N times. Based on the coefficient vectors
obtained via the proposed HEAR algorithm, given an unlabeled example from the

252 J. Xiong et al.

sth task of the t th group with independent variables at,s ∈ R
d1 and dependent

variables bt,s ∈ R
d2 , we predict its output using a′t,sαt + b′t,sβ t,s .

Algorithm 6 HEAR Algorithm
1: REQUIRE At,s , B t,s , yt,s , (t = 1, . . . , T , s = 1, . . . , St), λ1, λ2, maximum number of

iterations N
2: ENSURE αt , β t,s (t = 1, . . . , T , s = 1, . . . , St), M , α0
3: Initialize αt and β t,s (t = 1, . . . , T , s = 1, . . . , St) to be vectors of all 1s
4: Compute Ct = (X′

tXt + λ2I t)
−1 (t = 1, . . . , T)

5: for i = 1 to N do
6: Update M using (8.28)
7: Update α0 using (8.29)
8: Update αt and β t,s using (8.30) and (8.32)

According to [36], the convergence of the proposed HEAR to a local optimum
is guaranteed since the objective function (8.27) is convex with respect to each
block (i.e., M , α0, and γt). Notice that in each iteration of the HEAR algorithm,
the processing time is linear with respect to the total number of training examples∑T
t=1

∑St
s=1 nt,s , which is a direct result from (8.30) and (8.32).

8.4.3 Experimental Results

We demonstrate the performance of the proposed algorithm on real data from semi-
conductor manufacturing. This manufacturing process deposits dielectric materials
as capping film on wafers, whose quality is mainly determined by the deposition
thickness. For the purpose of this study, we used wafer data collected from four
chambers with each having two sides. Each wafer is associated with measurements
of 56 independent variables and 31 dependent variables. The drift and variation
of both types of variables can cause wafer quality variation, and we choose wafer
deposition thickness as the target metric in this study. Our data set consists of the
measurements of 1651 wafers together with their deposition thickness over a 5-
month period.

For comparison purpose, we also implemented two commonly used algorithms
for multitask learning. The first one is CASO [30], which improves the ASO
algorithm [37] by including an additional regularizer in the objective function and
making use of alternating structure optimization to solve the convex relaxation
problem. The second one is GMTL [28], which is based on a neural network model
and uses gating of tasks to make some tasks more similar to each other than others.

The test errors are averaged over all the sides (tasks) for the three algorithms as
shown in Fig. 8.2, where the x-axis is the number of labeled wafers used for training,
and the y-axis is the root mean squared error (RMSE) average over all the tasks and
multiple runs. This figure shows that the performance of our proposed algorithm is

8 Machine Learning for VLSI Chip Testing and Manufacturing 253

Fig. 8.2 Comparison results
on multitask learning

consistently better than the other two under different training sets, especially when
the number of labeled wafers is small. This improvement is due to the fact that
our formulation leverages the grouping of the tasks and imposes hierarchical task
relatedness accordingly, resulting better models for the relationship between input
process variables and output wafer quality measurements.

8.5 Co-clustering Structural Temporal Data from
Semiconductor Manufacturing

To manufacture a semiconductor device, multiple tools need to be deployed
following a recipe process, and each tool has multiple chambers to carry out the
task. The time series data associated with various process variables measured from
all chambers can be organized as a two-dimensional array, where each row of the
array corresponds to one chamber, each column corresponds to one process variable,
and each element in this array corresponds to the measurements of the process
variable over time. Such structural temporal data contain rich information about
the manufacturing process, and thus can be exploited to help domain experts gain
more insights into the recipe of manufacturing process.

8.5.1 Problem Formulation

Let zi,j denote the time series in the ith row and the j th column, i = 1, . . . ,M , j =
1, . . . , N . Each time series zi,j has T i,j observations, i.e., zi,j = {zi,j1 , . . . , z

i,j

T i,j
}.

Given the above structured time series data, our goal is to simultaneously cluster the
M × N time series into R row clusters and C column clusters, resulting in R × C
clusters in total.

254 J. Xiong et al.

For example, in device fabrication of semiconductor manufacturing, the R row
clusters can be associated with different tools, which contain various number of
chambers, whereas the C column clusters can be associated with different types
of process variables. The simultaneous clustering of rows (chambers) and columns
(process variables) can help identify chambers with similar behaviors and process
variables with similar patterns over time. Such information can be further used
to detect abnormal chambers and process variables for quality control and fault
diagnostics. However, this problem cannot be readily solved using existing tech-
niques on time series clustering or multiway clustering. For time series clustering,
most existing methods are designed for unstructured time series data [38, 39], and
thus cannot leverage the structural information from the underlying manufacturing
process. For multiway clustering, existing methods take as input one or more
matrices of scalers [40, 41], and cannot be applied to matrices of time series.
Therefore, we have to develop a new formulation of co-clustering of such structural
temporal data.

Considering the manufacturing process, where the time series collected from
chambers in the same tool exhibit similar patterns due to their physical proximity,
and the time series associated with process variables of the same type are similar
to each other due to their control patterns, we need to impose the following two
constraints on the co-clustering problem: (1) row constraint, i.e., time series from the
same row should be assigned to the same row cluster, and (2) column constraint, i.e.,
time series from the same column should be assigned to the same column cluster.

8.5.2 C-Struts Algorithm

Let ẑr,: denote the rth row cluster for r = 1, . . . , R; ẑ:,c denote the cth column
cluster for c = 1, . . . , C; Φ1 denote the mapping from {zi,j } to {ẑr,:} (row cluster);
and Φ2 denote the mapping from {zi,j } to {ẑ:,c} (column cluster). Considering the
row and column constraints, we have Φ1(z

i,j) = Φ1(z
i,:) = ẑr,:, where zi,: denotes

the time series on the ith row, and Φ2(z
i,j) = Φ2(z

:,j) = ẑ:,c, where z:,j denotes
the time series on the j th column.

For each time series zi,j , we first extract a number of features βi,j to represent
the time series. We denote the set of βi,j as β.

For example, the time series can be represented via the auto-regressive (AR)
model, i.e., assuming that its current value at time stamp t can be regressed on the
past values up to a maximum lag L: zi,jt =∑L

l=1 β
i,j
l ·zi,jt−l+εi,jt , where βi,jl are the

parameters, and εi,jt are IID random variables. Such a problem can be solved via:

βi,j = arg min
∑
t

(z
i,j
t −

L∑
l=1

β
i,j
l · zi,jt−l)2 + αR(βi,j) (8.33)

8 Machine Learning for VLSI Chip Testing and Manufacturing 255

where R(·) is a regularizer on the parameters, e.g., p-norm of βi,j , and α is a
positive parameter that balances between the mean squared error and the regularizer.
Such optimization problem can be solved using ridge regression if R(βi,j) =
‖βi,j‖2, Lasso [42] if R(βi,j) = |β i,j |, elastic net [43] if R(·) is a linear
combination of both the 2-norm and the 1-norm of βi,j , etc.

Alternatively, we can also extract βi,j via the auto-regressive moving-average
(ARMA) model, i.e., zi,jt = ci,j +∑L

l=1 β
i,j
l · zi,jt−l + εi,jt +∑L′

l′=1 γ
i,j

l′ · εi,j
t−l′ , where

ci,j is the expectation of zi,j , and γ i,j
l′ are additional parameters. If all the time series

in the two-dimensional array are of the same length, we could also use PCA or DFT
to extract the features, both of which have been used in time series clustering.

Similar to [41], we model all these time series features as random variables,
and the joint probability of β, zi,: and z:,j can be approximated by the following
auxiliary probability distribution:

p(β, zi,:, z:,j) ≈ q(β, zi,:, z:,j)
.= μi,jp(ẑr,:, ẑ:,c)p(zi,:|ẑr,:)p(z:,j |ẑ:,c)p(β|zi,:)p(β|z:,j)

where the coefficient μi,j is to ensure that q(·) is a valid probability distribution,
that is:

μi,j = 1∫
β p(β|zi,:)p(β|z:,j)

Based on the auxiliary probability distribution q(·), the parameters β can be
generated as follows. We first draw the row cluster ẑr,: and the column cluster ẑ:,c
from p(ẑr,:, ẑ:,c); based on these clusters, we then draw each row zi,: according
to p(zi,:|ẑr,:), and each column z:,j according to p(z:,j |ẑ:,c); finally, we draw the
parameters β based on both zi,: and z:,j according to μi,jp(β|zi,:)p(β|z:,j).

It can be proven that q(·) has the following property.

Lemma 8.1 (Properties of q(·))
1. The marginal probability of ẑr,: (ẑ:,c) is the same under p(·) and q(·). To be

specific:

q(ẑr,:) = p(ẑr,:) (8.34)

q(ẑ:,c) = p(ẑ:,c) (8.35)

2. The conditional probability of zi,: (z:,j) given ẑr,: (ẑ:,c) is the same under p(·)
and q(·). To be specific:

q(zi,:|ẑr,:) = p(zi,:|ẑr,:) (8.36)

q(z:,j |ẑ:,c) = p(z:,j |ẑ:,c) (8.37)

256 J. Xiong et al.

3. zi,: is conditionally independent of the column cluster ẑ:,c given the row cluster
ẑr,:; z:,j are conditionally independent of the row cluster ẑr,: given the column
cluster ẑ:,c. To be specific:

q(zi,:|ẑr,:, ẑ:,c) = q(zi,:|ẑr,:) (8.38)

q(z:,j |ẑr,:, ẑ:,c) = q(z:,j |ẑ:,c) (8.39)

From the above properties, we can see that the approximation probability q(·)
keeps the marginal probability of the row/column clusters, as well as the conditional
probability of each row/column given a row/column cluster. Furthermore, the
conditional independence in Eqs. (8.38) and (8.39) is consistent with both row
constraints and column constraints.

Therefore, we propose to construct a prototype for each row/column cluster based
on q(·). To this end, ∀r = 1, . . . , R, we first compute the posterior distribution of β

given ẑr,: as follows:

q(β|ẑr,:) = q(β, ẑ
r,:
)

q(ẑr,:)

=

∑
ẑ:,c

∑
zi,::Φ1(z

i,:)=ẑr,:
z:,j :Φ2(z

:,j)=ẑ:,c
q(β, zi,:, z:,j)

p(ẑr,:)

=
∑
ẑ:,c

∑
zi,::Φ1(z

i,:)=ẑr,:
z:,j :Φ2(z

:,j)=ẑ:,c

μi,jp(ẑ:,c|ẑr,:)p(zi,:|ẑr,:)p(z:,j |ẑ:,c)

· p(β|zi,:)p(β|z:,j)

Then for the rth row cluster, we define its prototype as the expected value of β given
the row cluster, that is:

β̂
r,: = Eq(β|ẑr,:)(β)

If both p(β|zi,:) and p(β|z:,j) follow a Gaussian distribution such that
p(β|zi,:) ∝ exp(− 1

2σ 2
R

(β − βi,:)T (β − βi,:)), and p(β|z:,j) ∝ exp(− 1
2σ 2
C

(β −
β :,j)T (β − β :,j)), where βi,: denotes the column average of βi,j , β :,j denotes the
row average, σR and σC are both positive parameters, that is:

βi,: = 1

N

N∑
j=1

β i,j (8.40)

β :,j = 1

M

M∑
i=1

β i,j (8.41)

8 Machine Learning for VLSI Chip Testing and Manufacturing 257

In this case, the row cluster prototype can be derived as follows:

β̂
r,: =

∑
ẑ:,c

∑
zi,::Φ1(z

i,:)=ẑr,:
z:,j :Φ2(z

:,j)=ẑ:,c

p(ẑ:,c|ẑr,:)p(zi,:|ẑr,:)p(z:,j |ẑ:,c)

· Eμi,j p(β|zi,:)p(β|z:,j)(β)
=

∑
ẑ:,c

∑
zi,::Φ1(z

i,:)=ẑr,:
z:,j :Φ2(z

:,j)=ẑ:,c

p(ẑ:,c|ẑr,:)p(zi,:|ẑr,:)p(z:,j |ẑ:,c)

· σ
2
Cβ i,: + σ 2

Rβ :,j

σ 2
R + σ 2

C

(8.42)

Similarly, the column cluster prototype β̂
:,c

can be obtained from the following
equation:

β̂
:,c =

∑
ẑr,:

∑
zi,::Φ1(z

i,:)=ẑr,:
z:,j :Φ2(z

:,j)=ẑ:,c

p(ẑr,:|ẑ:,c)p(zi,:|ẑr,:)p(z:,j |ẑ:,c)

· σ
2
Cβ i,: + σ 2

Rβ :,j

σ 2
R + σ 2

C

(8.43)

Notice that the row and column cluster prototypes in Eqs. (8.42) and (8.43) are not
centroids. Instead, they are weighted combination of the row and column average
of the parameters, where the weights are obtained via the approximation probability
q(·).

For the conditional probability of each row/column given its row/column cluster,
we propose to estimate its value as follows:

p(zi,:|ẑr,:) ∝ exp

(
− 1

2σ 2
R

(β i,: − β̂
r,:
)T
(β i,: − β̂

r,:
)) (8.44)

p(z:,j |ẑ:,c) ∝ exp

(
− 1

2σ 2
C

(β :,j − β̂
:,c
)T
(β :,j − β̂

:,c
)) (8.45)

Together with the fact that
∑

zi,::Φ1(zi,:)=ẑr,: p(z
i,:|ẑr,:) = 1 and

∑
z:,j :Φ1(z:,j)=

ẑ:,cp(z:,j |ẑ:,c) = 1, we can obtain the exact value of these conditional probabilities.
To estimate the joint probability of each row/column cluster pair, we use

the empirical probability mass of the time series that have been mapped to the
corresponding row/column cluster. To be specific:

p(ẑr,:, ẑ:,c) = |zi,j |Φ1(z
i,j) = ẑr,:, Φ2(z

i,j) = ẑ:,c|
M ×N (8.46)

258 J. Xiong et al.

where |zi,j |Φ1(z
i,j) = ẑr,:, andΦ2(z

i,j) = ẑ:,c| denotes the number of times series
that have been mapped to the rth row cluster and the cth column cluster.

Based on the above discussion, the optimal mapping functions Φ1 and Φ2 could
be found by maximizing the following objective function:

min
Φ1,Φ2

Ep

⎛
⎜⎝ R∑
r=1

∑
Φ1(zi,:)=ẑr,:

‖βi,: − Eq(β|ẑr,:)(β)‖2

+
C∑
c=1

∑
Φ2(z:,j)=ẑ:,c

‖β :,j − Eq(β|ẑ:,c)(β)‖2

⎞
⎟⎠

where the outermost expectation is with respect to the true joint probability p(·),
and the inner expectations are with respect to the auxiliary probability q(·).

The above optimization problem can be solved by repeatedly estimating the
probability matrix of observed times series, which can then be used as the input
of a variety of multiway clustering algorithms, such as information-theoretic co-
clustering [41] if both R and C are known, or cross-association [40] if R and C are
not known.

The proposed C-struts algorithm is summarized in Algorithm 7. We first compute
the parameters βi,j for each time series in the two-dimensional array; then, compute
the row and column averages of the parameters βi,:/β :,j ; and then, randomly assign
the rows to the R row clusters, and assign the columns to the C column clusters. We
start the iterations until convergence (not to exceed niter times) by first computing the
row and column cluster prototypes β̂

r,:
/β̂
:,c

, and then reassigning each row/column
to the closest row and column cluster prototype.

Note that we have so far focused on temporal data that fit into a two-dimensional
array. But, the proposed C-Struts algorithm can be naturally extended to multidi-
mensional arrays. For example, if the underlying structure is a three-dimensional
array instead of a matrix, the auxiliary probability distribution can be defined as
follows:

q(β, zi,:,:, z:,j,:, z:,:,k)

= μi,j,kp(ẑr,:,:, ẑ:,c,:, ẑ:,:,o)p(zi,:,:|zr,:,:)p(z:,j,:|z:,c,:)
· p(z:,:,k|z:,:,o)p(β|zi,:,:)p(β|z:,j,:)p(β|z:,:,k)

It consists of three parts: the first part is the joint probability of clusters on the three
dimensions; the second part is the conditional probability of a single element (e.g.,
a row) given the cluster on a certain dimension; and the last part is the conditional
probability of the parameters given the elements on different dimensions. Based
on the above auxiliary probability distribution, we could modify the prototypes on

8 Machine Learning for VLSI Chip Testing and Manufacturing 259

Algorithm 7 C-Struts Algorithm

1: REQUIRE zi,j , i = 1, . . . ,M , j = 1, . . . , N , R, C, niter
2: ENSURE Φ1, Φ2
3: for i = 1 toM do
4: for j = 1 to N do
5: Compute the parameters βi,j by solving Equation (8.33) using ridge regression, Lasso,

etc.;
6: for i = 1 toM do
7: Compute the row average β i,: using Equation (8.40);
8: for j = 1 to N do
9: Compute the column average β :,: using Equation (8.41);

10: Randomly initialize Φ1 and Φ2;
11: for k = 1 to niter do
12: for r = 1 to R do
13: Compute the row cluster prototype β̂

r,:
using Equation (8.42);

14: for c = 1 to C do
15: Compute the column cluster prototype β̂

:,c
using Equation (8.43);

16: for i = 1 toM do
17: Update Φ1(z

i,:)← arg minẑr,: ‖βi,: − β̂
r,:‖2;

18: for j = 1 to N do
19: Update Φ2(z

:,j)← arg minẑ:,c ‖β :,j − β̂
:,c‖2;

the three dimensions accordingly, based on which we could repeatedly update the
cluster membership using the same C-Struts Algorithm 7.

8.5.3 Experimental Results

We report the results on a data set collected from semiconductor manufacturing. The
data set corresponds to an etching step with 19 process variables that forms three
categories based on the process control practice: “gas and pressure,” “power,” and
“others.” The etching step lasts for 133 s, and two data points are collected during
each second for all the process variables. It is concurrently running in five tools,
each having six chambers. Here, the goal is to identify similar chamber and process
variable behaviors.

Figure 8.3 presents the co-clustering results, where the various colors indicate
the ground truth, and the rows and columns are rearranged so that rows and columns
assigned to the same row and column cluster are grouped together. We see that 30
chambers have been correctly assigned to the row clusters corresponding to tools
that the chambers belong to. This is consistent with the assumption that chambers
from the same tool are more likely to be similar to each other than those from
different tools. On the other hand, of the three column clusters generated by our
method, the first cluster corresponds to the “other” category, and it mistakenly
includes process variables from the “gas and pressure” category. This might be due

260 J. Xiong et al.

Fig. 8.3 Co-clustering results of tools and process variables

Fig. 8.4 Clustering results
comparison

to the nature of data quality, i.e., the “other” category contains process variables of
different types, and is less well defined as the “gas and pressure” or the “power”
category.

We also compare the performance of the proposed approach with existing
methods for time series clustering, including CLDS [14] and k-means. Different
from the proposed method, neither CLDS nor k-means takes into consideration
the structural information associated with the underlying two-dimensional array.
Figure 8.4 shows the comparison results for ten wafers, and it clearly demonstrates
the high-quality results of the proposed approach over existing methods.

8 Machine Learning for VLSI Chip Testing and Manufacturing 261

8.6 Conclusions

We have shown in this paper, through a number of concrete use cases, how machine
learning and big data analytics can be used to solve the semiconductor industry
applications. The key message is that many of the existing machine learning
algorithms are not necessarily well positioned to solve these challenging problems
arising from the latest semiconductor manufacturing process, and novel techniques
involving temporal, structural, and hierarchical properties of the manufacturing
process need to be developed to solve these problems. Moreover, these so-developed
techniques can be readily applied to many other machine learning and big data
analytic applications, opening up endless opportunities for professionals working
in the traditional semiconductor industry to contribute back to the machine learning
and big data analytics communities.

References

1. J. Chen, Y. Chen, X. Du, C. Li, J. Lu, S. Zhao, X. Zhou, Big data challenge: a data management
perspective. Front. Comp. Sci. 7(2), 157–164 (2013)

2. D. Analytics, Analytics trends 2015: a below-the-surface look, in White Paper (2015)
3. G. Newell, N. Bekhazi, R. Morgan, Optimizing storage and I/O for distributed processing on

enterprise and high performance compute (HPC) systems for mask data preparation software
(CATS), Technical Report, Synopsys, Inc., 2007

4. D. Kurz, C.D. Luca, J. Pilz, Monitoring virtual metrology reliability in a sampling decision
system, in Conference on Automation Science and Engineering (2013)

5. A. Johnson, S. McLoone, A dynamic sampling methodology for within product virtual
metrology, in 29th International Manufacturing Conference (2012)

6. J. Attenberg, K. Weinberger, A. Dasgupta, Collaborative email-spam filtering with the hashing-
trick, in Proceedings of the Sixth Annual Collaboration, Electronic messaging, Anti-Abuse and
Spam Conference (2009)

7. O. Chappelle, P. Shivaswamy, S. Vadrevu, Multi-task learning for boosting with application to
web search ranking, in Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD) (2010), pp. 1189–1198

8. A. Torralba, K.P. Murphy, W.T. Freeman, Sharing features: efficient boosting procedures for
multiclass object detection, in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2004), pp. 762–769

9. M. Aitkin, N. Longford, Statistical modelling issues in school effectiveness studies. J. R. Stat.
Soc. A 149, 1–43 (1986)

10. M. Daniels, C. Gatsonis, Hierarchical generalized linear models in the analysis of variations in
health care utilization. J. Am. Stat. Assoc. 94, 29–38 (1999)

11. Y. Chen, B. Hu, E.J. Keogh, G.E.A.P.A. Batista, Dtw-d: time series semi-supervised learning
from a single example, in KDD (2013), pp. 383–391

12. B. Hu, Y. Chen, E.J. Keogh, Time series classification under more realistic assumptions, in
SDM (2013), pp. 578–586

13. J. Zakaria, A. Mueen, E.J. Keogh, Clustering time series using unsupervised-shapelets, in
ICDM (2012), pp. 785–794

14. L. Li, B.A. Prakash, Time series clustering: complex is simpler!, in ICML (2011), pp. 185–192
15. L. Li, B.A. Prakash, C. Faloutsos, Parsimonious linear fingerprinting for time series. J. Proc.

VLDB Endow. 3(1), 385–396 (2010)

262 J. Xiong et al.

16. T. Rakthanmanon, B.J.L. Campana, A. Mueen, G.E.A.P.A. Batista, M.B. Westover, Q. Zhu,
J. Zakaria, E.J. Keogh, Searching and mining trillions of time series subsequences under
dynamic time warping, in KDD (2012), pp. 262–270

17. L. Wei, E.J. Keogh, X. Xi, M. Yoder, Efficiently finding unusual shapes in large image
databases. Data Min. Knowl. Disc. 17(3), 343–376 (2008)

18. B.-K. Yi, N. Sidiropoulos, T. Johnson, H.V. Jagadish, C. Faloutsos, A. Biliris, Online data
mining for co-evolving time sequences, in ICDE (2000), pp. 13–22

19. S. Papadimitriou, J. Sun, C. Faloutsos, Streaming pattern discovery in multiple time-series, in
VLDB (2005), pp. 697–708

20. Y.-J. Chang, Y. Kang, C.-L. Hsu, C.-T. Chang, T.Y. Chan, Virtual metrology technique for
semiconductor manufacturing, in International Joint Conference on Neural Networks, 2006.
IJCNN ’06 (2006), pp. 5289–5293

21. A. Yaglom, Some classes of random fields in n-dimensional space, related to stationary random
processes. Theory Probab. Appl. 2, 273–320 (1957)

22. R.L. Bras, I. Rodriguez-Iturbe, Random Functions and Hydrology (Dover Publishers, Mineola,
1985)

23. T. Coleman, Y. Li, An interior, trust region approach for nonlinear minimization subject to
bounds. SIAM J. Optim. 6, 418–445 (1996)

24. C. Visweswariah, K. Ravindran, K. Kalafala, S.G. Walker, S. Narayan, First-order incremental
block-based statistical timing analysis, in DAC, San Diego, CA, June 2004, pp. 331–336

25. H. Chang, S.S. Sapatnekar, Statistical timing analysis considering spatial correlations using a
single PERT-like traversal, in ICCAD, San Jose, CA, November 2003, pp. 621–625

26. R. Chen, L. Zhang, V. Zolotov, C. Visweswariah, J. Xiong, Static timing: back to our roots, in
Asia and South Pacific Design Automation Conference, Seoul, South Korea, March 2008, pp.
310–315

27. J. Xiong, V. Zolotov, C. Visweswariah, P. Habitz, Optimal margin computation for at-speed
test, in Conference on Design, Automation and Test in Europe, Munich, Germany, March 2008,
pp. 622–627

28. B. Bakker, T. Heskes, Task clustering and gating for Bayesian multitask learning. J. Mach.
Learn. Res. 4, 83–99 (2003)

29. A. Argyriou, T. Evgeniou, M. Pontil, Convex multi-task feature learning. Mach. Learn. 73(3),
243–272 (2008)

30. J. Chen, L. Tang, J. Liu, J. Ye, A convex formulation for learning shared structures from
multiple tasks, in ICML (2009), p. 18

31. J. Chen, J. Zhou, J. Ye, Integrating low-rank and group-sparse structures for robust multi-task
learning, in KDD (2011), pp. 42–50

32. P. Kang, D. Kim, H.-J. Lee, S. Doh, S. Cho, Virtual metrology for run-to-run control in
semiconductor manufacturing. Expert Syst. Appl. 38, 2508–2522 (2011)

33. S. Lynn, J. Ringwood, E. Ragnoli, S. McLoone, N. MacGearailt, Virtual metrology for plasma
etch using tool variables, in Advanced Semiconductor Manufacturing Conference (2009)

34. Y. Zhang, J.G. Schneider, Learning multiple tasks with a sparse matrix-normal penalty, in NIPS
(2010), pp. 2550–2558

35. H. Liu, M. Palatucci, J. Zhang, Blockwise coordinate descent procedures for the multi-task
lasso, with applications to neural semantic basis discovery, in ICML (2009), p. 82

36. D.G. Luenberger, Linear and Nonlinear Programming, 2nd edn. (Addison-Wesley, Mas-
sachusetts, 1973)

37. R.K. Ando, T. Zhang, A framework for learning predictive structures from multiple tasks and
unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005)

38. J. Zakaria, A. Mueen, E.J. Keogh, Clustering time series using unsupervised-shapelets, in
ICDM (2012), pp. 785–794

39. T. Rakthanmanon, B.J.L. Campana, A. Mueen, G.E.A.P.A. Batista, M.B. Westover, Q. Zhu,
J. Zakaria, E.J. Keogh, Searching and mining trillions of time series subsequences under
dynamic time warping, in KDD (2012), pp. 262–270

8 Machine Learning for VLSI Chip Testing and Manufacturing 263

40. D. Chakrabarti, S. Papadimitriou, D.S. Modha, C. Faloutsos, Fully automatic cross-
associations, in KDD (2004), pp. 79–88

41. I.S. Dhillon, S. Mallela, D.S. Modha, Information-theoretic co-clustering, in KDD (2003), pp.
89–98

42. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58,
267–288 (1996)

43. H. Zou, T. Hastie, Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser.
B (Stat Methodol.) 67(2), 301–320 (2003)

Chapter 9
Machine Learning-Based Aging Analysis

Arunkumar Vijayan, Krishnendu Chakrabarty, and Mehdi B. Tahoori

9.1 Introduction

Bias temperature instability is one of the major aging mechanisms that can cause
failures or degradation of digital circuits in their lifetime and hence, circuits
are designed with a pessimistic guard band for ensuring resilience. Design-time
solutions and guard bands for resilience are no longer sufficient for integrated
circuits (ICs) fabricated at nanoscale technology nodes. This is due to large
variations in the fabrication process, workload, and working conditions, which
makes design-time solutions inefficient and impractical [13, 29]. Therefore, there
is a need for runtime solutions based on real-time monitoring and adaptation. Chip
manufacturers incorporate dynamic adaptation strategies such as voltage/frequency
scaling, body biasing, and thermal management in response to slow-down due to
aging, high temperature, current surge, process variations, etc., but the adaptation
policies are static. The decisions taken in response to system behavior are “hard-
coded,” e.g., in lookup tables, boot ROM, firmware, etc.; hence, today’s adaptation
methods are more reactive than predictive, and there is no solution available to train
the adaptation policy dynamically in response to changes in chip behavior.

Most existing delay monitoring schemes can only support reactive aging mitiga-
tion techniques [1, 4, 9]. A reactive mitigation approach can be too late to prevent the
occurrence of a system failure. Hence, there is a need for proactive aging mitigation
where suitable adaptation actions are adopted in advance. An ideal proactive delay
monitoring technique should be capable of capturing fine-grained aging trends, i.e.,

A. Vijayan (�) · M. B. Tahoori
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: arun.v@kit.edu; mehdi.tahoori@kit.edu

K. Chakrabarty
Duke University, Durham, NC, USA
e-mail: krish@duke.edu

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_9

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_9&domain=pdf
mailto:arun.v@kit.edu
mailto:mehdi.tahoori@kit.edu
mailto:krish@duke.edu
https://doi.org/10.1007/978-3-030-04666-8_9

266 A. Vijayan et al.

monitoring aging trends in the scale of typical workload phases (in the order of
milli/micro seconds). Some of the existing proactive techniques require the system
to be physically aged in order to capture the aging trends [1, 37]. The time constant
for aging is in the order of weeks or months. Hence, these methods cannot be used
for fine-grained aging monitoring to support proactive aging mitigation.

The design of an effective aging-aware delay monitoring scheme for proactive
aging mitigation is challenging for two reasons: (1) it is impractical to accurately
measure the delay degradation of a circuit over a short time period. This is
because traditional delay monitoring sensors track path delays, and the path-delay
degradation for a short time period is too small for these sensors to capture, i.e.,
they can only track coarse-grained aging trends; (2) degradation rate depends on
the currently running workload and working conditions. In other words, different
workloads can degrade the timing of various circuit paths differently and the sensors
placed during design time cannot capture this workload effect.

We present a method to perform low-cost and fine-grained workload-induced
stress monitoring for accurate aging-induced delay prediction. The key idea here
is to track recent circuit activity and extrapolate these trends to activate different
mitigation measures, which include task migration [7], dynamic voltage and
frequency scaling (DVFS) [5], adaptive body biasing (ABB) [31], and core power
gating [5], based on the severity of the captured stress. This approach involves the
ranking of workloads or workload phases based on their aging-stress severity. This
ranking can then be used to activate aging mitigation techniques proactively. Note
that the aging computation and prediction in this work are made on the basis of
aging projection. The circuit is simulated with a representative workload for a short
time period and the extracted behavior of the circuit is then extrapolated to estimate
the aging trends. The workloads are then ranked based on these trends.

It has been shown that the impact of workload on aging can be computed on the
basis of the gate-level signal probabilities (SPs) [26]. However, it is computationally
impractical to simulate large designs at the gate-level on a cycle-by-cycle basis
for realistic workloads. In addition, online monitoring of circuit node SPs of a
large design with millions of gates is impractical due to area and power overhead
constraints. We show that, to rank workloads in terms of severity of aging, we
can also use the SPs of a small set of flip-flops as a surrogate measure of signal
probability. These flip-flops are chosen at design time by carefully studying the
correlation between aging and flip-flop SPs for representative workloads. We utilize
support-vector machines (SVM) to develop a predictive model for estimating
aging based on SPs. This model is subsequently utilized at runtime as a software
thread to evaluate the online workload-induced aging-stress severity. Moreover, the
monitoring of a small set of flip-flops reduces the hardware cost of monitoring and
is computationally less burdensome since not all flip-flops in the design need to be
monitored at runtime. Furthermore, we propose a technique to sample these selected
flip-flops infrequently in order to reduce power overhead.

Our experiments on two embedded processors running realistic workloads show
that the accuracy of the proposed aging prediction method is extremely high (the
prediction is nearly perfect), even in the case when the prediction is based only

9 Machine Learning-Based Aging Analysis 267

on the SPs of 0.64% of the total number of flip-flops. The key benefits of the
proposed aging prediction method are listed below: (1) Proactive: the aging trend is
predicted before a measurable delay degradation happens, hence countermeasures
can be considered in a timely manner (2) Accurate: the simulation results show
that the correlation coefficient of actual aging trends and predicted aging trends is
extremely high (higher than 0.9, where 1.0 indicates perfect correlation), (3) Low
overhead: since the proposed technique is based on the SP values of a small set of
flip-flops, it imposes minimal area and power overhead.

Aging trends can be predicted by monitoring all flip-flops in the design by reusing
the on-chip design for test (DfT) infrastructure. However, this approach does not
consider the overhead of accessing all flip-flops in the design for online monitoring.
Hence, we propose a space-sampling approach that selects a small set of flip-
flops offline based on their aging information; only these flip-flops are monitored
during runtime. We introduce two different techniques to achieve space sampling:
(1) correlation-based and (2) fan-in cone-based flip-flop selection. We advocate the
fan-in cone-based method as the preferred approach because of its lower offline-
characterization requirements.

9.2 Negative Bias Temperature Instability

Negative bias temperature instability (NBTI) is one of the major reliability threats
in nanoscale technology nodes. This phenomenon causes increase in Vth of PMOS
transistors along with a decrease in transconductance (gm) and saturation current
(IDsat) at negative gate voltages and elevated temperatures. The modelling of this
phenomenon is complicated due to a recovery phase that involves a partial recovery
of transistor degradation when a positive gate voltage is applied. The long-term
effect of NBTI on a design is heavily dependent on the type and history of stress
due to the workload under execution.

NBTI can be explained using two different mechanisms, (1) reaction–diffusion
(RD) model, and (2) trapping/detrapping (TD) model. According to RD model,
increase in threshold voltage occurs due to the breaking of covalent (Si–H) bonds at
interface resulting in the generation of interface traps as illustrated in Fig. 9.1a. The
increase in Vth is assumed to follow a power law relation with the time under stress
and an exponential relation with the applied stress voltage.

The TD model proposes a fundamentally different phenomenon behind the effect
of threshold voltage increase, i.e., the capture and emission of charge carriers by
interface traps as illustrated in Fig. 9.1b. The capture time constant determines the
probability of trapping and emission time constant determines the probability of
detrapping. The threshold voltage increases gradually with the change in the number
of occupied traps and hence, follows a logarithmic relation in Vth shift. TD model
assumes a logarithmic relation with stress time and an exponential relation with
temperature and stress voltage.

268 A. Vijayan et al.

G

DS

p+ p+

H2

Nit

(a)

G

DS

p+ p+Channel Carriers

ND

(b)

Fig. 9.1 NBTI aging models [41]. (a) Reaction–diffusion mechanism. (b) Trapping–detrapping
mechanism

Stress Phase

Recovery
Phase

Vth4

Time

Vth1

Vth2

Vth3

Vth

t3t2t1 t4

Vth5

t5

Fig. 9.2 Illustration of stress and recovery phases due to NBTI

In short, both aging mechanisms assume a stress phase and a recovery phase for a
transistor under BTI as shown in Fig. 9.2 based on the type of bias applied. During a
normal workload execution, the bias of a transistor alternates causing alternate stress
and recovery phases. In long term, the cumulative effect of BTI heavily depends on
the type of workload executed on the design.

9.3 Related Prior Work

Worst-case guard bands have been used in industry for many years. Designers use
this conservative approach to ensure that circuits will operate under worst-case
temperature, voltage, and workload conditions [20, 33]. However, these worst-
case assumptions are too pessimistic and hence, performance of the circuits is
significantly compromised [1, 42]. In addition, due to statistical behavior of aging

9 Machine Learning-Based Aging Analysis 269

mechanisms, similar devices may age differently even for the same environmental
and workload conditions, which makes aging in the field even less predictable [21].
Finally, guard bands cannot keep up with aging challenges in newer technologies
[3, 28].

An alternative approach for achieving resilience is referred to as online circuit
failure prediction. This approach predicts the occurrence of a failure before errors
actually occur [1]. Prediction requires information collection in real time on
temperature, signal activity, signal delay, and analysis of the data. Such information
is usually collected through ring oscillators, temperature sensors, delay sensors, and
special circuit structures. Circuit failure prediction can be used to take actions to
prevent the chip from failing, and these actions are collectively referred to as online
self-healing [22, 44].

Dynamic reliability management (DRM) techniques were proposed in [15, 23].
In [38], the processor uses runtime adaptation to respond to changing application

behavior to maintain its lifetime reliability target. In [39], architectural-level
models were developed for lifetime-reliability-aware analysis of applications and
architectures. In [40], selective redundancy is applied at the micro-architectural
level. The method proposed in [43] slows aging through application scheduling and
voltage changes at key moments. In [16], the processor relies on compute cycles in
which computations get finished early under higher supply voltages, followed by
idle cycles that provide relaxation to recover from aging.

Dynamic adaptation is often implemented through the use of embedded lookup
tables (LUTs). The adaptation policies are encoded and stored in the LUTs, but they
are predetermined at design time. A representative LUT-based adaptation policy was
proposed in [6]. When a hardware unit changes its state from standby to active mode,
the power-management unit fetches a codeword from the LUT, which is provided as
input to the adaptive body-bias controller. Another LUT-based technique adjusts the
power-supply voltage and body bias to compensate for aging [25]. In [45], a LUT
stores, on a case-by-case basis, the optimum values of body bias, supply voltage,
and clock frequency to compensate for droop and temperature variations. In [37], a
built-in proactive tuning (BIPT) system was proposed, based on a canary circuit that
generates predictive warning signals. In [30], the authors proposed control policies
to achieve better energy efficiency and lower cost than worst-case guard-banding.
Dynamic cooling was introduced as an additional tuning parameter.

A number of the above methods have been adopted for industrial circuits. In
[14], the design of a Texas Instruments 3.5G baseband and multimedia applications
processor is presented. This SoC consists of multiple independently controlled
power domains that use dynamic voltage/frequency scaling and adaptive voltage
scaling. In addition, it implements adaptive body biasing [45]. In [11], runtime
adaptation techniques are described for Intel’s Itanium architecture microproces-
sor. The core supply voltage and clock frequency are dynamically modulated
in order to maximize performance within the power envelope [36]. In [27],
the SmartReflex power-management techniques implemented on the OMAP3430
Mobile Multimedia Processor are presented. Active power reduction is achieved
through aggressive voltage/frequency scaling and process compensation.

270 A. Vijayan et al.

To enable adaptive aging mitigation, online monitoring of circuit degradation is
required. The state-of-the-art monitoring methods include in-situ sensors [1, 9], tun-
able replica circuits [4], and representative critical reliability path-based monitoring
[46]. However, these monitoring methods suffer from three problems: (1) additional
hardware or design modifications, which are undesirable due to their associated
area and power overhead, (2) intrinsic conflict between the accuracy of the method
and hardware overhead, and (3) existing techniques cannot track short-term aging
trends, since they are designed to capture an aggregated measure of the degradation
when a significant delay increase takes place. Therefore, the mitigation techniques
based on these monitoring systems are reactive. Proactive aging mitigation has
been advocated as a promising approach that can be more effective than reactive
techniques [1, 37].

The proposed method is conceptually different from any critical-path-based
aging prediction method [10, 46]. During the online phase, critical-path monitoring
methods rely on aging sensors. These sensors measure the actual path-delay
increase, which typically occurs in longer time-scales. Even if high-resolution aging
sensors [24] are used to capture the aging rate, the circuit delay needs to increase
at least a few picoseconds in order to be detectable. The duration required for this
minimum aging-induced delay increase (ΔDmin) is typically in the scale of days or
weeks. In addition, circuit aging has a logarithmic relationship with time, i.e., the
rate of circuit delay degradation decreases over time. Hence, the sensors cannot
provide aging-rate information within an acceptable time for mitigation actions.
Figure 9.3 shows ΔDmin at different points of time in a 3-year operation of the
circuit. It implies that an aging sensor of resolution 1 ps requires around 44 days to
capture a delay increase in a processor operating at 1 GHz after 3 years of operation.
Since the circuit is closer to a timing failure after 3 years in comparison to its initial
state, this significant increase in ΔDmin is unacceptable for any aging mitigation
technique.

In contrast, our method evaluates the aging stress imposed by the workload-
under-execution which does not require the physical aging of any of the critical

Fig. 9.3 The difference in ΔDmin at different time points in the lifetime of a circuit

9 Machine Learning-Based Aging Analysis 271

paths. The flip-flops are tracked online to capture the characteristics of the workload,
and we obviate the need to track the physical delay increase of the corresponding
circuit path. As a result, we can achieve timely workload-stress estimations and
aging rates that can be used in turn to take appropriate proactive and fine-grain
mitigating actions and prevent the circuit from aging at higher rates.

9.4 Proposed Technique

The proposed aging prediction method is based on tracking the severity of the
workload-induced runtime stress. This information can be used to guide fine-
grained proactive aging mitigation policies. The flip-flops in the design that can
represent the workload information are identified based on their behavior during
offline workload characterization. A prediction model is constructed based on the
correlation between the behavior of these selected flip-flops and the aging behavior
of the circuit under different workload executions. These selected flip-flops are
monitored during runtime using additional monitoring hardware in order to extract
their online behavior. This extracted information is translated by the prediction
model to corresponding aging trends. The output from the aging prediction model
can be used to proactively actuate aging mitigation measures.

The overall flow of the method can be divided into two parts: (1) Offline corre-
lation analysis, which consists of representative flip-flop selection, and prediction
model generation, (2) Runtime stress monitoring. During offline correlation analy-
sis, a small set of representative flip-flops are selected whose signal probabilities
correlate with the aging trend of the entire circuit. Then, based on the SPs of
these representative flip-flops, an aging-severity prediction model is generated by
extracting workload information. This prediction model is deployed as a software in
the system. During runtime, on-chip hardware is used to capture the features relevant
for predicting aging-induced delay, which are then fed to the prediction model in real
time. This hardware samples the state of these representative flip-flops at runtime to
extract their signal probabilities, using a so-called time sampling scheme, which is
then sent to the software-based prediction model, trained and developed at design
time, to predict aging severity of the running workload.

The subsequent sections describe the details of the offline correlation analysis
and runtime monitoring schemes, respectively.

9.5 Offline Correlation Analysis and Prediction Model
Generation

During design time, the effect of workload on aging-induced delay is analyzed. A
set of representative workloads is applied to the circuit and the SPs of all nodes are

272 A. Vijayan et al.

Fig. 9.4 Flowchart showing
the steps involved in the
offline-characterization phase

Delay Values

Logic Simulation

Representative Workload

Aging Prediction Model

Machine Learning
Algorithm

BTI-aware Timing
Analysis Flip-flop SP Extraction

Representative
 Flip-flops’ SP

Representative Flip-flops
for Monitoring

Representative
Flip-flop Selection

calculated for each workload. The amount of circuit delay is projected by assuming
the same amount and type of workload over a fixed period of time. The delay of
each gate is updated based on the SP values and then aging-aware static timing
analysis is performed [10]. In this way, the aging-induced delay corresponding to
each representative workload is obtained. We select a small set of representative
flip-flops that can represent the aging behavior of the whole circuit as explained in
Sect. 9.5.3. The SPs of these representative flip-flops together with the circuit delay
values are used to train an SVM-based model. The goal here is to capture the impact
of workload on circuit delay by constructing an analytical aging-prediction model.

The flowchart in Fig. 9.4 illustrates the procedure of construction of the aging
prediction model. In summary, this phase involves: (1) estimation of BTI-induced
delay degradation, flip-flop SP extraction and selection of representative flip-flops,
and (2) construction of an aging prediction model using SVM.

9.5.1 Aging-Induced Delay Degradation and SP Extraction

Bias temperature instability (BTI)-induced threshold voltage degradation of the
transistors in logic gates depends on their input SP values. For each representative
workload, SPs of the primary inputs are propagated in order to determine the SPs
of the internal nodes. This is achieved by annotating the SP values of the primary
inputs and carrying out zero delay simulation using Synopsys Power Compiler.
The resulting SPs of the internal nodes are extracted from the switching-activity-
interchange-format (SAIF) file generated by Synopsys Power Compiler. SPs and
switching activities are required for power-profile analysis, and commercial logic
simulators have a built-in feature to dump such information for desired signals and

9 Machine Learning-Based Aging Analysis 273

time intervals in a SAIF file. The SP values at the inputs of each logic gate are then
translated to the threshold-voltage degradation of the transistors within these gates.

During logic synthesis, the standard delay format (SDF) file of the circuit is
generated, which contains the delay information about all the flip-flops and logic
gates in the netlist. For each workload under consideration, these delay values of
logic gates are updated to aging-induced delay values based on the SP values at the
gate inputs. Static timing analysis with the updated gate delays yields an estimate of
the aging-induced critical delay of the circuit. Note that STA is block-based and it
implicitly considers the delay increase in all possible circuit paths.

Aging-aware timing analysis is carried out using the following steps:

1. Define the circuit netlist as a graph with logic gates as nodes and the wires as the
edges.

2. Traverse through the graph, covering the forward cone of each flip-flop in the
circuit until the next flip-flop in the path is reached.

3. For each node in the circuit, the propagation delay until that node is calculated
by performing sum and max operations in a block-based analysis.

4. The maximum delay for the entire circuit is obtained in this way and is defined
as the aging-induced circuit delay.

The only difference of this approach from conventional STA carried out by a
commercial tool is that, we use aging-induced delay values of logic gates to compute
circuit delay.

9.5.2 Predictor Training Using Support-Vector Machines

The next step in the offline phase is to train a predictor based on a training set
consisting of the flip-flop SPs and aging-induced delay for several representative
workloads. In this work, we use SVM, a supervised learning algorithm, to train the
predictor. SVMs are very popular because of their resilience to over-fitting, robust-
ness to outliers, and high prediction accuracy for a wide range of applications [8].

The delay shift due to BTI is a deterministic function only when the SP values
of all nodes in the critical/near-critical paths are available in the online phase. Since
it is expensive to track SPs of all of these nodes, we track a few selected flip-flops
and deploy SVM to get accurate aging estimation at low cost. Note that we do not
record and use the SPs of all the flip-flops in the design. Therefore, it is not feasible
to use deterministic methods that rely on a large volume of data. SVM is efficient in
this scenario since it utilizes a small subset of features after feature elimination.

An SVM-based model is trained based on the set of (SP,Delay) pairs from the
final training set. Before the training process, each set of SPs in the training set is
converted to a vector form. We refer to this vector as the SP vector. For training an
SVM-based predictor, the SP vectors are mapped into a higher-dimensional feature
space and an optimal hyperplane (regression line) is constructed in this space. Let

274 A. Vijayan et al.

Ar
bi

tr
at

y
U

ni
ts

 (A
.U

.)

Fig. 9.5 Illustration of the support-vector regression model

Table 9.1 Hypothetical training set with four data samples

Set of SPs

Workload {SP1,SP2,SP3,SP4,SP5} Normalized aging-induced delay

W1 0.1, 0.1, 0.4, 0.8, 0.2 0.4

W2 0.2, 0.6, 0.2, 0.1, 0.5 0.8

W3 0.1, 0.4, 0.1, 0.6, 0.5 0.1

W4 0.2, 0.1, 0.7, 0.4, 0.3 0.6

(xi, yi)
S
i=1 denote the training set, where xi ∈ R

d , and yi ∈ R. The training set
consists of S SP vectors, x1, x2, ..., xS , and each SP vector has d features and a
corresponding target value (aging-induced delay), yi , which is a real number. In
this work, the ε-support-vector regression technique has been used. The objective
of ε-support-vector regression is to find a regression line that fits most points with
in ε-margin (ε > 0), as shown in Fig. 9.5. The equation has the following form:

f (x) =
S∑
i=1
βik(x, xi)+b,where b = 1

S

S∑
i=1
(yi− βi|βi |ε−(

S∑
j=1
βik(xi, xj))), k(xi, xj)

is the kernel function used to map the SP vectors to a high-dimensional feature
space, and (αi)Si=1 are the Lagrange multipliers introduced during the process of
derivation of this equation.

To illustrate the SVM-based regression methodology, consider a hypothetical
scenario with four training workloads. In addition, assume that this system has five
flip-flops. We form the training set as shown in Table 9.1, where the second column
in each row corresponds to the set of SPs and the third column corresponds to the
normalized aging-induced delay value. Using this training set and a linear kernel,
we obtain the following model to predict aging-induced delay based on a given set
of SPs (s = {s1, s2, s3, s4, s5}):

f (x) = 4.45 · s1 + 1.67 · s2 + 0.22 · s3
+0.20 · s4 − 2.31 · s5 + 0.01 (9.1)

9 Machine Learning-Based Aging Analysis 275

Suppose we have a set of SPs {0.2 0.1 0.7 0.4 0.3}, which is the fourth row in
Table 9.1, as the input to our model. The aging-induced delay is evaluated to be
y = 0.6 using (9.1). Let us consider a second set of SPs {0.1 0.2 0.6 0.1 0.1}. In
this case, the model evaluates to y = 0.7.

The runtime of the prediction model depends on the number of its variables, i.e.,
the number of monitored flip-flop SPs. Since a typical design has millions of flip-
flops, the runtime can be considerably large. Moreover, it is extremely expensive
to monitor all the flip-flops in every clock cycle. In the following sub-sections, we
describe space and time sampling-based approaches to reduce these overheads.

9.5.3 Representative Flip-Flop Selection (Space Sampling)

We propose two methods to select a small subset of flip-flops whose SPs are highly
correlated to aging-induced delay: (1) Correlation-based flip-flop selection and (2)
fan-in cone-based flip-flop selection.

9.5.3.1 Correlation-Based Flip-Flop Selection

In correlation-based flip-flop selection, flip-flops are selected based on their behav-
ior for different workloads under consideration. The overall flow of this method
is illustrated in Fig. 9.6. During workload characterization, several workloads with
varying characteristics are executed on the synthesized gate-level netlist of the
chip. The SPs of flip-flop values under various workloads are extracted. For the
same workloads, aging-induced delay values due to the workload-stress are also
extracted using the aging-analysis framework. A feature-selection method is then
employed to select significant flip-flops whose SPs are highly correlated with aging-
induced circuit delay. The benefits of employing feature selection are: (1) it reduces
over-fitting by eliminating redundant data, (2) it improves accuracy by eliminating
irrelevant data, and (3) it reduces training time by reducing the size of the training
set.

Let us assume that N workload phases are available at design time for training.
The aging-correlation analysis flow, explained in Sect. 9.5, can be used to generate
a training set {(SPi,Delayi)}Ni=1 of size N , where the set SP contains the SPs of
all M flip-flops SPi = (SPij)Mj=1 and Delayi represents the aging-induced delay
under each workload phase in our design. Our goal is to find a set of m flip-flops,
m � M , whose SPs are highly correlated with aging-induced delay. This can
be carried out using a univariate feature-selection method that takes the set of N
{(SPi,Delayi)}Ni=1 pairs and the parameter m as input and returns m features (flip-
flops). These m features are selected using an m-best feature-selection algorithm
in which the correlation between each individual feature and the circuit delay is
evaluated, and the m best features are retained as the output [19].

276 A. Vijayan et al.

Fan-in Cone
 Matrix

Fan-in Cone Analysis
Framework

Flip-flop Elimination
Heuristics

Synthesized Gate-level
Netlist

Reduced Fan-in
Cone Matrix

Representative
Flip-flops

k-means Clustering

Flip-flop Clusters

Aging-Analysis
Framework

Univariate
Feature Selection

SP Extraction

Workload
Characterization

Workloads

Flip-flop SPsAging-induced Delay
Values

(b)(a)

Synthesized Gate-level
Netlist

Representative
 Flip-flops

Fig. 9.6 Overall flow of space-sampling techniques to identify representative flip-flops. (a) Fan-in
cone-based flip-flop selection. (b) Correlation-based flip-flop selection

To illustrate the correlation-based flip-flop selection method, consider the hypo-
thetical scenario explained in Sect. 9.5.2. The Pearson correlation coefficients [2],
which take values in [−1, 1], are used to represent the correlation between the SP
of flip-flop i, 1 ≤ i ≤ 4, and the delay value. The Pearson correlation coefficient
between two sets of values, (xi)ni=1 and (yi)ni=1, is evaluated as follows:

r =
n∑
i=1

(xi − x̄)(yi − ȳ)
/(√√√√ n∑

i=1

(xi − x̄)
√√√√ n∑
i=1

(yi − ȳ)
)

(9.2)

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi . We obtain the correlation coefficients

for the five (SP,Delay) pairs to be 0.2, 0.5, 0.8, and 0.4, respectively. Therefore,
Flip-flop 2 (FF2) and Flip-flop 3 (FF3) are selected as being the most effective for
prediction. Similarly, if our objective is to select the best three flip-flops, then Flip-
flop 2, Flip-flop 3, and Flip-flop 4 are selected.

9 Machine Learning-Based Aging Analysis 277

9.5.3.2 Fan-In Cone-Based Flip-Flop Selection

Although the correlation-based method provides high accuracy, it demands very
high characterization effort, especially for larger designs with large number of flip-
flops. The accuracy of the correlation-based method depends on the number of data
samples, i.e., the number of workloads characterized. Moreover, the simulation
of a sufficient number of workloads for correlation analysis is extremely time-
consuming. The details of runtime will be discussed in Sect. 9.7.5.3. Hence, we
propose a more practical method that selects flip-flops independent of workload
characteristics.

In fan-in cone-based sampling, flip-flops are characterized by the gates in their
fan-in cones. We assume that flip-flops with a larger number of logic paths through
them hold more information in terms of workload since the flow of logic values
during workload execution occurs through flip-flops. Intuitively, the overlap in
fan-in cones of flip-flops is assumed to represent the amount of redundancy in
the information. If one flip-flop has a significant overlap in its fan-in cone with
another flip-flop, only one of them needs to be selected for monitoring. For example,
consider the scenario shown in Fig. 9.7. The gates present in the fan-in cones of flip-
flops FF1, FF2, and FF3 are shown along with the overlap in their fan-in cones.
Hence, from FF1, FF2, and FF3, only FF1 and FF2 are selected for monitoring.

Fig. 9.7 Fan-in cone characteristics of flip-flops

278 A. Vijayan et al.

The overall flow of fan-in cone-based flip-flop selection is shown in Fig. 9.6. The
synthesized gate-level netlist of the design is required for fan-in cone analysis. A
fan-in cone analysis framework captures the logic gates in the fan-in cone of each
flip-flop. This involves a backward traversal of timing paths starting from the flip-
flop input until we reach a primary input or another flip-flop’s output. In this way,
a fan-in cone matrix M is generated of size n × m, where n and m refer to the
number of flip-flops and gates in the design, respectively. Each element Mij in the
fan-in cone matrix can be either “0” or “1,” representing the absence or presence of
the gate Gj in the fan-in cone of flip-flop FFi , respectively. For a realistic design,
the size of the fan-in cone matrix would be huge for further computations. Hence,
heuristics are used to eliminate a few rows or columns. This includes (1) elimination
of flip-flops with only a few gates in their fan-in cone, and (2) elimination of flip-
flops with exactly the same gates in their fan-in cone. Thus we obtain a reduced
fan-in cone matrix for further processing.

The set of flip-flops with unique logic gates and minimum overlap in their fan-
in cones is identified using k-means clustering with the reduced fan-in cone matrix
as the input. The k-means clustering method, an unsupervised machine learning
technique for feature selection [18], can generate k clusters with each cluster
containing flip-flops having similar features, i.e., significant overlap in their fan-
in cones. The representative flip-flops for monitoring can be obtained by selecting
one flip-flop from each such cluster.

Since we observed (from our results) that the effectiveness of the fan-in cone-
based method is comparable to that of correlation-based method, we propose to
use the former for flip-flop selection. Even though we are not advocating the use
of correlation-based flip-flop selection, we utilize it to evaluate the effectiveness of
fan-in cone-based selection.

In contrast to [17], the fan-in cone-based algorithm in the proposed method does
not consider the critically aged paths explicitly. The flip-flops are characterized by
the presence of unique gates in their fan-in cone, thereby unique information flow
is expected for the specific fan-in cones. We define the presence or absence of gates
in the fan-in cone of flip-flops as the features. Subsequently, k-means clustering is
carried out to reduce the large number of flip-flops into a few flip-flop clusters, based
on their features. One flip-flop from a cluster can represent the workload information
contained in that cluster. In other words, the clustering of flip-flops is carried out to
eliminate redundant workload information, unlike in [17], where clustering is based
on correlation between path delays or adjacency of nodes. Our objective is to find
the minimum number of flip-flops having unique information to cover a maximum
of gate states (signal probabilities).

9.5.4 Time Complexity of Flip-Flop Selection Methods

The execution time required for flip-flop selection methods is an important concern.
The runtime for correlation-based flip-flop selection is much higher compared to

9 Machine Learning-Based Aging Analysis 279

fan-in cone-based selection due to the extensive workload characterization required
to generate a sufficient number of training and testing samples.

We derive an expression for the runtime of fan-in cone-based flip-flop selection
method in the worst-case. It is not possible to derive a simple closed-form expression
for the runtime of correlation-based flip-flop selection method since it involves
extensive workload characterization. Let the number of gates in the circuit be G,
the number of flip-flops be F , and the number of signals (nets) be N . In order to
generate the fan-in cone characteristics, a depth-first search is carried out starting
from the flip-flop’s input node until the traversal reaches the output of another flip-
flop or a primary input. Therefore, for each flip-flop, the time required for finding
the fan-in cone is O(G+N). Since there are F flip-flops in our circuit, the runtime
required for generating the fan-in cone matrix is O(F(G+N)).

The runtime of the heuristic used to eliminate flip-flops with the same gates in
their fan-in cone is O(F 2G) since the comparison of two vectors of length G takes
O(G) time. The runtime of the heuristic used to eliminate flip-flops whose fan-in
cone has gates less than 5% of the number of gates in the largest fan-in cone isO(F),
if we assume that we can obtain the size of a vector in unit time. The runtime of k-
means clustering algorithm isO(nkdi) [35], where n is the number of input vectors
(F in our problem), k is the number of clusters, d is the size of each vector (G in our
problem), and i the number of iterations needed until convergence. The number of
iterations until convergence is often small, and results only improve slightly after the
first ten iterations. Therefore, the number of iterations until convergence is limited
to ten in most implementations of k-means clustering algorithm. As a result, we
can consider i as a constant in our analysis. We then obtain the runtime of the k-
means clustering algorithm to select a fixed number of representative flip-flops as
O(FG). SinceG� F for large designs, we conclude that the runtime of the fan-in
cone-based flip-flop selection method is O(F(FG+N)).

9.5.5 Time Sampling

The proposed aging-induced delay prediction method is based on the SPs of a
small number of representative flip-flops. However, monitoring the representative
flip-flops in every clock cycle to extract their SPs can be expensive in terms of
total power consumption. This overhead in power consumption can be reduced by
time-sampling the flip-flops instead of monitoring them in every clock cycle. In
time-sampling, the flip-flops are sampled at regular intervals of time. For example,
x% time-sampling implies that the flip-flops are sampled in x% clock cycles out of
the total number of clock cycles in a workload segment. It is intuitive to see that the
SP value of a flip-flop evaluated with a low sampling rate approximately represents
the original SP value since SP is the average logic value of the flip-flop over the
whole period under consideration.

Figure 9.8 shows the additional hardware required to perform time sampling.
A shadow latch and a counter are added to monitor the SP of each representative

280 A. Vijayan et al.

Q

QD

Q

QD

Q

QD

Q

QD

Q

QD

Q

QD

Space Sampling (Fan-in Cone
Characteristics)

Representative Flip-flops
Selected by Space Sampling

Q

QD

Shadow
Latches

Q

QD

Q

QD

Functional
Clock Sampling Clock

N-bit Counter
#1

N-bit Counter
#n

Count
Enable

Count
Enable

Counter Clock

Counter Clock

Frequency
Divider

Delay
Element

Functional
 Clock

Sampling
Clock

Time-Sampling Hardware
Control Logic

SV
M

-b
as

ed
 P

re
di

ct
io

n
So

ftw
ar

e

Ag
in

g
Ad

ap
ta

tio
n

Te
ch

ni
qu

es

Ag
in

g-
in

du
ce

d
Ci

rc
ui

t D
el

ay

Functional
Clock

Sampling Clock

Counter
Clock

Reset

Reset

Fig. 9.8 Illustration of flip-flop SP monitoring methodology

flip-flop. We also require a frequency divider to generate the clock for the shadow
latches from the functional clock. The frequency divider is designed based on the
time-sampling rate. For example, if we choose 1% time-sampling, then a divide-by-
100 frequency divider is needed to generate the clock for the shadow latches. The
clock generated for the shadow latches cannot be used for the counters as we have
to take into account the setup time of the flip-flops used to design the counter. We
therefore use a delayed clock for the counters.

Our results in Sect. 9.7.1 show that, even with very low sampling rates, signifi-
cantly high prediction accuracy can be achieved.

9.6 Runtime Stress Monitoring

The SPs of the flip-flops relevant to the aging prediction are monitored during
runtime using a synchronous up-counter, as shown in Fig. 9.8. The counter is
enabled whenever the output of the flip-flop being monitored takes logic value
“1”; therefore, the counter tracks the number of clock cycles for which the flip-flop
output takes logic value “1.” The outputs of all the counters in the design are sampled
at uniform time intervals, and these values are stored in a buffer. It should be clarified
that the sampling frequency mentioned here is the frequency at which the counter
values are sampled while time-sampling rate described in Sect. 9.5.5 specifies the
frequency at which monitoring flip-flops are sampled. The sampling frequency to
sample the counter values is decided at design time based on the characteristics of
the representative workloads. The sampling frequency also determines the width of
the counter that needs to be implemented. For example, if the output of a counter
is sampled every 1000 clock cycles, then we need a counter that is at least 10 bits

9 Machine Learning-Based Aging Analysis 281

wide. Some additional control logic, as shown in Fig. 9.8, is also required to reset the
counters after every sampling operation. The buffered outputs of all the counters are
then transferred to the SVM-based prediction model, and then, this model translates
these workload phase characteristics to aging-induced delay. The system can then
take an appropriate protection measure based on the predicted aging trend.

There are two methods that can potentially be used to implement the prediction
software. In the first method, the predictor is executed as a thread on any idle core
on-chip. The role of this software thread is to collect flip-flop SP data from every
core on-chip. These data, which are stored in a buffer on every core (Fig. 9.8), are
transferred from one core to another based on a handshake mechanism. The core on
which the thread is executing broadcasts a read signal to all the other cores. The core
that is ready for this read operation sends back an acknowledgement (permission
to read). Once the core executing the thread receives an acknowledgement from
another core, it starts reading data from the buffer on that core and stores them
in its buffer. In this way, data from all the cores are collected before the aging
prediction process is started. This method of executing the prediction software does
not require any additional hardware. However, an idle core may not always be
available, in which case the system operation has to be interrupted to execute the
prediction software. Moreover, migrating the predictor between different idle cores
also involves overhead.

The other method is to execute the prediction software on a dedicated pro-
grammable microcontroller. The microcontroller communicates with every core
on-chip to obtain flip-flop SP data. Therefore, it is necessary to define the interface
between the microcontroller and the on-chip hardware. In [12], the communication
between the energy management microcontroller and the processor core occurs
through the industry-standard inter-integrated circuit (I2C) interface. The micro-
controller can read and write to the registers on every on-chip core through this
interface. Therefore, the flip-flop SP data can be accessed by the microcontroller
through the I2C interface using buffer read operations. This method of implementa-
tion of the prediction software does not interrupt the processes running on any core
and therefore, has minimal performance overhead. However, additional hardware
cost is incurred to implement the dedicated microcontroller on-chip.

9.7 Results

For the experiments, we selected two open-source embedded processors imple-
mented at RTL, namely Leon3 and OpenRISC 1200 (OR1200), such that we can
run realistic application workloads. The effectiveness of the proposed approach was
evaluated using these two processors. We implemented an SVM-based predictor,
and the dependence of the prediction accuracy on the number of monitored flip-flops
and on the time-sampling rate were studied for both processors. We also compared
the accuracy of the two proposed flip-flop selection methods. Experiments were run
on a 64 bit Linux machine with 16 GB of RAM and quad-core Intel Xeon processors
running at 2.53 GHz.

282 A. Vijayan et al.

9.7.1 Experimental Setup

OR1200 is five-stage pipeline embedded processor based on the 32-bit ORBIS32
instruction set architecture (ISA). Leon3 is a 32-bit processor based on the SPARC-
V8 RISC ISA. The processor was synthesized using Synopsys Design Compiler
with Nangate 45 nm library [32]. Our method is not limited to any particular
technology node. The aging model used for evaluation can be easily updated to
incorporate any newer technology node.

Six programs from MiBench, namely crc32, bitcount, qsort, susan, sha,
stringsearch, and basicmath, were executed on the synthesized netlists of Leon3.
Each workload was divided into several smaller workload segments of 103 clock
cycles to collect the required number of workload samples for training and
validation. Workload samples constituting the training set were used to construct
a predictive model, and those constituting the test set were used to evaluate the
accuracy of the predictive model. The aging-induced circuit delay values of Leon3
were computed using an NBTI-based aging analysis framework. The SPs of the flip-
flops in Leon3 were obtained for each workload phase from a SAIF file generated
by performing a post-synthesis simulation in ModelSim. The SVM algorithms used
to train and validate the aging predictor were implemented using Scikit-learn [34]
with the built-in LibSVM software package.

For aging analysis, the entire logic core of the processor (including all com-
binational and sequential elements), except memory blocks (such as caches and
register files), is considered to be a single circuit. Aging-aware STA is carried out
on this core logic to extract aging-induced circuit delay. In our analysis, we have not
included any analog blocks in the circuit. However, analog blocks can be included
in the timing paths as black boxes if their propagation delays are defined.

9.7.2 SVM Training and Validation

The training data set for each processor benchmark consisted of 2000 SP vectors
and their corresponding aging-induced delay values. A non-overlapping set of
2000 SP vectors and their corresponding aging-induced delay values were used
to test the prediction model. The best values for the radial basis function (RBF)
kernel parameters used in the SVM model were determined using a five-fold cross-
validation approach. In this approach, the training set was divided into five equal
subsets and each subset was validated using a model trained on the remaining
four subsets. A grid search was carried out on the parameters and the parameter
values corresponding to the highest cross-validation accuracy were chosen. The
prediction model was then trained using these best parameter values and the
complete training set.

9 Machine Learning-Based Aging Analysis 283

9.7.3 Evaluation of Prediction Accuracy

We have selected representative flip-flops based on the two different space-sampling
techniques as mentioned in Sect. 9.5.3. The metric used to evaluate the accuracy of
prediction is the Pearson correlation coefficient.

Furthermore, we applied time-sampling techniques to reduce the frequency at
which the selected representative flip-flops are sampled.

9.7.3.1 Joint Space–Time Sampling

Figure 9.9 illustrates the results for joint space–time sampling on Leon3 and
OR1200 processors. Joint time–space sampling involves selection of a set of flip-
flops with space-sampling and further sampling of the logic values in these flip-flops
at a pre-defined time-sampling rate. We obtained the results for four different time-
sampling rates (1%, 0.1%, 0.01%, and 0.001%) and four sets of flip-flops with
different sizes (8, 16, 32, and 64).

The prediction accuracy, evaluated as the Pearson correlation coefficient, under
fan-in cone-based flip-flop selection and correlation-based flip-flop selection is
above 0.85 for sampling rates greater than 0.001% and flip-flop selection size greater
than 8. The overall trend shows a significant reduction in accuracy when time-
sampling rate reduces to 0.001% from 0.01%. Moreover, the prediction accuracy
increases with an increase in the number of selected flip-flops for correlation-based
approach. However, it is not necessarily the case for the fan-in cone-based approach.
The reason is that fan-in cone-based selection is a heuristic approach; therefore, it

(a) (b)

Fig. 9.9 Results obtained using joint time–space sampling of flip-flops. (a) Leon3. (b) OR1200

284 A. Vijayan et al.

does not necessarily find optimal solutions. As a result, there are some cases in
which the accuracy decreases even when more number of flip-flops are selected.

Since the correlation-based flip-flop selection method takes into account the
nature of workload running on the chip, this method can provide better results
for sufficiently large number of flip-flops. Hence, for a selection of 64 flip-flops,
correlation-based flip-flop selection method provides a higher accuracy of 0.9784
compared to 0.9603 of fan-in cone-based flip-flop selection method in Leon3 for a
1% time-sampling rate. However, as the number of flip-flops selected is reduced to
8, fan-in cone-based sampling predicts with a better accuracy of 0.9514 compared to
0.8993 of the correlation-based method for Leon3. Hence, it is important to choose
between these methods based on the feasibility and cost of flip-flop monitoring.

In summary, the key take-away messages from these results can be outlined as
follows:

• A lower time-sampling rate can be adopted to reduce the power overhead of
monitoring without compromising the accuracy of aging prediction.

• Hardware monitoring costs can be reduced by selectively monitoring a small
number of flip-flops while maintaining high prediction accuracy.

• The proposed fan-in cone-based flip-flop selection heuristic, with much lower
runtime and complexity, is as effective as correlation-based flip-flop selection
method having large runtime requirements.

9.7.3.2 Step-by-Step Correlation

The increase in threshold voltage of a transistor due to BTI depends on the SP at the
gate terminal of that transistor. For accurate aging calculation, we require SP values
for all internal nodes of the circuit netlist. Instead of monitoring the SP values of
the internal nodes directly, we use flip-flop SPs to predict the aging trend. Table 9.2
compares prediction accuracies with two different observables (feature vectors): (1)
SPs of circuit nodes, (2) SPs of flip-flops in the circuit. Note that we perform feature
selection to eliminate insignificant features.

The results show insignificant variation in the Pearson correlation coefficient
when the number of features exceeds 16. In other words, the aging-information loss
while compacting circuit-node SPs to flip-flop SPs is insignificantly small.

Table 9.2 Step-by-step correlation of SPs to aging-induced circuit delay

Pearson correlation coefficient (SP → delay)

LEON3 OR1200

Circuit nodes Flip-flops Circuit nodes Flip-flops

Number of features selected 64 0.9893 0.9865 0.9889 0.9835

32 0.9889 0.9846 0.9862 0.9813

16 0.9846 0.9786 0.9719 0.9713

8 0.9767 0.9565 0.9589 0.9323

9 Machine Learning-Based Aging Analysis 285

FF[0:7]
FC

SP[0]

SP[1]
SP[2]

SP[3]
SP[4]
SP[5]

SP[6]
SP[7]

CC
SC

FC – Functional Clock CC – Counter Clock SC – Sampling Clock

Fig. 9.10 Timing simulation results for the time-sampling hardware

9.7.4 Validation of Time-Sampling Hardware Design

The proposed method employs a time-sampling hardware as described in Sect. 9.5.5
that mainly consists of a shadow latch and a synchronous up-counter to monitor
flip-flop SPs. We validated our design by carrying out timing simulations using its
VHDL model. The model was implemented to sample eight flip-flops in 1% clock
cycles out of the total number of clock cycles in a workload segment (assumed to be
105). Figure 9.10 shows timing simulation results for this design. The clock signals
for the shadow latches (sampling clock) and counters (counter clock) in our design
are generated from the functional clock. The flip-flop values are sampled by the
shadow latches when the sampling clock is high, and the counters are updated on
the rising edge of the counter clock.

9.7.5 Overheads

For area and power estimations, the processor logic cores along with their cor-
responding memory blocks were considered. The overheads associated with the
time-sampling hardware are extracted by adding it to the original processor netlist
and the updated netlist is re-synthesized. The size of the counter is estimated based
on the size of a workload segment, i.e., the number of clock cycles constituting one
workload segment and the time-sampling rate chosen. For instance, if the workload
segment is of size 106 with a time-sampling rate of 1%, a 14-bit counter is required.

9.7.5.1 Performance Overhead

Static timing analysis (STA) is carried out on the circuits using Synopsys Primetime
to estimate the performance overhead. The results show that the additional hardware
does not affect the maximum circuit delay, hence no performance overhead. This can
be attributed to the re-optimization carried out by the synthesis tool to compensate

286 A. Vijayan et al.

for the additional load added to the output of the monitoring flip-flops. However,
this re-optimization can increase the area overhead. In addition, the software thread
executing the predictive model to compute aging can cause performance overhead.
This overhead is dependent on the sampling frequency, i.e., how often the counter
values are sampled to compute aging, and also on the runtime required for each
computation. For instance, if the aging computation is performed every 106 cycles
and if each computation takes 40 cycles, the performance overhead incurred by the
software-thread execution is 0.004%.

9.7.5.2 Area and Power Overhead

The area overhead incurred due to the additional hardware for eight flip-flops under
monitoring is 0.42% for Leon3 and 0.38% for OR1200 with 0.001% time-sampling.
The size of the counters required to track SPs decreases with a reduction in the
time-sampling rate. Moreover, a part of this area increase is due to the optimization
carried out by the synthesis tool in the form of resizing of gates. Therefore, the
actual area overhead will be lower than the values that we obtained.

For Leon3 and OR1200, the power overheads for a time-sampling rate of 0.001%
were found to be as low as 0.07% and 0.12%, respectively. The dynamic power
overhead of the monitoring hardware is significantly reduced with lower time-
sampling rates, and hence, the overall power overhead becomes lower. In other
words, the leakage power of the monitoring hardware has the major contribution
to overall power overhead.

9.7.5.3 Overhead at Design Time

The correlation-based flip-flop selection required an estimated CPU time of 9.5 h
while fan-in cone-based flip-flop selection required only 21 min. Therefore, the
runtime for correlation-based flip-flop selection is much higher compared to fan-
in cone-based selection. Since the effectiveness of the fan-in cone-based method is
comparable to that of correlation-based method, we advocate the use of the former
for flip-flop selection. In addition, the runtime in our setup to train the SVM model
offline with the selected 64 features (flip-flops obtained through fan-in cone-based
flip-flop selection) was less than 1 min for both processors.

9.8 Conclusions

We have proposed a method to predict the aging-induced delay based on flip-flop
SPs. Unlike existing delay-monitoring schemes based on hardware sensors, our
method imposes minimal area and power overhead since we rely on the SPs of a
small number of flip-flops, which can be obtained by attaching simple counters to

9 Machine Learning-Based Aging Analysis 287

the flip-flop outputs. This method also makes it possible to capture fine-grained
aging trends that can support proactive aging mitigation techniques. Simulation
results for two embedded processors demonstrate that the proposed method can
accurately predict workload-induced aging trends.

References

1. M. Agarwal, B.C. Paul, M. Zhang, S. Mitra, Circuit failure prediction and its application to
transistor aging, in IEEE VLSI Test Symposium (2007), pp. 277–286

2. J. Benesty, J. Chen, Y. Huang, I. Cohen, Pearson correlation coefficient, in Noise Reduction in
Speech Processing (Springer, Berlin, 2009), pp. 1–4

3. S. Borkar, Designing reliable systems from unreliable components: the challenges of transistor
variability and degradation. IEEE Micro 25(6), 10–16 (2005)

4. K. Bowman et al., Circuit techniques for dynamic variation tolerance, in ACM/IEEE Design
Automation Conference (2009), pp. 4–7

5. T.-B. Chan, J. Sartori, P. Gupta, R. Kumar, On the efficacy of NBTI mitigation techniques, in
Design, Automation and Test in Europe Conference and Exhibition (IEEE, Piscataway, 2011),
pp. 1–6

6. B. Choi, Y. Shin, Lookup table-based adaptive body biasing of multiple macros, in Interna-
tional Symposium on Quality Electronic Design (2007), pp. 533–538

7. S. Corbetta, W. Fornaciari, NBTI mitigation in microprocessor designs, in Proceedings of the
Great Lakes Symposium on VLSI (ACM, New York, 2012)

8. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
9. D. Ernst, N.S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin,

K. Flautner, T. Mudge, Razor: a low-power pipeline based on circuit-level timing speculation,
in IEEE/ACM International Symposium on Microarchitecture (2003), pp. 7–18

10. F. Firouzi, F. Ye, K. Chakrabarty, M.B. Tahoori, Aging- and variation-aware delay monitoring
using representative critical path selection. ACM Trans. Des. Autom. Electron. Syst. 20(3), 39
(2015)

11. T. Fischer, J. Desai, B. Doyle, S. Naffziger, B. Patella, A 90-nm variable frequency clock
system for a power-managed itanium architecture processor. J. Solid-State Circuits 41(1), 218–
228 (2006)

12. M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, A.J. Drake, L. Pesantez,
T. Gloekler, J.A. Tierno, P. Bose, A. Buyuktosunoglu, Introducing the adaptive energy
management features of the POWER7 chip. IEEE/ACM Int. Symp. Microarchitecture 31(2),
60–75 (2011)

13. M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw, D. Sylvester, Bubble
razor: an architecture-independent approach to timing-error detection and correction, in IEEE
International Solid-State Circuits Conference Digest of Technical Papers (IEEE, Piscataway,
2012), pp. 488–490

14. G. Gammie, A. Wang, M. Chau, S. Gururajarao, R. Pitts, F. Jumel, S. Engel, P. Royannez,
R. Lagerquist, H. Mair, J. Vaccani, G. Baldwin, K. Heragu, R. Mandal, M. Clinton, D. Arden,
U. Ko, A 45 nm 3.5G baseband-and-multimedia application processor using adaptive body-
bias and ultra-low-power techniques, in International Solid-State Circuits Conference (2008),
pp. 258–611

15. B. Guenin, K.C. Gross, A. Gribok, A. Urmanov, A new sensor validation technique for the
enhanced RAS of high end servers, in International Conference on Machine Learning: Models,
Technologies and Applications (2004)

16. S. Gupta, S.S. Sapatnekar, Employing circadian rhythms to enhance power and reliability.
ACM Trans. Des. Autom. Electron. Syst. 18(3), 38 (2013)

288 A. Vijayan et al.

17. S. Gupta, S.S. Sapatnekar, Variation-aware variable latency design. IEEE Trans. Very Large
Scale Integration Syst. 22(5), 1106–1117 (2014)

18. A.K. Jain, Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666
(2010)

19. A. Jain, D. Zongker, Feature selection: evaluation, application, and small sample performance.
IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 153–158 (1997)

20. K. Kang, H. Kufluoglu, M.A. Alam, K. Roy, Efficient transistor-level sizing technique
under temporal performance degradation due to NBTI, in IEEE International Conference on
Computer Design (2007), pp. 216–221

21. K. Kang, S.P. Park, K. Roy, M.A. Alam, Estimation of statistical variation in temporal NBTI
degradation and its impact on lifetime circuit performance, in International Conference on
Computer-Aided Design (2007)

22. B. Kapoor, S. Hemmady, S. Verma, K. Roy, M.A. D’Abreu, Impact of SoC power management
techniques on verification and testing, in International Symposium on Quality Electronic
Design (2009), pp. 692–695

23. E. Karl, D. Blaauw, D. Sylvester, T. Mudge, Multi-mechanism reliability modeling and
management in dynamic systems. Trans. VLSI Syst. 16(4), 476–487 (2008)

24. J. Keane, X. Wang, D. Persaud, C.H. Kim, An all-in-one silicon odometer for separately
monitoring HCI, BTI, and TDDB. IEEE J. Solid-State Circuits 45(4), 817–829 (2010)

25. S.V. Kumar, C.H. Kim, S.S. Sapatnekar, NBTI-aware synthesis of digital circuits, in
ACM/IEEE Design Automation Conference (2007), pp. 370–375

26. D. Lorenz, G. Georgakos, U. Schlichtmann, Aging analysis of circuit timing considering NBTI
and HCI, in IEEE International On-Line Testing Symposium (2009), pp. 3–8

27. H. Mair, A. Wang, G. Gammie, D. Scott, P. Royannez, S. Gururajarao, M. Chau, R. Lagerquist,
L. Ho, M. Basude, N. Culp, A. Sadate, D. Wilson, F. Dahan, J. Song, B. Carlson, U. Ko, A 65-
nm mobile multimedia applications processor with an adaptive power management scheme to
compensate for variations, in IEEE Symposium on VLSI Circuits (2007)

28. J.W. McPherson, Reliability challenges for 45 nm and beyond, in ACM/IEEE Design Automa-
tion Conference (2006), pp. 176–181

29. E. Mintarno, J. Skaf, R. Zheng, J. Velamala, Y. Cao, S. Boyd, R.W. Dutton, S. Mitra, Optimized
self-tuning for circuit aging, in Design, Automation and Test in Europe Conference and
Exhibition (2010), pp. 586–591

30. E. Mintarno, J. Skaf, R. Zheng, J.B. Velamala, Y. Cao, S. Boyd, R.W. Dutton, S. Mitra, Self-
tuning for maximized lifetime energy-efficiency in the presence of circuit aging. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 30(5), 760–773 (2011)

31. H. Mostafa, M. Anis, M. Elmasry, Adaptive body bias for reducing the impacts of NBTI and
process variations on 6T SRAM cells. IEEE Trans. Circuits Syst. 58(12), 2859–2871 (2011)

32. Nangate 45 nm open cell library v1.3. http://www.nangate.com
33. B.C. Paul, K. Kang, H. Kufluoglu, M.A. Alam, K. Roy, Temporal performance degradation

under NBTI: estimation and design for improved reliability of nanoscale circuits, in Design,
Automation and Test in Europe Conference and Exhibition (2006), pp. 780–785

34. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg et al., Scikit-learn: machine learning in python. J. Mach.
Learn. Res. 12, 2825–2830 (2011)

35. D. Pelleg, A. Moore, Accelerating exact K-means algorithms with geometric reasoning, in
ACM International Conference on Knowledge Discovery and Data Mining (1999), pp. 277–
281

36. C. Poirier, R. McGowen, C. Bostak, S. Naffziger, Power and temperature control on a 90-nm
itanium family processor. J. Solid-State Circuits 41(1), 229–237 (2006)

37. N. Shah, R. Samanta, M. Zhang, J. Hu, D. Walker, Built-in proactive tuning system for circuit
aging resilience, in IEEE Defect and Fault Tolerance in VLSI Systems (2008), pp. 96–104

38. J. Srinivasan, S.V. Adve, P. Bose, J.A. Rivers, The case for lifetime reliability-aware micropro-
cessors, in ACM International Symposium on Computer architecture, vol. 32 (2004), p. 276

http://www.nangate.com

9 Machine Learning-Based Aging Analysis 289

39. J. Srinivasan, S.V. Adve, P. Bose, J.A. Rivers, Lifetime reliability: toward an architectural
solution. IEEE Micro 25, 70–80 (2005)

40. J. Srinivasan, S.V. Adve, P. Bose, J.A. Rivers, Exploiting structural duplication for lifetime
reliability enhancement, in ACM International Symposium on Computer architecture, June
2005, pp. 520–531

41. K. Sutaria, A. Ramkumar, R. Zhu, R. Rajveev, Y. Ma, Y. Cao, BTI-induced aging under
random stress waveforms: modeling, simulation and silicon validation, in Design Automation
Conference (DAC) (2014), pp. 1–6

42. D. Sylvester, D. Blaauw, E. Karl, Elastic: an adaptive self-healing architecture for unpredictable
silicon. Des. Test 23(6), 484–490 (2006)

43. A. Tiwari, J. Torrellas, Facelift: hiding and slowing down aging in multicores, in 2008 41st
IEEE/ACM International Symposium on Microarchitecture (2008)

44. J.W. Tschanz, J.T. Kao, S.G. Narendra, R. Nair, D.A. Antoniadis, A.P. Chandrakasan, V. De,
Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on
microprocessor frequency and leakage. J. Solid-State Circuits 37(11), 1396–1402 (2002)

45. J. Tschanz, N.S. Kim, S. Dighe, J. Howard, G. Ruhl, S. Vangal, S. Narendra, Y. Hoskote,
H. Wilson, C. Lam, M. Shuman, C. Tokunaga, D. Somasekhar, S. Tang, D. Finan, T. Karnik,
N. Borkar, N. Kurd, V. De, Adaptive frequency and biasing techniques for tolerance to dynamic
temperature-voltage variations and aging, in International Solid-State Circuits Conference
(2007), pp. 292–604

46. S. Wang, J. Chen, M. Tehranipoor, Representative critical reliability paths for low-cost and
accurate on-chip aging evaluation, in IEEE/ACM International Conference on Computer-Aided
Design (2012), pp. 736–741

Part III
Machine Learning for Failure Modeling

I came to the conclusion that, in order to succeed, it would
become necessary to advance the art of construction itself.

Charles Babbage

Chapter 10
Extreme Statistics in Memories

Amith Singhee

10.1 Cell Failure Probability: An Extreme Statistic

Ff,array , the chip or array failure probability, is the probability of one or more cells
failing in any one array. Hence, if we manufacture 10 arrays, and 6 of them have
a total of 8 faulty cells, our array failure probability is (approximately) 6/10, and
not 8/10. Another, equivalent way to define Ff,array is: the probability of the worst
cell in an array being faulty. Hence, if we are measuring some performance metric
y (e.g., static noise margin), we are interested in the statistics of the worst value of y
from amongN values, whereN is the number of cells in our array. Let us define this
worst value as MN , and let us assume that by worst, we mean the maximum, i.e.,
large values of y are bad. If small values of y are bad, then we can use the maximum
of −y as the worst value.

MN = max(Y1, . . . , YN) (10.1)

where Y1, . . . , YN are the measured performance metric values for the N cells in an
array. Also suppose that the failure threshold for y is yf , i.e., any cell with y > yf
is defined as failing. Then, Ff,array can be defined as

Ff,array = P(MN > yf) (10.2)

that is, the probability of the worst case y in the array being greater than the failure
threshold yf . Now,

P(MN > yf) = 1− P(MN < yf) (10.3)

A. Singhee (�)
IBM Research, Bangalore, India
e-mail: asinghee@in.ibm.com

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_10

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_10&domain=pdf
mailto:asinghee@in.ibm.com
https://doi.org/10.1007/978-3-030-04666-8_10

294 A. Singhee

where P(MN ≤ yf) is the probability of the worst case cell passing: this is the same
as the probability of all the cells in the array passing; that is,

P(MN ≤ yf) = P(Y1 ≤ yf , . . . , YN ≤ yf) (10.4)

Now, we assume that the failure of any cell in the array is independent of the
failure of any other cell in the array. This is reasonable because we are modeling
failures due to random variations, which largely tend to be spatially independent. For
instance, a well-designed CMOS SRAM bitcell would fail from random variation
mainly because of random mismatch between its left and right halves induced
primarily because of random dopant fluctuation. It is well known that random dopant
fluctuation in one transistor is largely independent of the fluctuation in another
transistor. Given this assumption of independence of cell failure events, we can
write (10.4) as

P(MN ≤ yf) =
N∏
i=1

P(Yi ≤ yf) = [P(Y ≤ yf)]N (10.5)

Now,

P(Y ≤ yf) = 1− P(Y ≥ yf) (10.6)

where P(Yi > yf) is the failure probability of a cell, i.e., Ff,array . Hence,
combining all equations from (10.2) to (10.6), we have

c = 1− [1− Ff,cell]N, or (10.7)

Ff,cell = 1− [1− Ff,array]1/N (10.8)

10.1.1 Units of Failure Probability

There are some different units used to represent failure probability, especially in the
context of extremely low probability. Some relevant ones are as follows:

• Raw probability (P): This is the most inconvenient representation, for example,
a 32 Mb array with an array level requirement of Ff,array < 1% will need a cell
failure probability < 3× 10−10.

• Parts-per-million (ppm): This is the expected number of failure events (failing
cells) in 1 million events (cells), and is given by P×1 million. So, a raw
probability of 3× 10−10 is the same as 3× 10−4 ppm.

• Parts-per-billion (ppb): This is the expected number of failure events in 1 billion
events and is given by P× 1 billion. Our example of 3×10−10 would be 0.3 ppb.

10 Extreme Statistics in Memories 295

Table 10.1 Cell failure
probability Ff,cell , in
parts-per-billion (ppb),
computed from Eq. (10.8) for
a range of array sizes N and
array yield specifications
Ff,array

N ↓ , Ff,array → <1% <0.1%

1 Mb (220) 9.59 0.95

2 Mb 4.79 0.48

4 Mb 2.4 0.24
8 Mb 1.2 0.12
16 Mb 0.6 0.06
32 Mb 0.3 0.03

Typical cases are highlighted in bold

• Equivalent sigma (σ): This is the (1 − P)-th quantile on the standard normal
distribution, and is given by

m = φ−1(1− P) = −φ−1(P) (10.9)

where φ−1 is the inverse of the standard normal cumulative distribution function
(CDF). So, if P = 3 × 10−10, we get m = 6.19σ . This is the most widely used
measure of extreme failure probability in the domain of memory design.

10.1.2 An Example of Extreme Statistics in Memories

Table 10.1 shows the cell failure probability in parts-per-billion, calculated for
several values of array yield specification and several values of array size. Looking
at the highlighted typical values, we can see that the cell yield requirements are very
stringent: only a few cells per 10 billion can fail. Apart from the significant difficulty
in design such a robust memory cell, it is difficult to even estimate in simulation, the
failure probability of a given cell design with acceptable accuracy.

10.1.3 Incorporating Redundancy

To increase the fault tolerance of the memory, designers may choose to include
redundancy in the array. A common approach is to have redundant columns in the
array that are used to replace defective columns in the chip, see, for example, [11].
As array sizes increase, the chances of having a failing cell in one array increase.
In reality, this failure can be due to radiation-induced soft errors, manufacturing
defects, or process variation. Redundancy allows increased tolerance to such
failures. In the simplest case, if there is one redundant column, the chip can tolerate
one failing cell. The use of redundancy, of course, changes the relation between the
array failure probability and the cell failure probability; however, a direct relation
still exists and can be derived [22]. If the array needs to be able to tolerate up to r
faulty bits, the maximum acceptable bitcell failure probability can be estimated for

296 A. Singhee

a given array failure probability via:

Ff,array ≈ 1−
r∑
k=0

(Ff,cellN)
ke−Ff,cellN

k! (10.10)

From the preceding discussion, we now know how to compute the specification
on the cell failure probability, given a specification on the array failure probability.
Suppose now that we design a cell. How do we estimate its failure probability to
check if it meets this criterion? This will be the focus of the following chapters.

10.2 Extremes: Tails and maxima

Suppose we want to model the rare event statistics of the write time of an SRAM
cell. Figure 10.1 shows an example of the distribution of the write time.

We see that it is skewed to the right with a heavy right tail. A typical approach
is to run a Monte Carlo with a small sample size (e.g., 1000) and fit a standard
analytical distribution to the data, for example, a normal or a lognormal distribution.
Such an approach can be accurate for fitting the “body” of the distribution, but will
often be grossly inaccurate in the tail of the distribution: the skewness of the actual
distribution or the heaviness of its tail will be difficult to match. As a result, any
prediction of the statistics of rare events, lying far in the tail, will be inaccurate.

Let F denote the cumulative distribution function (CDF) of the write time y,
and let us define a tail threshold t to mark the beginning of the tail (e.g., the 99-th
percentile). Let z be the excess over the threshold t . We can write the conditional
CDF of the tail as

Ft(Z) = P(Y − t ≤ Z|Y > t) = F(Z + t)− F(t)
1− F(t) (10.11)

and the overall CDF as

F(Z + t) = (1− F(t))Ft (Z)+ F(t) (10.12)

Fig. 10.1 A possible skewed
distribution for some SRAM
metric (e.g., write time)

t

Ft

z yf

(z)

10 Extreme Statistics in Memories 297

If we know F(t) and can estimate the conditional CDF of the tail Ft(Z)
accurately, we can accurately estimate rare event statistics. For example, the yield
for some extreme threshold yf > t is given as

F(yf) = (1− F(t))Ft (yf − t)+ F(t) (10.13)

and the corresponding failure probability Ff (yf) = 1− F(yf) is given as

Ff (yf) = (1− F(t))(1− Ft(yf − t)), (10.14)

F(t) can be accurately estimated using a few thousand simulations, since t is not too
far out in the tail. Then, the problem here is to efficiently estimate the conditional tail
CDF Ft as a simple analytical form, which can then be used to compute statistical
metrics such as Eqs. (10.13) and (10.14) for rare events. Of course, here we assume
that any threshold yf of interest will be far into the tail, such that yf � t . This
is easily satisfied for any real memory design scenario, since memory sizes are
typically >1 MB, requiring failure probabilities on individual bitcells �1 ppm in
order to achieve overall memory yields in an acceptable range (typically >99%).1

We also assume that the extreme values of interest lie only in the upper tail of the
distribution. This is without any loss of generality, because any lower tail can be
converted to the upper tail by replacing y = −y. This same approach of fitting a
CDF to the exceedances over some threshold has been developed and widely applied
by hydrologists under the name of the peaks over threshold (POT) method [3]. In
their case though, the data is from historical record and not synthetically generated.

Now, suppose that Y1, Y2, . . . is a sequence of independent, identically distributed
random variables from the CDF F . For any sample Y1, Y2, . . . , YN of sizeN , define
the sample maximum as

MN = max(Y1, Y2, . . . , YN), N ≥ 2 (10.15)

The probability ofMN ≤ y is the probability of all of Y1, Y2, . . . , YN being ≤ y, as
in:

P(MN ≤ y) = P(Y1 ≤ y, . . . , YN ≤ y),=
N∏
i=1

P(Yi ≤ y) = FN(y). (10.16)

The maximum is a measure of the expected worst case value of any performance
metric. Consequently, the statistics of the maximum can help us analyze the

1To put this in perspective, note that achieving 99% yield for even 1000 bitcells requires marginal
yield of 99.999% on each cell. For a parameter with an unskewed Gaussian distribution, this
equates to over 4.2 standard deviations beyond the mean, far above the 2.3 assumed by a 99th
percentile value. With mega-bits of memory, it is clear that assuming thresholds far into the tail is
reasonable.

298 A. Singhee

statistical worst case behavior of a circuit and estimate accurate statistical design
margins. We now look at some results from extreme value theory (EVT) that directly
apply to these problems of estimating rare event statistics: the sample maxima and
the conditional tail CDF.

10.2.1 Sample Maximum: Limiting Distributions

An important result from EVT addresses the question: What are the possible limiting
distributions of MN as N → ∞? This result is stated in the following theorem by
Fisher and Tippett [4].

Theorem 10.1 (Fisher–Tippett [4]) If there exist normalizing constants aN , bN ,
and some non-degenerate CDF H , such that

P

(
MN−bN
aN

≤ y
)
=FN(aNy+bN)→ H(y) as N →∞, y ∈ �

(10.17)

then H belongs to the type of one of the following three CDFs:

Fréchet : Φa(y) =
⎧⎨
⎩0, y ≤ 0,

e−y−a , y > 0
, α > 0

Weibull : Ψa(y) =
⎧⎨
⎩e

−(−y)a , y ≤ 0,

1, y > 0
, α > 0 (10.18)

Gumbel : Λ(y) = e−e−y , y ∈ �

This amazing result formed the foundation of estimation of rare event statistics.
Roughly, it says that for a very large class of CDFs, we can model the distribution
of the normalized sample maximum MN as one of the three standard distributions:
Fréchet, Weibull, and Gumbel. These three CDFs can be combined together into a
generalized extreme value (GEV) distribution:

Hζ (y) =
⎧⎨
⎩e

−(1−ζy)1/ζ , ζ �= 0

e−e−y , ζ = 0
, where1− ζy > 0. (10.19)

The three CDFs are obtained as follows:

• ζ = −α−1 < 0 gives the Fréchet CDF Φa ,

10 Extreme Statistics in Memories 299

Table 10.2 Some common
distributions lying in
MDA(Hζ)

Hζ Distributions inMDA(Hζ)

Φ−1/ζ Cauchy, Pareto, Loggamma

Ψ1/ζ Uniform, Beta

Λ Normal, Lognormal, Gamma, Exponential

• ζ = −α−1 > 0 gives the Weibull CDF Ψa , and
• ζ = 0 gives the Gumbel CDF Λ.

The condition equation (10.17) is commonly stated as F lies in the maximum
domain of attraction of H, or F ∈ MDA(H). Hence, for non-degenerate H ,
Theorem 2.1 can be stated succinctly as

F ∈ MHA(H) �⇒ H is of type Hζ

The conditions for which F ∈ MDA(H) for some non-degenerate H are quite
general for most practical purposes, and known well. Gnedenko [5] provided the first
rigorous proof for the Fisher–Tippett theorem, showing conditions on F required
for the convergence to each of the three limiting CDFs. For details regarding these
conditions, see [3, 17, 18]. Here, we only list some common distributions belonging
to MDA(Hζ), in Table 10.2, and immediately proceed to a similar result for the
conditional CDF of the tail.

10.2.2 Distribution Tail: Limiting Distributions

We recall the definition of Ft as the conditional tail CDF for a tail threshold t , as in
Eq. (10.11). Then, the following is true.

Theorem 10.2 (Balkema and de Haan [1] and Pickands [15]) For every ζ ∈ �,
F ∈ MDA(Hζ) if and only if

lim
t→∞ sup

z≥0
|Ft(z)−Gζ,β(t)(z)| = 0 (10.20)

for some positive function β(t), whereGζ,β(Z) is the generalized Pareto distribution
(GPD)

Gζ,βzZ) =
⎧⎨
⎩1− (1− ζ z

β
)1/ζ , ζ �= 0, z ∈ D(ζ, β)

1− e−z/β, ζ = 0, z ≥ 0
, where (10.21)

D(ζ, β) =
⎧⎨
⎩[0,∞], ζ ≤ 0

[0, β/ζ], ζ > 0
.

300 A. Singhee

(a) (b)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

)y(g
F

D
P

ξ = -0.3

ξ = 0.3

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

 = 0.5

 = 0.7

 = 1.0

 = 1.2

y

)y(
g

F
D

P

ξ

ξ

ξ

ξ

Fig. 10.2 The probability density function for a GPD with β = 1. We get long unbounded tails
for ζ ≤ 0. (a) ξ < 1/2. (b) ξ ≥ 1/2

In other words, for any distribution F in the maximum domain of attraction of the
GEV distribution, the conditional tail distribution Ft converges to a GPD (Fig. 10.2)
as we move further out in the tail. This is an extremely useful result: it implies that, if
we can generate enough points in the tail of a distribution (y ≥ t), in most practical
cases, we can fit the simple, analytical GPD to the data and make predictions further
out in the tail. This approach would be independent of the circuit or the performance
metric being considered.

Of course, two important questions remain:

• How do we efficiently generate a large number of points in the tail (y ≥ t)?
• How do we fit the GPD to the generated tail points?

We answer these in the following sections.

10.3 Analysis of Tails and Extreme Values

In this section we will look at some useful statistics and techniques for analyzing
and understanding the behavior of extreme values.

10.3.1 Order Statistics and Quantiles

Monte Carlo based methods or statistical measurements yield samples of some
quantity, for instance, the write time of an SRAM cell. Each sampled value is then a
random variable. It is often instructive to study the quantiles and order statistics of

10 Extreme Statistics in Memories 301

the sample. For instance, the median is the 50% quantile (or 50-th percentile) of the
distribution, and is often used as a robust measure of the most common case. The
sample maximumMN from Eq. (10.15) is a measure of the 100% quantile.

Order Statistics
Let us start with order statistics first. Once again, let Y1, Y2, . . . , YN be the i.i.d.
random variables drawn from the CDF F . First we define the order statistics for
such a sample. If we sort the sample in increasing order, as

Y1,N ≤ Y2,N ≤ · · · ≤ YN,N ,

to obtain the ordered sample, then Yk,N is the k-th order statistic. Note that
Y1,N = min(Y1, . . . , YN) and Y1,N = max(Y1, . . . , YN) are the sample minimum
and maximum, respectively. Yk,N is also referred to as the (N−k+1)-th upper order
statistic. We can easily infer an empirical CDF as an approximation for F from the
order statistics. For any real y, we write this empirical CDF, FN(y), as

FN(y) = 1

N
|{Yk,N : Yk,N ≤ y, 1 ≤ k ≤ N}|;

that is, the fraction of sample values that are less than y. Figure 10.3 shows such
an empirical CDF computed using a sample from a lognormal distribution. The
distribution of the k-th order statistic drawn from the CDF F can be easily derived
as follows. We denote the CDF of the k-th order statistic by Fk,N(y). Then, we can

0 5 10
0

0.2

0.4

0.6

0.8

1

y

F
N
(y

)

0 0.5 1
0

2

4

6

8

10

p

Q
p

Fig. 10.3 Empirical CDF and sample quantiles estimated for a sample of 15 values drawn from a
lognormal distribution. The quantile plot also shows the 90% confidence intervals, estimated using
Eq. (10.23)

302 A. Singhee

write

Fk,N(y) = P(Yk,N ≤ y)
= P(Yk,N ≤ y < Yk+1,N)+ P(Yk+1,N ≤ y < Yk+2,N)

+ · · · + P(YN,N ≤ y)
= NCN−k(1− F(y))N−kF (y)k + · · · + NC0(1− F(y))0F(y)N

=
N−k∑
r=0

NCr(1− F(y))rF (y)N−r ,

Quantiles
The P -th percentile (0 < P < 100) is that value of y that has a cumulative prob-
ability of P/100. Hence, we divide the entire domain of y into 100 equiprobable
bins and the percentiles are the bin boundaries. Quantiles are generalizations of this
concept. Instead of 100 bins, if we make q equiprobable bins, then the resulting
boundary values are the q-quantiles. For 0 < k < q, and integer k and q, the k-th q-
quantile or just k-th q-tile is the smallest value of y that has a cumulative probability
no less than k/q. We can further generalize this idea to the p probability quantile,
where 0 < p < 1. The quantile for probability p is the smallest value y that has a
cumulative probability no less than p. If we denote this quantity asQp, then we can
define it in terms of the quantile function F−1(p):

Qp = F−1(p) = inf{y ∈ � : F(y) ≥ p}, 0 < p < 1.

Quantiles can be estimated from sampled data, using the order statistics. A
common estimate of the sample quantile for probability p is given as

Qp,N = F−1(p) = Yk,N : k − 1

N
< p ≤ k

N
, k = 1, . . . , N. (10.22)

This expression lets us compute, for instance, the 99-th percentile of the write time
of an SRAM cell from some sampling of the write time: p = 0.99. Figure 10.3
shows the empirical quantile function for a sample of lognormal random variables.
An important question now is: What is the distribution of the sample quantile? If
we know this distribution, we can estimate confidence intervals for any quantile
estimate. We address this question next. Suppose we have estimated some quantile
Qp,N using an ordered sample. An empirical distribution for Qp can be estimated
using the ordered sample as follows:

FQp,N(y) =
⎧⎨
⎩P(Qp ≤ Yk,N) : k = sup{i : Yi,N ≤ y}, y ≥ Y1,N

0, y < Y1,N

10 Extreme Statistics in Memories 303

Now,

P(Qp ≤ Yk,N) = P(Qp ≤ Y1,N)+ · · · + P(Yk−1,N < Qp ≤ Yk,N)
= NC0p

0(1− p)N−0 + · · · +N Ck−1p
k−1(1− p)N−k+1

=
k−1∑
r=0

[NCrpr(1− p)N−r]

= B(k − 1;N,p),

where B(.;N,p) is the binomial distribution with parameters N and p. This
gives us a convenient estimate for the confidence interval of any quantile estimate.
Suppose, we wish to compute P% confidence limits for the quantile estimateQp,N
computed using Eq. (10.22). We can use the following estimate:
�Yl,N , Yh,N� where

l = B−1(0.5− p/200;N,p)+ 1, h = B−1(0.5+p/200;N,p)+ 1.

(10.23)

Here, Yl,N and Yh,N are order statistics. The confidence interval estimates for our
lognormal example are shown in Fig. 10.3. For large sample cases, the binomial
distribution B(y,N, p) is well approximated by a normal distribution with mean
Np and variance Np(1− p). Hence, if N is large, we can estimate the indices l and
h in Eq. (10.23) as

l = Np −Δ,h = Np +Δ,whereΔ = Φ−1(0.5+ P/200)
√
Np(1− p)

where Φ−1 is the inverse standard normal CDF.

10.3.1.1 Mean Excess Plot

A common tool for graphical exploration of statistical data, particularly of distribu-
tion tails, is the sample mean excess plot, an idea introduced by Davison and Smith
[2]. It is particularly useful for identifying the generalized Pareto distribution from
sampled tails. The mean excess function for a given threshold t is defined as

e(t) = E(y − t |y > t);

that is, the mean of exceedances over t . Plotting e(t) against t gives us the mean
excess plot. The sample mean excess function is the sample version of e(t). For a
given sample yi : i = 1, . . . , n, it is defined as

en(t) =
∑n
i=1(yi − t)+
|yi : yi > t | , where (.)+ = max(., 0);

304 A. Singhee

that is, the sample mean of only the exceedances over t . A plot of en(t) against t
gives us the sample mean excess plot. The mean excess function of a GPDGζ,β can
be shown (see [3]) to be a straight line given by

e(t) = β − ζ t
1+ ζ , f or t ∈ D(ζ, β), (10.24)

where D(ζ, β) is as defined in Theorem 2.3. Hence, if the sample mean excess
function of any data sample starts to follow roughly a straight line from some
threshold, then it is an indication that the exceedances over that threshold follow
a GPD. Suppose, we have some sample data Y1, . . . , Yn, and we wish to identify if
and at what value (tail threshold) the GPD convergence sets in. We can exploit the
mean excess plot to test the GPD convergence of any tail threshold we choose. Let us
look at an example to illustrate these ideas. Let us generate a large sample from the
standard normal distribution, and fit GPDs at two tail thresholds: t = 1 and t = 2.5.
We use the maximum likelihood estimation method, as described in the following
sections, to obtain these fits. The resulting mean excess relations from Eq. (10.24)
are then compared against the sample mean excess plot of the normal sample. This
comparison is shown in Fig. 10.4. It is obvious that the GPD behavior has not set in
at t = 1, since the sample mean excess plot does not follow the straight line mean
excess relation of the GPD. However, going further out into the tail, at t = 2.5, it
seems that the GPD behavior has indeed emerged.

(a) (b)

1 2 3 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

y
1 2 3 4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

y

ss
ecx

E
n

a
e

M

ss
ecx

E
n

a
e

M

Fig. 10.4 Sample mean excess plot for a sample drawn from the standard normal. The GPD
behavior of linear mean excess plot appears to have set in beyond a tail threshold of 2.5, as indicated
by the GPD fits at two different thresholds (shown as straight lines). (a) Threshold t = 1. (b)
Threshold t = 2.5

10 Extreme Statistics in Memories 305

10.4 Estimating the Tail: Learning the GPD Parameters
from Data

For now, let us suppose that we can generate a reasonably large number of points
in the tail of our performance distribution. For this we might, theoretically, use
standard Monte Carlo simulation with an extremely large sample size, or, more
practically, the statistical blockade sampling method we will discuss in Sect. 10.5.
Let this data be Z = (Z1, . . . , Zn), where each Zi is the exceedance over the tail
threshold t (Zi > 0, for all i). All Zi are i.i.d. random variables with common
CDF Ft . Then we have the problem of estimating the optimal GPD parameters ζ, β
from this tail data, so as to best fit the conditional tail CDF Ft . There are several
options; we review three of the most popular ones here. In particular we focus on
two methods that require no manual effort and can be completely optimized.

10.4.1 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a standard statistical estimation technique
that tries to estimate those model parameter values (here ζ, β of the GPD)
that maximize the “chances” of obtaining the data that we have observed. The
probability density function of a GPD Gζ,β is given as

gζ,β(z) =
⎧⎨
⎩

1
β
(1− ζ z

β
)

1
ζ
−1
, ζ �= 0, z ∈ D(ζ, β)

1
β
e−z/β, ζ = 0, z ≥ 0

, (10.25)

where D(ζ, β) is defined in Theorem 2.3. Recall that all Zi are i.i.d. random
variables with common CDF Ft . We assume that Ft is of the form of a GPD. The
likelihood (“chances”) of having seen this data from an underlying GPD is the multi-
variate probability density associated with it, and is given as

�(ζ, β|Z) = gζ,β(Z1, . . . , Zn) =
n∏
i=1

gζ,β(Zi).

Since �(ζ, β|Z) can be too small for accurate computation with finite accuracy, it is
typical to use the log-likelihood function

ln(�(ζ, β|Z)) =
n∑
i=1

ln(gζ,β(Zi)).

which increases monotonically with �. MLE then computes (ζ, β) to maximize this
log-likelihood, as

306 A. Singhee

(ζ̂ , β̂)mle = arg max
ζ,β

n∑
i=1

ln(gζ,β(Zi)) (10.26)

Substitution of Eq. (10.25) in (10.26) and subsequent algebra allows for a
simplification to a one dimensional search that can be exploited by a careful
implementation of a Newton–Raphson algorithm. Details regarding such an imple-
mentation are shown in [6]. Smith [24] studies convergence when Ft is not exactly
of GPD form, and provides limit results for the distributions of (ζ̂ , β̂) for each
of the three cases, F ∈ MDA(Φ−1/ζ), F ∈ MDA(Λ), and F ∈ MDA(Ψ1/ζ).
For ζ < 1/2, the MLE estimates are asymptotically normal and efficient (bias =
0) under certain regularity assumptions on F . If (ζ, β) are the exact values to be
estimated, then as the sample size n → ∞, the variance of the MLE estimates is
given as

var

[
ζ̂

β̂

]
→ 1− ζ

n

[
1− ζ β

β 2β2

]
, ζ <

1

2
.

When ζ ≥ 1/2, MLE convergence can be difficult and special techniques are
needed, as discussed in [25]. However, ζ ≥ 1/2 is usually rare, since it corresponds
to a finite tail with gζ,β(z) > 0 at the endpoint (Fig. 10.2).

10.4.2 Probability-Weighted Moment Matching

Probability-weighted moments (PWMs) [9] of a continuous random variable Y with
CDF F are generalizations of the standard moments, and are defined as

Mp,r,s = E[YpF r(Y)(1− F(Y))s].

The standard p-th moment is given by Mp,0,0. For the GPD, we have a convenient
relationship betweenM1,0,s and (ζ, β), given by

ms = M1,0,s = β

(1+ s)(1+ s + ζ) , ζ > 0.

Then, we can write

β = 2m0m1

m0 − 2m1
, ζ = m0

m0 − 2m1
− 2.

We estimate these PWMs from the data sample, as

10 Extreme Statistics in Memories 307

m̂s = 1

n

n∑
i=1

(1− q)sYi,n,

where Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n is the ordered sample, and

qi = i + γ
n+ δ .

Here, γ and δ are fitting parameters. We can use γ = −0.35 and δ = 0, as suggested
for GPD fitting in [8]. The estimates converge to the exact values as n → ∞, and
are asymptotically normally distributed with covariance given by

var

[
ζ̂

β̂

]
→ n−1

(1+ 2ζ)(3+ 2ζ)
×

[
(1+ ζ)(2+ ζ)2(1+ ζ + 2ζ 2) β(2+ ζ)(2+ 6ζ + 7ζ 2 + 2ζ 3)

β(2+ ζ)(2+ 6ζ + 7ζ 2 + 2ζ 3) β2(7+ 18ζ + 11ζ 2 + 2ζ 3)

]
(10.27)

Based on an extensive simulation study, Hosking and Wallis [8] suggests that the
PWM method often has lower bias than moment matching and MLE for sample
sizes up to 500. Also, the MLE search Eq. (10.26) is shown to suffer from some
convergence problems when ζ is estimated close to 1/2. Finally, the study also
suggests that PWM matching gives more reliable estimates of the variability of the
estimated parameters, as per Eq. (10.27). Based on these reasons, we choose PWM
matching here.

Once we have estimated a GPD model of the conditional CDF above a threshold
t , we can estimate the failure probability for any value yf by substituting the GPD
in Eq. (10.14) as

P(Y > yf) ≈ (1− F(t))(1−Gζ,β(yf − t)). (10.28)

The next section addresses the important remaining question: How do we efficiently
generate a large number of points in the tail (y ≥ t)?

10.5 Statistical Blockade: Sampling Rare Events

Let any circuit performance metric, or simply, output y be computed as

y = fsim(x) (10.29)

Here, x is a point in the statistical parameter (e.g., Vt , tox) space, or simply, the
input space, and fsim includes expensive SPICE simulation. We assume that y has

308 A. Singhee

Fig. 10.5 The tail and body
regions in the statistical
parameter space. The dashed
line is the exact tail region
boundary for tail threshold t .
The solid line is the relaxed
boundary modeled by the
classifier for a classification
threshold tc < t

some probability distribution F , with an extended tail. Suppose, we define a large
tail threshold t for y, then from the developments in Sect. 10.2 we know that we
can approximate the conditional tail CDF Ft by a generalized Pareto distribution
Gζ,β . Section 10.4 shows how we can estimate the GPD parameters (ζ, β) from data
drawn from the tail distribution. We now discuss an efficient tail sampling strategy
that will generate the tail points for fitting this GPD.

Corresponding to the tail of output distribution, we expect a “tail region” in the
input space: any statistical parameter values drawn from this tail region will give
an output value y > t . Figure 10.5 shows an example of such a tail region for two
inputs. The rest of the input space is called the “body” region, corresponding to the
body of the output distribution F . In Fig. 10.5 these two regions are separated by a
dashed line.

The key idea behind the efficient sampling technique is to identify the tail region
and simulate only those Monte Carlo points that are likely to lie in this tail region.
Here, we exploit the common fact that generating the random values for a Monte
Carlo sample point is very cheap compared to actually simulating the point as in
Eq. (10.29). Hence, if we generate points as in standard Monte Carlo, but block—not
simulate—those points that are unlikely to fall in the tail region, we can drastically
cut down the total time spent. We use a classifier to distinguish between the tail
and body regions, and to block out the body points. A classifier [7] is an indicator
function that takes as input any point in the input space (the statistical parameter
space) and predicts the membership of this point in one of the multiple classes (the
“body” or “tail” classes). In the context of Fig. 10.5, it essentially builds a model of
the boundary between the tail and body regions. Using this model of the boundary
it can label points from the Monte Carlo sample set as either “tail” or “body.” Only
the “tail” points are then simulated. We also refer to this classifier as the blockade
filter and its blocking activity as blockade filtering.

To build this model of the tail region boundary, the classifier can be trained
with a small (e.g., 1000 points) training set of simulated Monte Carlo sample
points. However, it is difficult, if not impossible to build an exact model of the
boundary in general. Misclassifications, at least on points unseen during training, are
unavoidable. Hence, we relax the accuracy requirement to allow for classification
error. This is done by building the classification boundary at a classification
threshold tc that is less than the tail threshold t . Since we have assumed that only

10 Extreme Statistics in Memories 309

Require: training sample size n0 (e.g., 1,000)

total sample size n

percentages pt (e.g., 99%), pc (e.g., 97%)

1. X = MonteCarlo(n0)

2. y = fsim(X)

3. t = Percentile(y, pt)

4. tc = Percentile(y, pc)

5. C = BuildClassifier(X, y, tc) // C is a classifier

6. y = fsim(Filter(C, MonteCarlo(n)))

7. ytail ={yi ∈ y : yi > t}

8. (ξ, β) = FitGPD(ytail – t)

Fig. 10.6 Algorithm: the statistical blockade algorithm for efficiently sampling rare events and
estimating their probability distribution

the upper (right) tail is relevant, the tail region corresponding to t will be a subset
of the tail region corresponding to tc, if tc < t . This will help to ensure that, even
if the classifier is imperfect, it is unlikely that it will misclassify points in the true
tail region (for t). The relaxed boundary corresponding to such a tc is shown as the
solid line in Fig. 10.5. The statistical blockade algorithm is then as in Algorithm in
Fig. 10.6.

The thresholds t = pt -th percentile and tc = pc-th percentile are estimated from
the small initial Monte Carlo run, which also gives the n0 training points for the
classifier. Typical values for these constants are shown in Algorithm in Fig. 10.6.
The function MonteCarlo(n) generates n points in the statistical parameter space,
which are stored in the n × s matrix X, where s is the input dimensionality. Each
row of X is a point in s dimensions. y is a vector of output values computed
from simulations. The function BuildClassif ier(X, y, tc) trains and returns a
classifier using the training set (X, y) and classification threshold tc. The function
Filter(C,X) blocks the points in X classified as “body” by the classifier C,
and returns only the points classified as “tail.” FitGPD(ytail − t) computes the
parameters (ζ, β) for the best GPD approximation Gζ,β to the conditional CDF of
the exceedances of the tail points in ytail over t . We can then use this GPD model
to compute statistical metrics for rare events, for example, the failure probability for
some threshold yf , as in Eq. (10.28). This sampling procedure is also illustrated in
Fig. 10.7.

Note on Unbiasing the Classifier
An important technical point to note about the classifier construction is as follows.
The training set will typically have many more body points than tail points. Hence,
even if all or most of the tail points are misclassified, the training error will be low as
long as most of the body points are correctly classified. This will result in a classifier
that is biased to allow more misclassifications of points in the tail region. However,
we need to minimize misclassification of tail points to avoid distorting the statistics
of the simulated tail points. Hence, we need to reverse bias the classification error.

Using the technique proposed in [14], we penalize misclassifications of tail points
more than misclassifications of body points. Let γt and γb be possibly different

310 A. Singhee

Simulate starting set
(few points, fast)

Tail

Build classifier (fast)
(e.g. Support Vector Machines)

classification
threshold with
safety margin

Generate MC samples (fast)
Classify sample points (fast)
Block non-tail points (fast)
Simulate the rest (slow)

y

x
)(xsimfy =

%)99(t %)97(ct ttc

Fig. 10.7 The efficient tail (rare event) sampling method of statistical blockade

penalty factors for the “tail” and “body” classes: misclassifications of any training
points in the tail (body) region are penalized by a factor of γt (γb). We can obtain an
unbiased classifier if we choose

γt

γb
= Number of ‘body’ points

Number of ‘tail’ points

Note on Sampling and Commercially Available Device Models
It is common for commercially available device models to include Monte Carlo
variants. Care must be taken when using these to ensure that tails are being modeled
correctly and that the sample space includes correct tail distributions. For example,
many such models use the “AGAUSS” function, which generates a set of sample
points within a set of bounds, typically set to +/− 3σ . Such an approach can
produce some rare events (e.g., two independent parameters each at +3σ is an
event of about 2 ppm probability) but miss others that are much more likely (e.g.,
one parameter being above +3.5σ while the other is less than 1σ occurs at a
rate of 200 ppm). For this reason, when working with EVT, it is usually desirable
to be very explicit about how sample points are generated and how they are
incorporated into circuit simulations. The mechanics of doing this as part of a
simulation flow vary considerably among commercially available device models,
even those from a single foundry. A good approach for unencrypted models is to
substitute externally generated sample points for those used by the model, taking
care to consider underlying physical realities (avoiding negative Vt for NFETs, for
example). For encrypted models, an approximation can be made through the use

10 Extreme Statistics in Memories 311

Fig. 10.8 Adding an offset to
a sense amplifier to
compensate for Vt shift on
input pass transistors

wl

Column mux
we we

data data
Mwr

Mp1 Mp2

Mn1 Mn2

Ms1 Ms2

Mmux

1 2

Fig. 10.9 A 6-transistor SRAM cell with write driver and column mux

of offsets. For example, Fig. 10.8 shows a method of using a parameterized voltage
source providing a voltage offset to mimic threshold voltage variation in an NFET.

Example: 6T SRAM Cell
Let us now apply the statistical blockade method to a 6T SRAM cell to illustrate its
use. The circuit is shown in Fig. 10.9. Here, we use the Cadence 90nmGeneric PDK
library for the BSIM3V 3 [13] device models, and model RDF on every transistor
as independent, normally distributed threshold voltage (Vt) variation per transistor.
The Vt standard deviation is taken to be σ(V t) = 5(WL)−0.5V , whereW and L are
the transistor width and length, respectively, in nm. We also include a global gate
oxide thickness variation, also normally distributed and with a standard deviation of
2% of the nominal thickness. This gives us a total of 9 statistical parameters. The
metric we are measuring here is the write time τw: the time between the wordline
going high, to the non-driven cell node (node 2) transitioning. Here, “going high”
and “transitioning” imply crossing 50% of the full voltage change. The rare event
statistical metric we will compute is the failure probability Ff (yf) for any failure

312 A. Singhee

threshold yf . We will represent this failure probability as the equivalent quantile yσ
on the standard normal distribution:

yσ = φ−1(1− Ff (yf)) = φ−1(F (yf)),

where φ is the standard normal CDF. For example, a failure probability of Ff =
0.00135 implies a cumulative probability of F = 1−Ff = 0.99865. The equivalent
point on a standard normal, having the same cumulative probability, is yσ = 3. In
other words, any yf with a failure probability of 0.00135 is a “3σ” point.

Let us now compute yσ for different failure thresholds using statistical blockade.
The blockade filter is a support vector machine classifier [10], built at a classification
threshold of tc = 97-th percentile, using a training sample set of n0 = 1000 points.
The tail threshold t is defined as the 99-th percentile. We use Eq. (10.28), but the
points used to estimate (ζ, β) are obtained from blockade filtering a sample of
100,000 points. This gives us 4379 tail candidates, which on simulation yield 978
true tail points (τw > t), to which the GPD is fit. We compare these results with a 1
million point Monte Carlo run, from which we estimate yσ empirically.

Table 10.3 shows a comparison of the yσ values estimated by the two different
methods, and Fig. 10.10 compares the conditional tail CDFs computed from the
empirical method and from statistical blockade, both showing a good match.

Some observations highlighting the efficiency of statistical blockade can be made
immediately.

• The empirical method fails beyond 2.6 FO4, corresponding to about 1 ppm circuit
failure probability, because there are no points generated by the Monte Carlo run
so far out in the tail.

• Fitting a GPD model to the tail points allows us to make predictions far out in
the tail, even though we have no points that far out.

Table 10.3 Prediction of failure probability as yσ by methods I , II , and III , for a 6T SRAM
cell

τw(yf)(FO4) (I) Standard Monte Carlo (III) Statistical blockade

2.4 3.404 3.379

2.5 3.886 3.868

2.6 4.526 4.352

2.7 ∞ 4.845

2.8 ∞ 5.356

2.9 ∞ 5.899

3.0 ∞ 6.493

Num. Sims. 1,000,000 5379

The number of simulations for statistical blockade includes the 1000 training points. The write
time values are in “fanout of 4 delay” units

10 Extreme Statistics in Memories 313

Fig. 10.10 Comparison of
GPD tail model from
statistical blockade (5379
simulations) and the
empirical tail CDF (1 million
simulations) for the write
time of the 6T SRAM cell

• Using blockade filtering, coupled with the GPD tail model, we can drastically
reduce the number of simulations (from 1 million to 5379) with very small
change to the tail model.

However, the tail model cannot be relied on too far out from the available data,
because of the decrease in statistical confidence as we move further out in the tail.
We further discuss and attack this problem in Sect. 10.5.2.

10.5.1 Conditionals and Disjoint Tail Regions

SRAM performance metrics are often computed for two states of the SRAM cell:
while storing a 1, and while storing a 0. The final metric value is then a maximum or
a minimum of the vales for these two states. The presence of such conditionals (max,
min) can result in disjoint tail regions in the statistical parameter space, making it
difficult to use a single classifier to define the boundary of the tail region. Let us
look at an example to illustrate this problem.

Consider the 6T SRAM cell. With technology scaling reaching nanometer feature
sizes, sub-threshold and gate leakage become very significant. In particular, for the
large memory blocks seen today the standby power consumption due to leakage
can be intolerably high. Supply voltage (Vdd) scaling [12] is a powerful technique
to reduce this leakage, whereby the supply voltage is reduced when the memory
bank is not being accessed. However, lowering Vdd also makes the cell unstable,
ultimately resulting in data loss at some threshold value of Vdd , known as the data
retention voltage or DRV. Hence, the DRV of an SRAM cell is the lowest supply
voltage that still preserves the data stored in the cell. DRV can be computed as
follows:

314 A. Singhee

Fig. 10.11 A circuit metric
(e.g., DRV) with two disjoint
tail regions. The tail regions
are separated from the body
region by dashed lines.
w1,DRV0 is the direction of
maximum variation of the
circuit metric

tail

body

0DRV,1w

DRV = max(DRV0,DRV1), (10.30)

where DRV0 is the DRV when the cell is storing a 0, and DRV1 it the DRV when
it is storing a 1. If the cell is balanced (symmetric), with identical left and right
halves, then DRV0 = DRV1. However, if there is any mismatch due to process
variations, they become unequal. This creates the situation where the standard
statistical blockade classification technique would fail because of the presence of
disjoint tail regions.

Suppose we run a 1000 point Monte Carlo, varying all the mismatch parameters
in the SRAM cell according to their statistical distributions. This would give us
distributions of values forDRV0,DRV1, and DRV. In certain parts of the mismatch
parameter space DRV0 > DRV1, and in other parts, DRV0 < DRV1. This is
clearly illustrated in Fig. 10.12: let us see how. First, we extract the direction in the
parameter space that has maximum influence on DRV0. This direction is shown
as w1,DRV0 in the two dimensional parameter space example of Fig. 10.11. As we
move along this vector in the statistical parameter space, the corresponding DRV0
increases from low to high (from bad to good).2 Other directions would show
changes inDRV0 that are no greater than the change along this direction. The figure
plots the simulated DRV0 and DRV1 values from a 1000 point Monte Carlo run,
along this direction. It is clear that the two DRV measures are inversely related: one
decreases as the other increases.

Now, let us take the maximum as in Eq. (10.30), and choose the classification
threshold tc equal to the 97-th percentile. Then we pick out the worst 3% points
from the classifier training data and plot them against the same latent variable in
Fig. 10.12, as squares. Note that we have not trained the classifier yet, we are just
looking at the points that the classifier would have to classify as being in the tail. We

2Here we extract this vector using the SiLVR tool described in [19, 21], so that w1,DRV0 is
essentially the projection vector of the first latent variable of DRV0.

10 Extreme Statistics in Memories 315

Fig. 10.12 Behavior of
DRV0 and DRV1 along the
direction of maximum
variation in DRV0. The worst
3% DRV values are plotted as
squares, showing the disjoint
tail regions (along this
direction in the parameter
space)

can clearly see that these points (squares) lie in two disjoint parts of the parameter
space.

Since the true tail region defined by the tail threshold t > tc will be a subset
of the classifier tail region (defined by tc), it is obvious that the true tail region
consists of two disjoint regions of the parameter space. This is illustrated in our
two dimensional example in Fig. 10.11. The dark tail regions on the top-right and
bottom-left corners of the parameter space correspond to the large DRV values
shown as squares in Fig. 10.12.

The Solution
Instead of building a single classifier for the tail in Eq. (10.30), let us build two
separate classifiers, one for the 97-th percentile (tc,DRV0) of DRV0, and another
for the 97-th percentile (tc,DRV1) of DRV1. The generated Monte Carlo samples
can then be filtered through both these classifiers: points classified as “body” by
both the classifiers will be blocked, and the rest will be simulated. In the general
case for arbitrary number of arguments in the conditional, let the circuit metric be
given as

y = max(y0, y1, . . .) (10.31)

Note that a min() operator can easily be converted to max() by negating the
arguments. The resulting general algorithm is then as follows:

1. Perform initial sampling to generate training data to build the classifiers, and
estimate tail and classification thresholds, ti and tc,i , respectively, for each yi, i =
0, 1, . . . ,. Also estimate the tail threshold t for y.

2. For each argument, yi, i = 0, 1, . . . , of the conditional Eq. (10.31), build a
classifier Ci at a classification threshold tc,i that is less than the corresponding
tail threshold ti.

316 A. Singhee

3. Generate more points using Monte Carlo, but block the points classified as
“body” by all the classifiers. Simulate the rest and compute y for the simulated
points.

Hence, in the case of Fig. 10.11, we build a separate classifier for each of the two
boundaries. The resulting classification boundaries are shown as solid lines. From
the resulting simulated points, those with y > t are chosen as tail points for further
analysis, e.g., for computing a GPD model for the tail distribution of y.

Note that this same algorithm can also be used for the case of multiple circuit
metrics. Each metric would have its own thresholds and its own classifier, just
like each argument in Eq. (10.31), the only difference being that we would not be
computing any conditional. Note also that adding additional classifiers increases the
number of points that require simulation: if two non-overlapping classifiers each
identify 3% of points, then overall 6% of points will need simulation.

10.5.2 Extremely Rare Events and Their Statistics

The GPD tail model can be used to make predictions regarding rare events that are
farther out in the tail than any of the data we used to compute the GPD model.
Indeed, this is the compelling reason for adopting the GPD model. However, as
suggest by common intuition and the estimate variance relations of Sect. 10.4, we
expect the statistical confidence in the estimates to decrease as we predict farther
out in the tail. Let us run an experiment to test this expectation.

Let us go back to our SRAM cell write time example. Suppose we run 50 runs
of Monte Carlo with nMC = 100,000 points each and compute a GPD tail model
from each run, using tail threshold t = the 99-th percentile write time. This gives
us 50 slightly different pairs of the GPD parameters (ζ, β), one for each of 50 GPD
models so computed, and 50 different estimates of the mσ point, where m ∈ [3, 6].
These estimates are shown in Fig. 10.13.

As expected, the spread of the estimates increases as we extrapolate further with
the GPD model. The general inference is that we should not rely on the GPD tail
model too far out from our data. How then do we compute a more reliable GPD
model further out in the tail?

A solution is to sample further out in the tail and use a higher tail threshold
for building the GPD model of the tail. This is, of course, “easier said than done.”
Suppose we wish to support our GPD model with data up to the 6σ point. The failure
probability of a 6σ value is roughly 1 parts-per-billion, corresponding to a 99% chip
yield requirement for a 10 Mb cache.

This is definitely not an impractical requirement. However, for a 99% tail
threshold, even a perfect classifier (tc = t) will only reduce the number of
simulations to an extremely large 10 million. If we decide to use a 99.9999%
threshold, the number of simulations will be reduced to a more practical 1000 tail
points (with a perfect classifier). However, we will need to simulate an extremely

10 Extreme Statistics in Memories 317

Fig. 10.13 The spread of mσ
point estimates across 50 runs
of statistical blockade

large number of points (≥1 million) to generate a classifier training set with at least
one point in the tail region. In both cases, the circuit simulation counts are too high.
We now describe a recursive formulation of statistical blockade [23, 27] that reduces
this count drastically.

10.5.3 A Recursive Formulation of Statistical Blockade

Let us first assume that there are no conditionals. For a tail threshold equal to the a-th
percentile, let us represent it as ta , and the corresponding classification threshold as
tac . For this threshold, build a classifier Ca and generate sufficient points beyond the
tail threshold, y > ta , so that a higher percentile (tb, tbc , b > a) can be estimated.
For this new, higher threshold (tbc), a new classifier Cb is trained and a new set of tail
points (y > tb) is generated. This new classifier will block many more points than
Ca , significantly reducing the number of simulations. This procedure is repeated to
push the threshold out more until the tail region of interest is reached. The complete
algorithm, applied to general conditionals, is shown in Algorithm in Fig. 10.14. This
pseudocode uses a conditional tail threshold of the 99-th percentile at each recursion
stage: (ta, tca) = (99%, 97%) points, (tb, tbc) = (99.99%, 99.97%) points, and so
on. Consequently, the total sample size (without filtering) n is restricted to some
power of 100, times 1000:

n = 100j .1000, j = 0, 1, . . . (10.32)

These threshold values are an extension of the values chosen in the original
statistical blockade paper [20], where the authors relied on empirical evidence. A
general version of the algorithm for arbitrary thresholds is presented in [18, 28].

318 A. Singhee

Require: initial sample size n0 (e.g., 1,000);

total sample size n; tail sample size nt;

performance metric function y = max(y0, y1,…)

1. X = MonteCarlo(n0)

2. n' = n0

4. Y = fsim(X) // Simulate the initial Monte Carlo sample set

5.
ytail,i = Y• ,i, i = 0, 1,… // The i-th column of Y contains values for yi in y = max(y0,

y1,…)

6. Xtail,i = X, i = 0, 1,…

7. while n' < n
8. Δn = 99n' // Number of points to filter in this recursion step

10. n' = n' + Δn // Total number of points filtered by the end of this recursion stage

11. X = MonteCarloNext(Δn) // The next Δn points in the Monte Carlo sequence

12. forall i : yi is an argument in y = max(y0, y1,…)

13. (Xtail,i, ytail,i) = GetWorst(1,000, Xtail,i, ytail,i) // Get the 1,000 worst points

14. t = Percentile(ytail,i, 99)

15. tc = Percentile(ytail,i, 97)

16. Ci = BuildClassifier(Xtail,i, ytail,i, tc)

17. (Xtail,i, ytail,i) = GetGreaterThan(t, Xtail,i, ytail,i) // Get the points with yi > t
18. Xcand,i = Filter(Ci, X) // Candidate tail points for yi

19. endfor
20. []TTT …1,cand0,cand XXX = // Union of all candidate tail points

21. Y = fsim(X) // Simulate all candidate tail points

22. ycand,i = {Yj,i : Xj,• ∈ Xcand,i}, i = 0, 1,… // Extract the tail points for yi

23. [] []TT
i

T
ii

TT
i

T
ii ,cand,tail,tail,cand,tail,tail , XXXyyy == , i = 0, 1,… // All tail points till now

24. endwhile
25. ytail = MaxOverRows([ytail,0 ytail,1 …]) // compute the conditional

26. ytail = GetWorst(nt, ytail)

27. (ξ, β) = FitGPD(ytail - min(ytail))

Fig. 10.14 Algorithm: the recursive statistical blockade algorithm with fixed sequences for
the tail and classification thresholds: t = 99%, 99.99%, 99.9999%, . . . points, and tc =
97%, 99.97%, 99.9997%, . . . points. The total sample size is given by Eq. (10.32)

Practical implementation of this general algorithm is, however, difficult and is a
topic for further research.

The functions that appear also in Algorithm 10.6 do the same work here, hence,
we do not reiterate their description. fsim now returns multiple outputs: it computes
the values of all the arguments of the conditional in y = max(y0, y1, . . .). For
example, in the case of DRV, it will return the values of DRV0 and DRV1. These
values, for any one Monte Carlo point, are stored in one row of the result matrix
Y . The function MonteCarloNext (Δn) returns the next Δn points in the sequence
of points generated till now. The function GetWorst (n,X, y) returns the n worst
values in the vector y and the corresponding rows of the matrixX. This functionality
naturally extends to the two argumentGetWorst (n, y).GetGreaterT han(t,X, y)
returns the elements of y that are greater than t , along with the corresponding rows
of X.

The algorithms presented here are in iterative form, rather than recursive form.
To see how the recursion works, suppose we want to estimate the 99.9999% tail.
To generate points at and beyond this threshold, we first estimate the 99.99% point

10 Extreme Statistics in Memories 319

t1
99%

t1
99%

t2
99.99%

t1
99%

t2
99.99% t3

99.9999%Initial Iteration 1 Iteration 2

Fig. 10.15 Recursive formulation of statistical blockade as in algorithm in Fig. 10.14

and use a classifier at the 99.97% point to generate these points efficiently. To build
this classifier in turn, we first estimate the 99% point and use a classifier at the 97%
point. Figure 10.15 illustrates this recursion on the PDF of any one argument in the
conditional equation (10.31).

An Experiment with DRV
We now test the recursive statistical blockade method on another SRAM cell test
case, where we compute the data retention voltage (DRV) as in Eq. (10.30). In this
case the SRAM cell is implemented in an industrial 90 nm process. Wang et al. [26]
develop an analytical model for predicting the CDF of the DRV that uses not more
than 5000 Monte Carlo points. The CDF is given as

F(y) = 1− erfc(y0)+ 1

4
erfc2(y0), where y0 = μ0 = k(y − V0)√

2σ0
(10.33)

where y is the DRV value and erfc() is the complementary error function [16]. k
is the sensitivity of the static noise margin (SNM) of the SRAM cell to the supply
voltage, computed using a DC sweep.μ0 and σ0 are the mean and standard deviation
of the SNM (SNM0), for a user-defined supply voltage V0. SNM0 is the SNM of
the cell while storing a 0. These statistics are computed using a short Monte Carlo
run of 1500–5000 sample points. We direct the reader to [26] for complete details
regarding this analytical model of the DRV distribution. The q-th quantile can be
estimated as

DRV (q) = 1

k
(
√

2σ0erfc−1(2− 2
√
q)− μ0)+ V0. (10.34)

Here DRV (q) is the supply voltage Vdd such that P(DRV (q)) ≤ V dd = q.
Let us now compute the DRV quantiles as mσ points, such that q is the cumulative
probability for the value m from a standard normal distribution. We will use five
different methods to estimate the DRV quantiles for m ∈ [3, 8] :
1. Analytical: Use Eq. (10.34).
2. Recursive statistical blockade without the GPD model: Algorithm in Fig. 10.14

is run for n = 1 billion. This results in three recursion stages, corresponding to

320 A. Singhee

total sample sizes of n′ = 100,000, 10 million, and 1 billion Monte Carlo points,
respectively. The worst DRV value for these three recursion stages are estimates
of the 4.26σ , 5.2σ , and 6σ points, respectively.

3. GPD model from recursive statistical blockade: The 1000 tail points from the
last recursion stage of the recursive statistical blockade run are used to fit a GPD
model, which is then used to predict the DRV quantiles.

4. Normal: A normal distribution is fit to data from a 1000 point Monte Carlo run,
and used to predict the DRV quantiles.

5. Lognormal: A lognormal distribution is fit to the same set of 1000 Monte Carlo
points, and used for the predictions.

The results are shown in Fig. 10.16. From the plots in the figure, we can
immediately see that the recursive statistical blockade estimates are very close to
the estimates from the analytical model. This shows the efficiency of the recursive
formulation in reducing the error in predictions for events far out in the tail.

Table 10.4 shows the number of circuit simulations performed at each recursion
stage. The total number of circuit simulations is 41,721. This is not small, but
in comparison to standard Monte Carlo (1 billion simulations), and basic, non-
recursive statistical blockade (approximately, 30 million with tc = 97-th percentile)
it is extremely fast. 41,721 simulations for DRV computation of a 6T SRAM cell
can be completed in several hours on a single computer today. With the advent

Fig. 10.16 Estimates of
DRV quantiles from five
estimation methods. The
GPD model closely fits the
analytical model Eq. (10.33).
The solid circles show the
worst DRV values from the
three recursion stages of
statistical blockade sampling.
The normal and lognormal
models are quite inaccurate

Table 10.4 Number of
circuit simulation needed by
recursive statistical blockade
to generate a 6σ point

Recursion stage Number of simulations

Initial 1000

1 11,032

2 14,184

3 15,505

Total 41,721

Speedup over Monte Carlo 23,969x

Speedup over statistical blockade 719x

10 Extreme Statistics in Memories 321

of multi-core processors, the total simulation time can be drastically reduced with
proper implementation.

Note that we can extend the prediction power to 8σ with the GPD model, without
any additional simulations. Standard Monte Carlo would need over 1.5 quadrillion
circuit simulations to generate a single 8σ point. For this case, the speedup over
standard Monte Carlo is extremely large. As expected, the normal and lognormal
fits show large errors. The normal fit is unable to capture the skewness of the DRV
distribution. On the other hand, the lognormal distribution has a heavier tail than the
DRV distribution.

10.6 Conclusions

We discussed an approach to rapidly estimate rare event statistics of memory
circuit. Statistical blockade, in its recursive formulation, makes estimation of rare
event statistics practical. It combines a classification, Monte Carlo simulation, and
extreme value theory to achieve several orders of magnitude speedup over traditional
Monte Carlo simulation. This capability can be of immense use to designers of
high capacity memories: SRAM, DRAM, non-volatile memories. Since it exploits
rigorous limit theorems from extreme value theory, it has the unique capability of
estimating the entire distribution of rare events, even with limited data.

Acknowledgements This work was supported by the MARCO/DARPA Focus Research Center
for Circuit and System Solutions (C2S2) and the Semiconductor Research Corporation.

References

1. A.A. Balkema, L. de Haan, Residual life time at great age. Ann. Probab. 2(5), 792–804 (1974)
2. A.C. Davison, R.L. Smith, Models for exceedances over high thresholds (with discussion). J.

R. Stat. Soc. Ser. B Methodol. 52, 393–442 (1990)
3. P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling Extremal Events for Insurance and

Finance, 4th edn. (Springer, Berlin, 2003)
4. R.A. Fisher, L.H.C. Tippett, Limiting forms of the frequency distribution of the largest or

smallest member of a sample. Proc. Camb. Philol. Soc. 24, 180–190 (1928)
5. B. Gnedenko, Sur la distribution limite du terme maximum d’une aleatoire. Ann. Math. 44(3),

423–453 (1943)
6. S.D. Grimshaw, Computing maximum likelihood estimates for the generalized Pareto distribu-

tion. Technometrics 35(2), 185–191 (1993)
7. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,

Inference, and Prediction (Springer, New York, 2001)
8. J.R.M. Hosking, J.R. Wallis, Parameter and quantile estimation for the generalized Pareto

distribution. Technometrics 29(3), 339–349 (1987)
9. J.R.M. Hosking, The theory of probability weighted moments, IBM Research Report,

RC12210, 1986

322 A. Singhee

10. T. Joachims, Making large-scale SVM learning practical, in Advances in Kernel Methods -
Support Vector Learning, ed. by B. Schölkopf, C. Burges, A. Smola (MIT Press, Cambridge,
1999)

11. B. Joshi, R.K. Anand, C. Berg, J. Cruz-Rios, A. Krishnamurthi, N. Nettleton, S. Ngu-yen, J.
Reaves, J. Reed, A. Rogers, S. Rusu, C. Tucker, C. Wang, M. Wong, D. Yee, J.-H. Chang,
A BiCMOS 50MHz cache controller for a superscalar microprocessor, in International Solid-
State Circuits Conference (1992)

12. R.K. Krishnamurthy, A. Alvandpour, V. De, S. Borkar, High-performance and low-power
challenges for sub-70nm microprocessor circuits, in Proceedings of Custom Integrated Circuits
Conference (2002)

13. W. Liu, X. Jin, J. Chen, M.-C. Jeng, Z. Liu, Y. Cheng, K. Chen, M. Chan, K. Hui, J. Huang,
R. Tu, P. Ko, C. Hu, BSIM 3v3.2 Mosfet Model Users’ Manual, Tech. Report No. UCB/ERL
M98/51, University of California, Berkeley, 1988

14. K. Morik, P. Brockhausen, T. Joachims, Combining statistical learning with a knowledge-based
approach - a case study in intensive care monitoring, in Proceedings of 16th International
Conference on Machine Learning (1999)

15. J. Pickands III, Statistical inference using extreme order statistics. Ann. Stat. 3(1), 119–131
(1975)

16. W.H. Press, B.P. Flannery, A.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art
of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1992)

17. S.I. Resnick, Extreme Values, Regular Variation and Point Processes (Springer, New York,
1987)

18. A. Singhee, Novel algorithms for fast statistical analysis of scaled circuits. PhD Thesis,
Electrical and Computer Engineering, Carnegie Mellon University (2007)

19. A. Singhee, SiLVR: projection pursuit for response surface modeling, in Machine Learning in
VLSI Computer Aided Design, ed. by I.M. Elfadel, D. Boning, X. Li (Springer, Berlin, 2018)

20. A. Singhee, R.A. Rutenbar, Statistical Blockade: a novel method for very fast Monte Carlo
simulation of rare circuit events, and its application, in Proceedings of Design Automation &
Test in Europe (2007)

21. A. Singhee, R.A. Rutenbar, Beyond low-order statistical response surfaces: latent variable
regression for efficient, highly nonlinear fitting, in Proceedings of IEEE/ACM Design Automa-
tion Conference (2007)

22. A. Singhee, R. Rutenbar, Extreme Statistics in Nanoscale Memory Design (Springer, New
York, 2010)

23. A. Singhee, J. Wang, B.H. Calhoun, R.A. Rutenbar, Recursive Statistical Blockade: an
enhanced technique for rare event simulation with application to SRAM circuit design, in
Proceeding of International Conference on VLSI Design (2008)

24. R.L. Smith, Estimating tails of probability distributions. Ann. Stat. 15(3), 1174–1207 (1987)
25. R.L. Smith, Maximum likelihood estimation in a class of non-regular cases. Biometrika 72,

67–92 (1985)
26. J. Wang, A. Singhee, R.A. Rutenbar, B.H. Calhoun, Modeling the minimum standby supply

voltage of a full SRAM array, in Proceedings of European Solid-State Circuits Conference
(2007)

27. J. Wang, A. Singhee, R.A. Rutenbar, B.H. Calhoun, Two fast methods for estimating the
minimum standby supply voltage for large SRAMs. IEEE Trans. Comput. Aided Des. 29(12),
1908–1920 (2010)

28. K. Zhang, Embedded Memories for Nanoscale VLSIs (Springer, New York, 2009)

Chapter 11
Fast Statistical Analysis Using Machine
Learning

Rouwaida Kanj, Rajiv V. Joshi, Lama Shaer, Ali Chehab, and Maria Malik

A model is a simplification or approximation of reality and
hence will not reflect all of reality

Kenneth P. Burnham
David R. Anderson

11.1 Introduction: Logistic Regression-Based Importance
Sampling Methodology for Statistical Analysis of
Memory Design

With the advent of technology scaling, process variations pose a serious challenge
to the manufacturing and reliability of integrated circuit designs. Memory designs
use the smallest devices on the chip and tend to suffer most in terms of functionality
and yield. With tight constraints of less than one failing part per million, traditional
statistical analysis techniques like the Monte Carlo analysis become impractical, and
hence arises the need for robust statistical methodologies for rare event estimation
[1]. Several methodologies have been proposed to speed up the statistical analysis
of memory designs. The authors in [2] proposed statistical models for the SRAM
static noise margin during Read and Write. In [3], the authors propose probability
distribution models for the SRAM cell dynamic behavior in terms of Read and Write

R. Kanj (�) · L. Shaer · A. Chehab
Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut,
Lebanon
e-mail: rk105@aub.edu.lb; las24@aub.edu.lb; chehab@aub.edu.lb

R. V. Joshi
IBM TJ Watson Labs, Yorktown Heights, NY, USA
e-mail: rvjoshi@us.ibm.com

M. Malik
George Mason University, Fairfax, VA, USA
e-mail: mmalik9@gmu.edu

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_11

323

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_11&domain=pdf
mailto:rk105@aub.edu.lb
mailto:las24@aub.edu.lb
mailto:chehab@aub.edu.lb
mailto:rvjoshi@us.ibm.com
mailto:mmalik9@gmu.edu
https://doi.org/10.1007/978-3-030-04666-8_11

324 R. Kanj et al.

Fig. 11.1 SRAM writability simulations. Subject to random process variations, the SRAM cell
may fail to write [8]

access times. The authors in [4] propose the statistical blockade methodology to
predict the fail probability by building models for the distribution tail regions.

A mixture importance sampling (MixIS)-based yield analysis methodology was
proposed in [5]. The methodology is circuit-simulation based and allows for the
analysis of the SRAM cell dynamic margins. It achieves several orders of magnitude
speedup compared to traditional Monte Carlo by distorting the natural distribution
towards the fail region. To further speed up the circuit-simulation-based analysis,
the authors in [6] proposed efficient on-demand spline-based table lookup transistor
models for the SPICE simulations. In [7], sparse regression-based models were
proposed to speed up the circuit simulations. However, often functional fails
translate into discontinuities in the performance metric space (Fig. 11.1). Hence,
they rely on a thresholding technique for proper sample point pass/fail prediction.

We propose a logistic regression-based prediction framework for speeding up
the importance sampling methodology [8]. We rely on logistic regression to model
the chances of a sample point fail and hence avoid dealing with the SRAM
cell functional discontinuities. For regularization, we rely on a cross-validation-
based ordered feature selection technique. The proposed approach is efficient and
results in highly accurate models with less than 4.5% false prediction rates. The
chapter is organized as follows. Section 11.2 presents an overview of Monte Carlo
and variance reduction methods. Section 11.3 provides a background review of
linear regression and logistic regression techniques. Section 11.4 presents the fast
importance sampling methodology, and finally, Sect. 11.5 presents the application
to a 14 nm industrial FinFET SRAM design.

11 Fast Statistical Analysis Using Machine Learning 325

11.2 Monte Carlo, Importance Sampling, and Variance
Reduction Methods

Statistical inference is the act of inferring information from random samples to
generalize that of the population [9]. For memory designs, we are mostly interested
in statistical inference for proportions. A memory cell can be viewed as a Bernoulli
trial with a predesigned probability of fail, Pf and the size of the memory array
represents the number of trials, n. Accurately estimating Pf helps the designer
predict the overall chip yield, according to

Y ield = (1− Pf)n. (11.1)

Traditional statistical methodologies for estimating the probability of fail include
standard Monte Carlo. However, with millions of memory cells in the array and
criteria of less than one part per million fails, designers must ensure very low cell fail
probabilities. This renders Monte Carlo very slow, and raises the need for variance
reduction techniques. In this section, we provide a review of Monte Carlo followed
by an overview of mixture importance sampling as an efficient variance reduction
method for rare fail estimation of memory designs.

11.2.1 Monte Carlo

One of the early Monte Carlo experiments dates back to Buffon’s needle experiment
in 1700s to estimate the value of pi [10]. In the 1940s Ulam used Monte Carlo
to study the diffusion of the neutrons [11]. Nowadays, Monte Carlo has a wide
range of applications in the different fields of physical sciences, engineering, and
applied sciences. Monte Carlo methods are often used for finding approximate yet
accurate numerical estimation to otherwise complex problems. We list below few
examples.

1. Numerical integration: Int = ∫ b
a
f (x)dx

2. Statistical inference of a mean μx =
∫
x.pdf (x)dx of the variable x with a

probability density function pdf (x).
3. Statistical inference of proportions, e.g., estimating a probability of fail Pf =∫

R
pdf (x)dx over a region of fail R. The integral evaluation can be complex as

it requires specific knowledge of the fail region.

We focus on the latter for purposes of our application.

326 R. Kanj et al.

11.2.1.1 Estimating the Fail Probability of a Circuit Design

Given a circuit design subject to a set of process variation parameters xp. Also given
a set of performance metrics fi(xp), such as the circuit delay, power, and gain, along
with the corresponding set of performance metric fail criteria {f 0

i }, we define the
indicator function I (x) for a given performance metric to be:

I (x) =
⎧⎨
⎩0 if fi(xp) ≤ f 0

i ,

1 otherwise
(11.2)

The probability of fail, Pf , can then be defined as

Pf =
∫
R

pdf (x)dx =
∫
I (x)pdf (x)dx = E(I (x)) (11.3)

Monte Carlo method approximates the expectation function in (11.3) by comput-
ing the average value of the indicator function over a set of random sample points.
Hence, given a random sample of size N , Pf is computed as the ratio of the number
of failing sample points to the total number of sample points (11.4).

P̂f = 1

N

N∑
i=1

I (x) (11.4)

The outcome of Monte Carlo is not deterministic and varies from one random
sample set to another. The variance of the estimate, σ 2

Pf
, for a sample set of size N

can be determined according to (11.5).

σ 2
Pf
= (1− Pf) ∗ Pf

N
(11.5)

Therefore, to reduce the variance one needs to increase the number of sample
points. For small probabilities, the number of sample points and hence the number
of circuit simulations becomes prohibitively large (see Table 11.1 for an example).
Hence, it is not efficient to rely on traditional Monte Carlo techniques for accurately
estimating such rare probabilities. More robust and efficient statistical analysis

Table 11.1 The number of
Monte Carlo sample points
needed to achieve a standard
error to the probability of fail

ratio
σPf
Pf

= 10% for different
Pf values

Probability of fail Number of Monte Carlo
Pf Sample points N

10−3 105

10−4 106

10−5 107

10−6 108

11 Fast Statistical Analysis Using Machine Learning 327

methodologies such as variance reduction methods are necessary to enhance speed
of the statistical analysis methodology and the accuracy of the estimate.

11.2.2 Variance Reduction

For rare fail events, variance reduction methods improve the accuracy of the estimate
compared to standard Monte Carlo. Common variance reduction methods include
the following [12].

1. Control variates method: Standard Monte Carlo method typically aims to
estimate the expected value of a variable Y , μy , according to (11.6). The control
variates method introduces a variable Z correlated to Y , such that while the
variance of Y may be large, the variance of (Y − cZ) is small. The variable
Z is often derived as a model or approximation to Y . The optimal value of c
is determined as the ratio of the covariance of Y and Z to the variance of Z.
Accordingly, the control variates method estimates μCV , the expected value of
the variable (Y − cZ), as a more efficient and an unbiased estimator of μy .

μy = 1

N

N∑
i=1

Yi (11.6)

c = Cov(Y,Z)
V ar(z)

(11.7)

μCV = 1

N

N∑
i=1

(Yi − c(Zi − μZ)) (11.8)

2. Antithetic variables: For every sample path, the antithetic variables method
samples the antithetic path, i.e., for every direction, it samples the opposite
direction. This is shown to reduce the variance of the estimate and reduce the
number of sample points to be generated.

3. Stratified sampling: The population is divided into strata. The sample points are
evenly divided among the different strata. Simple random sampling is performed
within each stratum. This allows for better coverage of the variability space.

4. Importance sampling: The natural distribution is distorted to place more empha-
sis on sampling the critical fail region. The true metric is sampled, and the
estimate is unbiased by correcting for the ratio of the true to distorted probability
density function. The methodology does not require knowledge of functional
approximations as is the case for the control variates method. Furthermore, it is
more sophisticated than stratified sampling in that it zooms in to critical regions.
Henceforth, we will focus on importance sampling methods.

328 R. Kanj et al.

11.2.3 Importance Sampling

Importance sampling is a variance reduction method that enhances the efficiency of
standard Monte Carlo by distorting the (natural) distribution, pdf (x), to produce
more sample points in the important region(s) [13]. It can be best explained by
Eq. (11.9), where pdfIS(x) is the importance sampling distribution. Figure 11.2
presents an example where a uniform distribution is used to generate more sample
points in the tail region compared to the natural Gaussian distribution. More
efficient importance sampling distributions entail shifting the center of the natural
distribution towards the important region, such that pdfIS(x) = pdf (x − xIS). It
has been shown that determining the optimal shift center requires the knowledge of
the estimate itself. In [5], the authors rely on a first stage of uniform sampling to
determine the shift center for the mixture importance sampling phase.

∫
f (x)pdf (x)dx =

∫
f (x)

pdf (x)

pdfIS(x)
pdfIS(x)dx (11.9)

There are three forms of importance sampling.

1. Integrated importance sampling.
2. Ratioed importance sampling.
3. Regression importance sampling.

To unbias the estimate, the indicator function is adjusted as illustrated in (11.10)
to account for the distortion of the natural sampling distribution. The probability of
fail estimate, P̂fIS , and its variance, σ 2

Pf :IS , can then be derived according to (11.11)
and (11.12) for the integrated importance sampling case.

Fig. 11.2 (a) The natural distribution provides a small number of sample points in the failure
region. (b) The importance sampling distribution pdfIS(x) provides more sample points in the
failure region

11 Fast Statistical Analysis Using Machine Learning 329

Y (xi) = I (xi) ∗ pdf (xi)

pdfIS(xi)
(11.10)

P̂fIS =
1

N

N∑
i=1

Y (xi) (11.11)

σ 2
Pf :IS =

1

N(N − 1)

N∑
i=1

(Y (xi)− (Ȳ)) (11.12)

11.3 Logistic Regression

Statisticians rely on regression to model or interpret the behavior of the response
variable as function of the independent or explanatory variables. In the event of
continuous response, they rely on linear regression to model the outcome. On the
other hand, when the outcome is categorical, logistic regression is the most popular
type of regression to model such data [14]. Logistic regression is used in many fields
and spans a wide range of applications in engineering, medical sciences, and finance
[15, 16]. As an example of a semiconductor manufacturing application, the authors
in [17] relied on logistic regression to model “when the test chip will or will not
have bit failures” based on specific features of the test chip.

In this section, we provide an overview of simple linear regression, followed by
a review of logistic regression methodologies.

11.3.1 Simple Linear Regression Review

In traditional linear regression, a function f (x) is modeled as a linear combination
of the independent variables vector x according to the following equation [18]:

f (x) ≈ hθ (X) =
D∑
i=0

θi ∗ xi (11.13)

where {θi, i = 1, 2, 3, . . . ,D} are the model coefficients, {x = xi : i = 1, 2, 3,
. . . , D} represents the D-dimensional feature vector, θ0 represents the constant
term, x0 represents the intercept term, and the hypothesis function h(θ) is the
approximate linear regression model to f (x).

330 R. Kanj et al.

Given a training set of N sample points, N > D, we define

X =

⎛
⎜⎜⎜⎜⎜⎝
x
(1)
1 x

(2)
1 . . . x

(N)
1

x
(1)
2 x

(2)
2 . . . x

(N)
2

...
... . . .

...

x
(1)
D x

(2)
D . . . x

(N)
D

⎞
⎟⎟⎟⎟⎟⎠ (11.14)

and F = [f (1)f (1) . . . f (N)]T , where f (j) and x(j) represent the value of f (x) and
x at the j th sample point, respectively. UsuallyN > D, and the system of equations
to find the best θ based on the training data is overdetermined. We typically solve
for θ by minimizing the cost function in (11.15) which represents the error between
hθ and f [19].

J (x, θ) = 1

2N

N∑
i=1

(hθ (x(i))− f (i))2 (11.15)

Table 11.2 presents the batch gradient descent approach, based on the least mean
squares update rule, to solve for θ ; α represents the learning rate, and θ0 represents
the initial guess for θ . θk represents the value of θ at the kth iteration.

It is worth noting that for linear regression, a closed form solution for θ that
minimizes Jθ exists and can be derived according to (11.16).

θ = (XTX)−1XT F (11.16)

To avoid overfitting and improve accuracy, regularized linear regression solves
for a penalized form of the cost function (11.17) , where lp = 0, 1, or 2 [20].
Thus, there are three types of regularization: the L0-norm, L1-norm, and L2-norm
regularizations. The L0-norm guarantees sparseness by identifying the optimal
subset of independent variables; however, it is NP-hard. The L1-norm solution
enforces sparseness and can be approximated. The L2-norm is simpler, minimizes
the magnitude of the parameters, however, it does not enforce sparseness.

J (x, θ) = 1

2N

N∑
i=1

(hθ (x(i))− f (i))2 + λ||θ ||lp (11.17)

Table 11.2 Pseudo-code for
the batch gradient descent
method

Line # Code

1. Initialize θ = θ0

2. θk+1
j = θkj + α

N∑
i=0
(hθ (x(i))− f (i))x(i)j

11 Fast Statistical Analysis Using Machine Learning 331

11.3.2 Logistic Regression Overview

Logistic regression belongs to the family of machine learning tools developed
to model categorical data including fault prediction. Similar to support vector
machines, it is used to develop a model for a categorical response as function of
a set of independent random variables. Logistic regression can be used to model
outcomes that are binomial, multinomial, or ordinal [21]. For purposes of our
applications, we focus on the case where the outcome, y, is binary. Thus, we define
the hypothesis function, hθ (x), as follows:

hθ (x) = g(θT x) = 1

1+ exp−θT x
(11.18)

where the sigmoid function g(z) returns a probability value between 0 and 1.

g(z) = 1

1+ exp−z (11.19)

The hypothesis function computes a probability value that determines whether
the expected outcome is “0” or “1” [22].

y =
⎧⎨
⎩1 if hθ (x) > 0.5,

0 otherwise
(11.20)

Hence, the probability of a sample point, p(y|x; θ), can be computed using the
hypothesis function according to (11.21) [19]. The likelihood function for a set of
sample points is the product of the individual sample point probabilities, and the
logistic regression parameter vector θ can be determined by maximizing the log-
likelihood function in (11.22). This corresponds to minimizing the cost function:
J (x, θ) = −l(θ).

p(y|x; θ) = (hθ (x))y(1− hθ (x))1−y (11.21)

l(θ) =
N∑
i=1

log(hθ (x(i))).y(i) + log(1− hθ (x(i))).(1− y(i)) (11.22)

One may rely on the stochastic gradient ascent rule (11.23) [19] to solve for
θ . This is similar to the batch gradient (descent) rule derived earlier for the linear
regression. However, for the stochastic approach, the updates are performed per
sample point, and for the logistic regression the function hθ is nonlinear.

θk+1
j = θkj + α(y(i) − hθ (x(i)))x

(i)
j (11.23)

332 R. Kanj et al.

The authors in [23] compare several numerical techniques for solving for θ .
These include: Newton’s method, coordinate ascent method, conjugate gradient
ascent method, fixed Hessian Newton method, quasi-Newton method, and the
iterative scaling method. In terms of the computational complexity, they found
the conjugate gradient ascent and quasi-Newton methods to be the fastest. In their
work, they rely on an alternative representation for the logistic regression as will be
discussed in the following subsection.

11.3.2.1 Logistic Regression: Numerical Optimization Techniques

When the observed outcome y takes values±1, the logistic regression model can be
represented by the probability function (11.24) [23].

p(y = ±1|x, θ) = g(yθT x) = 1

1+ exp(−yθT x)
(11.24)

In this case, the log-likelihood function in (11.22) can be written as:

l(θ) =
N∑
1

log(1+ exp(−y(i)θT x(i))) (11.25)

The two forms in (11.22) and (11.25) are equivalent due to the inherent property
of the sigmoid function that g(−z) = 1− g(z). Numerical optimization techniques
to solve for optimal θ can rely on either formulation for the optimization. Caution
must be taken, however, based on the choice of the values of y. Particularly, (11.25)
is not valid when y = 0.

As stated earlier, following the formulations in (11.24) and (11.25), the authors
in [23] compared several techniques for optimizing the maximum a-posteriori
parameter estimate. The different optimization methodologies rely on the following
three key computational elements.

1. The diagonal matrix A, such that the diagonal element aii is given by

aii = g(θT x(i))(1− g(θT x(i))) (11.26)

2. The Hessian matrix, H defined as

H(θ) = −XAXT (11.27)

3. The gradient, grad

grad(θ) = ∇θ l(θ) =
N∑
i=1

(1− g(y(i)θT x(i)))y(i)x(i) (11.28)

11 Fast Statistical Analysis Using Machine Learning 333

For purposes of illustration, we present here their implementation of Newton’s
method for parameter optimization. We refer the reader to [23] for the details of the
other techniques. A typical Newton’s method step calculates the new θ from its old
value by relying on the Hessian and the gradient according to (11.29).

θk+1 = θk +H(θk)−1grad(θk) (11.29)

By defining z according to (11.30), Eq. (11.29) can be simplified to the form
presented in (11.31) where both z and A are evaluated using θk .

zi = xT θ j + (1− g(yiθ
T xi))yi

aii
(11.30)

θk+1 = (XAXT)−1XAz (11.31)

Hence, the solution for the Newton step corresponds to that of a weighted least
squares problem, and this implementation is often referred to as the iteratively
reweighted least squares method.

11.4 Proposed Methodology

In this section, we present a logistic regression-based fast statistical analysis
methodology. At the core of its engine is a mixture importance sampling technique
which comprises two sampling stages: the uniform sampling stage and the impor-
tance sampling stage. We rely on the uniform sampling stage data to determine
the shift center of the importance sampling distribution, and to develop a logistic
regression model for predicting the design functionality of the importance sampling
points. We employ ordered feature selection along with cross-validation in order
to minimize the model error and avoid overfitting. We describe the methodology
overview in Sect. 11.4.1.

11.4.1 Methodology Overview

11.4.1.1 Terminology and Definitions

Let the vector xp = {xpi , i = 1, 2, 3, . . . ,D} represent the D-dimensional process
variation parameter vector. Given N sample points, we generate a feature vector x
using linear, quadratic, and interaction terms derived from xp along with the constant
term.

334 R. Kanj et al.

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
(1)
p1 x

(2)
p1 . . . x

(N)
p1

x
(1)
p2 x

(2)
p2 . . . x

(N)
p2

...
... . . .

...

(x
(1)
p1)

2 (x
(2)
p1)

2 . . . (x
(N)
p1)

2

(x
(1)
p2)

2 (x
(2)
p2)

2 . . . (x
(N)
p2)

2

...
... . . .

...

x
(1)
p1 x

(1)
p2 x

(2)
p1 x

(2)
p2 . . . x

(N)
p1 x

(N)
p2

...
... . . .

...

1 1 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.32)

Let F = [f (1)f (1) . . . f (N)] be the response vector representing the SRAM cell
functionality. The outcome vector, Y, is derived from f (i), such that yi = 0 for a
functional cell, and yi = 1 for a failing cell.

yi =
⎧⎨
⎩1 if f (i) is fail,

0 otherwise
(11.33)

11.4.1.2 Methodology Flow Diagram

Figure 11.3 presents an overview of the proposed logistic regression-based MixIS
methodology (LRegSim). It comprises two major phases corresponding to the two
stages of the mixture importance methodology [5].

• In the first phase, we generate uniform random sample points, Xpuni , and we
rely on circuit simulations to generate the corresponding performance metric
indicator values Yuni. We use these sample points to generate the quadratic
features vector, Xuni from XPuni , and we normalize it to build the corresponding
regularized logistic regression model and determine the corresponding model θ ,
referred to hereon as θmodel.

• In the second phase, we generate the importance sample points, XpMixIS and
rely on the logistic regression model developed in Phase 1 to predict the failing
sample points and hence estimate the design yield. It is worth noting that Phase
2 data is typically a subspace of Phase 1 data, since the latter varies all the
parameters uniformly between ±6σ .

11 Fast Statistical Analysis Using Machine Learning 335

Fig. 11.3 An overview of the logistic regression-based yield analysis methodology. The method-
ology relies on Phase 1 simulations to build a model that predicts the response of Phase 2
importance sample points [8]

11.4.1.3 Regularization Framework

In [24], the authors convert the L1-norm regularized logistic regression problem into
an L1-constrained iterative least squares problem. The authors in [25] rely on local
derivatives to determine critical features that lead to cost reduction that outweighs
the introduced feature weight. For our implementation [8], we propose a two-step
heuristic approach for L0-norm feature selection.

1. Initialization and ordering: First, we build the initial logistic regression model,
and order the feature criticality based on their resultant θ values.

2. Cross-validation-based search: For each iteration j , we find the average cross-
validation error corresponding to the top j critical features. The best model
corresponds to the model with minimal cross-validation error. For more details
on cross-validation, we refer the reader to Sect. 11.4.1.4.

336 R. Kanj et al.

Table 11.3 presents the pseudo-code for the proposed methodology. In the
initialization phase, using Phase 1 data, the quadratic features are generated and
then normalized. An initial modeling step involving all features allows obtaining an
ordered list of the features based on the initial model θ values. The search for the
best model is performed by adding one feature at a time from the ordered list and
identifying the model with the smallest cross-validation error. For the importance
sampling phase, the quadratic features are generated for the importance samples,

Table 11.3 Pseudo-code for the proposed methodology [8]

Logistic Regression-Based Yield Analysis Methodology

Parameters:
Given process variations and response vectors XPuni ,Funi,XpMixIS

Initialization:
1. Generate Yuni,Xuni←quadMap(XPuni) using (32),and (33)

2. Generate mean μXuni and standard deviationσ Xuni for Xuni

3. Normalize Uniform feature Xnuni =
Xuni−μXuni

σXuni

4. Generate θ init = buildLogistic(Xnuni ,Y)
5. (θ sort, Idx) = sort(θ init), |θ sort(i) = θ init(Idx,i)

Model Building (Phase 1 data):

For: j = 1:size(θ sort)

Perform Cross-Validation over j first critical vars

1. Xcrit←{Xn_uni (Idx(1 : j))}
2.For K = 1:4

Datasets:{Xcrittest ,Ytest}K, {Xcrit train ,Ytrain}K
θK,j←buildLogistic({Xcrit train ,Ytrain}K)
ErrorK,j←predictLogistic(Xcrit test ,Ytest, θK,j)

end
3.Errorj⇐avg(ErrorK,J)

4.If (Errorj < min)
min = Errorj; count = 0;

criticalvars←j,Xcrit,Y,λ = 0)
θmodel←buildLogistic(XCrit,Y)

Else
count = count+ 1
if(count > 4) break; endif

endif
end
Importance Sample and Yield Prediction (Phase 2 data)

1.Generate XMixIS ← quadMap(XPMixIS) based on (1), (2)

2.Normalize features XnMixIS =
XMixIS−μXuni

σxuni

3.̂YMixIS = predictLogistic(XnMixIS , θcrit)

4.Ŷ ield ← Y ield(XPMixIS ,
̂YMixIS)

11 Fast Statistical Analysis Using Machine Learning 337

and the features are normalized using the same mean and standard deviation values
obtained in Phase 1. The developed model is then used to predict the outcomes
which are in turn used to predict the yield. Note the following function definitions.

1. quadMap corresponds to the mapping of Eq. (11.32).
2. buildLogistic solves for θ by maximizing (11.22).
3. predictLogistic predicts y according to (11.20).

Next, we provide a brief overview of cross-validation.

11.4.1.4 Cross-validation

In K-folds cross-validation [26], the dataset is divided into k folds. k − 1 folds are
used for the training and one set is used for testing the model error. The process is
repeated k-times each time selecting a different fold for the test set. The average
error obtained from the k runs is used to determine the cross-validation error. There
are trade-offs in the choice of k. Larger k values are associated with reduced bias in
the model error at the expense of higher runtime.

For our purposes, our objective is to determine the model with the lowest number
of features corresponding to the minimum cross-validation error. Hence, without
loss of generality, and to maintain a low runtime overhead, we divide the sample
points into 4 mutually exclusive folds, and run the cross-validation process 4 times
as illustrated in Fig. 11.4.

Fig. 11.4 Example of
fourfold cross-validation [8]

338 R. Kanj et al.

11.5 Application to State-of-the-Art FinFET SRAM Design

In this section, we apply the methodology to analyze a state-of-the-art industrial
14 nm FinFET SRAM design with write-assist circuitry. We compare the results to
those of a fully circuit-simulation-based approach.

11.5.1 Selective Boosting and Write-Assist Circuitry

Figure 11.5 presents the sketch of a 6-transistor SRAM cell. In planar CMOS
technology, designers optimize the SRAM cell β and γ ratios in terms of the
pulldown-to-passgate (PD/PG) and pullup-to-passgate (PU/PG) device ratios. This
helps achieve robust cell designs while addressing the different design consider-
ations in terms of compactness, functionality, and performance. FinFET SRAM
designs bring forth challenges in terms of maintaining proper device sizing due
to quantization. A minimum-sized FinFET SRAM cell has the PU, PD, and PG
devices set to a single fin each, and hence, the β and γ ratios are set to one. This
degrades functionality at low voltage operation, and raises the need for robust write-
assist circuitry and selective boosting techniques [27]. The selective boosting can
be applied to selective paths including the write drivers, wordline, and the cell. This
helps enhance the cell yield while maintaining operation at low Vdd. Figure 11.6

Fig. 11.5 Schematic of a 6-transistor SRAM cell

11 Fast Statistical Analysis Using Machine Learning 339

presents the boosting circuitry schematic consisting of an nFET and pFET device
in parallel. When the gate switches, it couples the Vddv to a value above Vdd. This
boosts the virtual supply node which feeds selected memory paths by more than
100 mV. The rest of the circuit operates at Vdd.

Write-assist circuitry further improves the writability yield by negatively boost-
ing the bitlines during write as illustrated in Fig. 11.7. The negative boost lowers
the bitline voltage below zero and creates a larger voltage swing between the true

Fig. 11.6 (a) Capacitive coupling between the gate and the source nodes boosts the source voltage
Vddv above Vdd when the “Boost” signal switches high [7] (b) Sketch of the FinFET Boost
Transistor

Predecoded
addresses

Vddv

1

4

High Vt pfet/Nfet

datac

datac

wlckc

wlckc

datat

datat

Vddv
Vddv blt

r.cellr.cell

“1”“0”

“Negative”

WI

blc

Fig. 11.7 Negative boost write assist is applied to the bitlines during write operation. Cell, write
driver, and wordline receive boosted supply voltage (Vddv) [7]

340 R. Kanj et al.

and complement data values to be written to the cell. This in turn helps flip the
cell data more easily and hence improves writability. The selective boost and write-
assist circuitry are especially necessary for near threshold voltage operation where
the devices are weak. For slightly higher voltages, selective boost can be turned on
only for Read operation. Programmable boost designs [28] can also be considered
(Fig. 11.8).

To study the benefits of the write-assist circuitry, we focus on the following two
design styles summarized in Table 11.4.

1. The Selective_Boost design refers to the selective boost design with no write
assist.

2. The Selective_Boost_WA design refers to the selective boost paired design with
write assist.

A 72 Kb SRAM array was arranged in columns of 16 cells/bitlines and the two
designs were implemented in hardware [27]. Figure 11.9 presents the corresponding
14 nm FinFET SOI SRAM die photo. Hardware measurements indicate a minimum
operating voltage of around 0.40 V for the Selective_Boost design, and 0.35 V
for the Selective_Boost_WA design. These results were validated by the statistical
yield analysis methodology [5], and the results corroborate well with the hardware
measurements.

Fig. 11.8 Sketch of the SRAM cell cross-section including wordline, bitline, and write drivers[7]

Table 11.4 Summary of the designs under study

Design Write assist Label

Selective boost only None Selective_Boost

Selective boost with write assist Negative bitline boost Selective_Boost_WA

11 Fast Statistical Analysis Using Machine Learning 341

Fig. 11.9 Snapshot of the 14 nm FinFET SOI technology die [7]

11.5.2 Experimental Setup

We test the efficacy of the methodology by analyzing the 14 nm FinFET SRAM
designs presented in Table 11.4. For accurate analysis and for purposes of model
to hardware corroboration, our simulations include the peripheral logic along with
the SRAM cell as illustrated in Fig. 11.8. Thus, our cross-section includes the write
driver, bitline driver, wordline drivers, and the local evaluation circuitry. We study
the SRAM cell functionality in terms of its dynamic write margin [29] defined as
the ability to write a “0” or “1” onto the cell internal nodes. In the presence of
process variations, it is possible that the cell pullup device (e.g., PUL) becomes
strong, and the cell pass gate device (PGL) becomes weak thereby making it difficult
or in some rare cases not possible to write a “0” to the left node of the SRAM.
For purposes of our simulations, we apply process variations to the SRAM cell
transistors and critical transistors of the local evaluation circuitry. For each device,
we lump the different sources of variability in terms of metal gate granularity,
line edge roughness, fin height, and random dopant fluctuations into an effective
σV t .The device threshold voltage is then subject to independent random process
variations δV t N(0, σ 2

V t) resulting in 45 features total. Our objective is to validate
Vmin improvement due to the write-assist circuitry. Accordingly, we rely on the
proposed methodology to study the yield of the Selective_Boost design for Vdd =
[0.40–0.43 V] and the Selective_Boost_WA design yield for Vdd = [0.35–0.40 V].

342 R. Kanj et al.

Fig. 11.10 Average number of false predictions versus the number of critical features [8]

11.5.3 Analysis and Results

We demonstrate the accuracy of the proposed methodology (LRegSim) compared
to that of a pure circuit-simulation-based mixture importance sampling approach
(CktSim). We report the results for the model building, model estimation, and
importance sampling-based yield prediction.

11.5.3.1 Phase 1 Model Building: Uniform Sampling Stage

In this section, we present the results for the model building phase. Figure 11.10
presents the cross-validation error for the Selective_Boost_WA design as function
of the number of critical features. The cross-validation error is reported as the
average number of false predicts, which is computed as the total number of false
positives and false negatives for the test set for the different iterations of the k-
fold cross-validation. Figure 11.11 illustrates the optimal number of critical features
for both designs. Experiments 1–6 correspond to the Selective_Boost_WA design
simulations with Vdd = [0.35-0.4 V], and experiments 7–10 correspond to the
Selective_Boost design simulations with Vdd = [0.4-0.43 V]. The optimal number
of critical features is found to be in the range between 7 and 12 features for all the
performed experiments. As illustrated in Fig. 11.12, the corresponding false predict
rate is reported to be less than 2%.

11 Fast Statistical Analysis Using Machine Learning 343

Fig. 11.11 Optimal number
of critical features.
Experiments 1 through 6
represent
Selective_Boost_WA design
for V dd range of
[0.35–0.40 V]. Experiments 7
to 10 represent the
Selective_Boost design for
V dd range of
[0.40–0.43 V] [8]

Fig. 11.12 Test set
prediction error
corresponding to the model
based on the critical number
of variables in Fig. 11.11.
Experiments 1 through 6
represent
Selective_Boost_WA design
for V dd range of
[0.35–0.40 V]. Experiments 7
to 10 represent the
Selective_Boost design for
V dd range of
[0.40–0.43 V] [8]

11.5.3.2 Phase 2 Model Prediction: Importance Sampling Stage

For the importance sample points generated in Phase 2, we rely on the model
developed in Phase 1 to predict the design writability. Figures 11.13 and 11.14
illustrate the results obtained for both designs; each experiment is associated
with a different Vdd value as discussed earlier. It is obvious that the number of
false predictions is very low given that the maximum recorded value is 22 false
predictions out of 600 sample points for the Selective_Boost_WA design at 0.4V .
The average false prediction rate is reported to be around 4.5% for all the conducted
experiments. This proves the efficiency of the proposed methodology. Note that no
false negatives were observed for the Selective_Boost design experiments.

11.5.3.3 Yield Estimation and Convergence Analysis

The importance sample points response predicted in the previous section is used
to estimate the yield. Importance sample weights are calculated according to
Eq. (11.10) to predict the unbiased yield estimates. Figure 11.15 presents the

344 R. Kanj et al.

Fig. 11.13 Selective_Boost design Phase 2 pass/fail prediction for the importance sample points.
No false passing (false negatives) points were reported for these experiments [8]

Fig. 11.14 Selective_Boost_WA design Phase 2 pass/fail prediction for the importance sample
points [8]

Fig. 11.15 Selective_Boost_WA design probability of fail convergence [8]

11 Fast Statistical Analysis Using Machine Learning 345

fail probability convergence for the Selective_Boost_WA design, and Fig. 11.16
presents the log plots for the different experiments for the proposed versus fully
circuit-simulation-based approach. The results show excellent matching for the
different ranges of estimated probability values of interest, including probabilities
as low as 1e-12. This is further established in the yield plots of Figs. 11.17 and 11.18
where we note around 3% difference in the sigma yield estimates compared to
the pure CktSim methodology. We therefore report a 50 mV improvement for the
Selective_Boost_WA compared to the Selective_Boost methodology. These results
corroborate well with the hardware data.

Fig. 11.16 Estimated
probability of fail values is
accurate for values as low as
1e−12. Results are
normalized for max and min
probabilities for all the
experiments [8]

Fig. 11.17 Selective_Boost design yield prediction. Results are normalized for max and min yield.
True yield refers to CktSim approach, and estimated yield to LRegSim [8]

346 R. Kanj et al.

Fig. 11.18 Selective_Boost_WA design yield prediction. Results are normalized for max and min
yield. True yield refers to CktSim approach, and estimated yield to LRegSim [8]

11.6 Conclusions

In this chapter, a logistic regression-based fast statistical analysis methodology is
proposed for low fail probability estimation. It relies on a two-step importance
sampling methodology to speed up simulations compared to traditional Monte
Carlo. To further improve the simulation runtime, a regularized logistic regression
model developed using the first stage sample points is used to predict the response of
second stage sample points. The methodology is comprehensive and computation-
ally efficient and can be applied to a wide variety of applications. We demonstrate
the accuracy of the methodology on 14 nm FinFET SRAM designs.

Acknowledgements The authors would like to thank the Maroun Semaan Faculty of Engineering
and Architecture at the American University of Beirut for supporting Ph.D. student Miss Lama
Shaer.

References

1. X. Li, H. Liu, Statistical regression for efficient high-dimensional modeling of analog and
mixed-signal performance variations, in Design Automation Conference, 2008. DAC 2008. 45th
ACM/IEEE (IEEE, New York, 2008), pp. 38–43

2. K. Agarwal, S, Nassif, Statistical analysis of SRAM cell stability, in Proceedings of the 43rd
annual Design Automation Conference (ACM, New York, 2006), pp. 57–62

3. S. Mukhopadhyay, H. Mahmoodi, K. Roy, Statistical design and optimization of SRAM cell
for yield enhancement, in Proceedings of the 2004 IEEE/ACM International Conference on
Computer-Aided Design (IEEE Computer Society, Washington, DC, 2004), pp. 10–13

4. A. Singhee, R.A. Rutenbar, Statistical blockade: a novel method for very fast Monte Carlo
simulation of rare circuit events, and its application, in Design, Automation, and Test in Europe
(Springer, New York, 2008), pp. 235–251

11 Fast Statistical Analysis Using Machine Learning 347

5. R. Kanj, R. Joshi, S. Nassif, Mixture importance sampling and its application to the analysis of
SRAM designs in the presence of rare failure events, in Design Automation Conference, 2006
43rd ACM/IEEE (IEEE, New York, 2006), pp. 69–72

6. R. Kanj, T. Li, R. Joshi, K. Agarwal, A. Sadigh, D. Winston, S. Nassif, Accelerated statistical
simulation via on-demand Hermite spline interpolations, in Proceedings of the International
Conference on Computer-Aided Design (IEEE Press, New York, 2011), pp. 353–360

7. M. Malik, R.V. Joshi, R. Kanj, S. Sun, H. Homayoun, T. Li, Sparse regression driven
mixture importance sampling for memory design, in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems (2017)

8. L. Shaer, R. Kanj, R. Joshi, M. Malik, A. Chehab, Regularized logistic regression for fast
importance sampling based SRAM yield analysis, in 2017 18th International Symposium on
Quality Electronic Design (ISQED) (IEEE, New York, 2017), pp. 119–124

9. G.E.P. Box, J. Stuart Hunter, W. Gordon Hunter, Statistics for Experimenters: Design,
Innovation, and Discovery, vol. 2 (Wiley, New York, 2005)

10. J.F. Ramaley, Buffon’s noodle problem. Am. Math. Mon. 76(8), 916–918 (1969)
11. N. Metropolis, S. Ulam, The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341

(1949)
12. C.P. Robert. Monte Carlo Methods (Wiley Online Library, 2004)
13. T.C. Hesterberg, Advances in importance sampling, PhD Thesis, 1988
14. D.W Hosmer Jr., S. Lemeshow, R.X. Sturdivant, Applied Logistic Regression, vol. 398 (Wiley,

New York, 2013)
15. A. Mojsilovic, A logistic regression model for small sample classification problems with

hidden variables and non-linear relationships: an application in business analytics, in IEEE
International Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings
(ICASSP’05), vol. 5 (IEEE, New York, 2005), pp. v–329

16. S. Ahmad, N.M. Ramli, H. Midi, Outlier detection in logistic regression and its application
in medical data analysis, in 2012 IEEE Colloquium on Humanities, Science and Engineering
(CHUSER) (IEEE, New York, 2012), pp. 503–507

17. R.S. Collica, A logistic regression yield model for SRAM bit fail patterns, in The IEEE
International Workshop on Defect and Fault Tolerance in VLSI Systems, 1993 (IEEE, New
York, 1993), pp. 127–135

18. X. Li, H. Liu, Statistical regression for efficient high-dimensional modeling of analog and
mixed-signal performance variations, in Design Automation Conference, 2008. DAC 2008. 45th
ACM/IEEE (IEEE, New York, 2008), pp. 38–43

19. A. Ng, Cs229 lecture notes (2017). Retrieved from http://cs229.stanford.edu/notes/cs229-
notes-all/

20. X. Li, Finding deterministic solution from underdetermined equation: large-scale performance
variability modeling of analog/RF circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 29(11), 1661–1668 (2010)

21. D. Böhning, Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 44(1), 197–200
(1992)

22. D.T, Larose, Data Mining Methods & Models (Wiley, New York, 2006)
23. T.P. Minka, A comparison of numerical optimizers for logistic regression, Unpublished draft

(2003)
24. S.-I. Lee, H. Lee, P. Abbeel, A.Y. Ng, Efficient L1 regularized logistic regression, in AAAI,

vol. 6 (2006), pp. 401–408
25. S. Perkins, J. Theiler, Online feature selection using grafting, in Proceedings of the 20th

International Conference on Machine Learning (ICML-03) (2003), pp. 592–599
26. R. Kohavi et al., A study of cross-validation and bootstrap for accuracy estimation and model

selection. in Proceedings of International Joint Conference on Artificial Intelligence, IJCAI,
Stanford, CA, vol. 14 (1995), pp. 1137–1145

27. R.V. Joshi, M. Ziegler, H. Wetter, C. Wandel, H, Ainspan, 14nm finfet based supply voltage
boosting techniques for extreme low v min operation, in 2015 Symposium on VLSI Circuits
(VLSI Circuits) (IEEE, Piscataway, 2015), pp. C268–C269

http://cs229.stanford.edu/notes/cs229-notes-all/
http://cs229.stanford.edu/notes/cs229-notes-all/

348 R. Kanj et al.

28. R.V. Joshi, M.M. Ziegler, Programmable supply boosting techniques for near threshold and
wide operating voltage SRAM, in 2017 IEEE Custom Integrated Circuits Conference (CICC)
(IEEE, Piscataway, 2017), pp. 1–4

29. R. Joshi, R. Kanj, S. Nassif, D. Plass, Y. Chan et al., Statistical exploration of the dual supply
voltage space of a 65nm PD/SOI CMOS SRAM cell, in Proceeding of the 36th European
Solid-State Device Research Conference, 2006. ESSDERC 2006 (IEEE, Piscataway, 2006),
pp. 315–318

Chapter 12
Fast Statistical Analysis of Rare Circuit
Failure Events

Jun Tao, Shupeng Sun, Xin Li, Hongzhou Liu, Kangsheng Luo, Ben Gu,
and Xuan Zeng

12.1 Introduction

As integrated circuit (IC) technology advances, the ever increasing process variation
has become a growing concern [5]. A complex IC, containing numerous memory
components, is required to meet the design specification not only at the nominal
process corner, but also under large-scale process variations. To achieve sufficiently
high yield, the failure rate of each individual memory component must be extremely
small. For instance, the failure rate of an SRAM bit-cell must be less than

J. Tao (�) · X. Zeng (�)
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University,
Shanghai, China
e-mail: taojun@fudan.edu.cn; xzeng@fudan.edu.cn

S. Sun
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA,
USA
e-mail: shupengs@ece.cmu.edu

X. Li (�)
Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
e-mail: xinli.ece@duke.edu

H. Liu · K. Luo
Cadence Design Systems, Inc., Pittsburgh, PA, USA
e-mail: hliu@cadence.com; ksluo@cadence.com

B. Gu
Cadence Design Systems, Inc., Austin, TX, USA
e-mail: gxin@cadence.com

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_12

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_12&domain=pdf
mailto:taojun@fudan.edu.cn
mailto:xzeng@fudan.edu.cn
mailto:shupengs@ece.cmu.edu
mailto:xinli.ece@duke.edu
mailto:hliu@cadence.com
mailto:ksluo@cadence.com
mailto:gxin@cadence.com
https://doi.org/10.1007/978-3-030-04666-8_12

350 J. Tao et al.

10−8∼10−6 for a typical SRAM design [2, 12]. Due to this reason, efficiently
analyzing the rare failure event for the individual memory component becomes an
important task for the IC design community.

The simple way to estimate the failure probability is to apply the well-known
crude Monte Carlo (CMC) technique [3]. CMC directly draws random samples
from the probability density function (PDF) that models device-level variations,
and performs a transistor-level simulation to evaluate the performance value for
each sample. When CMC is applied to estimate an extremely small failure rate
(e.g., 10−8∼10−6), most random samples do not fall into the failure region. Hence,
a large number of (e.g., 107∼109) samples are needed to accurately estimate the
small failure probability, which implies that CMC can be extremely expensive for
our application of rare failure rate estimation.

To improve the sampling efficiency, importance sampling (IS) methods have been
proposed in the literature [7, 13, 15, 17, 20]. Instead of sampling the original PDF,
IS samples a distorted PDF to get more samples in the important failure region. The
efficiency achieved by IS highly depends on the choice of the distorted PDF. The
traditional IS methods apply several heuristics to construct a distorted PDF that can
capture the most important failure region in the variation space. Such a goal, though
easy to achieve in a low-dimensional variation space, is extremely difficult to fulfill
when a large number of random variables are used to model process variations.

Another approach to improving the sampling efficiency, referred to as statistical
blockade, has recently been proposed [18]. This approach first builds a classifier
with a number of transistor-level simulations, and then draws random samples from
the original PDF. Unlike CMC where all the samples are evaluated by transistor-
level simulations, statistical blockade only simulates the samples that are likely to
fall into the failure region or close to the failure boundary based on the classifier.
The efficiency achieved by this approach highly depends on the accuracy of the
classifier. If the variation space is high-dimensional, a large number of transistor-
level simulations are needed to build an accurate classifier, which makes the
statistical blockade method quickly intractable.

In addition to the aforementioned statistical methods, several deterministic
approaches have also been proposed to efficiently estimate the rare failure prob-
ability [10, 14]. These methods first find the failure boundary, and then calculate
the failure probability by integrating the PDF over the failure region in the
variation space. Though efficient in a low-dimensional variation space, it is often
computationally expensive to accurately determine the failure boundary in a high-
dimensional space especially if the boundary has a complicated shape (e.g.,
non-convex or even discontinuous).

Most of these traditional methods [7, 9, 10, 13–15, 17, 18, 20, 22, 23] have been
successfully applied to SRAM bit-cells to estimate their rare failure rates where
only a small number of (e.g., 6∼20) independent random variables are used to model
process variations and, hence, the corresponding variation space is low-dimensional.
It has been demonstrated in the literature that estimating the rare failure probability

12 Fast Statistical Analysis of Rare Circuit Failure Events 351

in a high-dimensional space (e.g., hundreds of independent random variables to
model the device-level variations for SRAM) becomes increasingly important [21].
Unfortunately, such a high-dimensional problem cannot be efficiently handled by
most traditional methods. It, in turn, poses an immediate need of developing a
new CAD tool to accurately capture the rare failure events in a high-dimensional
variation space with low computational cost.

To address this technical challenge, we first describe a novel subset simulation
(SUS) technique. The key idea of SUS, borrowed from the statistics community
[1, 6, 11], is to express the rare failure probability as the product of several large
conditional probabilities by introducing a number of intermediate failure events.
As such, the original problem of rare failure probability estimation is cast to
an equivalent problem of estimating a sequence of conditional probabilities via
multiple phases. Since these conditional probabilities are relatively large, they are
substantially easier to estimate than the original rare failure rate.

When implementing the SUS method, it is difficult, if not impossible, to directly
draw random samples from the conditional PDFs and estimate the conditional
probabilities, since these conditional PDFs are unknown in advance. To address
this issue, a modified Metropolis (MM) algorithm is adopted from the literature
[1] to generate random samples by constructing a number of Markov chains. The
conditional probabilities of interest are then estimated from these random samples.
Unlike most traditional techniques [7, 9, 10, 13–15, 17, 18, 20, 22, 23] that suffer
from the dimensionality issue, SUS can be efficiently applied to high-dimensional
problems, which will be demonstrated by the experimental results in Sect. 12.2.

To define the intermediate failure events required by SUS, the performance
of interest (PoI) must be continuous. In other words, SUS can only analyze a
continuous PoI. For many rare failure events, however, PoIs are discrete (e.g., the
output of a voltage-mode sense amplifier). Realizing this limitation, we further
describe a scaled-sigma sampling (SSS) approach to efficiently estimate the rare
failure rates for discrete PoIs in a high-dimensional space. SSS is particularly
developed to address the following two fundamental questions: (1) how to efficiently
draw random samples from the rare failure region, and (2) how to estimate the rare
failure rate based on these random samples. Unlike CMC that directly samples the
variation space and therefore only few samples fall into the failure region, SSS draws
random samples from a distorted PDF for which the standard deviation (i.e., sigma)
is scaled up. Conceptually, it is equivalent to increasing the magnitude of process
variations. As a result, a large number of samples can now fall into the failure region.
Once the distorted random samples are generated, an analytical model derived from
the theorem of “soft maximum” is optimally fitted by applying maximum likelihood
estimation (MLE). Next, the failure rate can be efficiently estimated from the fitted
model.

The remainder of this chapter is organized as follows. In Sect. 12.2, we will
summarize the SUS approach and, next, the SSS approach will be presented in
Sect. 12.3. Finally, we conclude in Sect. 12.4.

352 J. Tao et al.

12.2 Subset Simulation

Suppose that the vector

x =
[
x1 x2 · · · xM

]T
(12.1)

is an M-dimensional random variable modeling device-level process variations. In
a process design kit, the random variables {xm;m = 1, 2, . . . ,M} in (12.1) are
typically modeled as a jointly Normal distribution [7, 9, 10, 13–15, 17, 18, 20, 22,
23]. Without loss of generality, we further assume that {xm;m = 1, 2, . . . ,M} are
mutually independent and standard Normal (i.e., with zero mean and unit variance)
and its joint PDF is

f (x) =
M∏
m=1

pm (xm) =
M∏
m=1

⎡
⎣ 1√

2π
· exp

(
−x

2
m

2

)⎤⎦ =
exp

(
− ‖x‖2

2

/
2

)
(√

2π
)M ,

(12.2)
where pm (xm) is the 1-D PDF for xm, and ‖ • ‖2 denotes the L2-norm of a vector.
Any correlated random variables that are jointly Normal can be transformed to
the independent random variables {xm;m = 1, 2, . . . ,M} by principal component
analysis [3]. Then, the failure rate of a circuit can be mathematically represented as:

PF = Pr (x ∈ �) =
∫

x∈�
f (x) · dx, (12.3)

where � denotes the failure region, i.e., the subset of the variation space where the
PoI does not meet the specification.

Instead of directly estimating the rare failure probability PF , SUS expresses PF
as the product of several large conditional probabilities by introducing a number
of intermediate failure events in the variation space. Without loss of generality, we
define K intermediate failure events {�k; k = 1, 2, . . . , K} as:

�1 ⊃ �2 ⊃ · · · ⊃ �K−1 ⊃ �K = �. (12.4)

Based on (12.4), we can express PF in (12.3) as:

PF = Pr (x ∈ �) = Pr
(
x ∈ �K, x ∈ �K−1

)
. (12.5)

Equation (12.5) can be re-written as:

PF = Pr
(

x ∈ �K
∣∣x ∈ �K−1

)
· Pr

(
x ∈ �K−1

)
. (12.6)

12 Fast Statistical Analysis of Rare Circuit Failure Events 353

Similarly, we can express Pr
(
x ∈ �K−1

)
as:

Pr
(
x ∈ �K−1

) = Pr
(

x ∈ �K−1
∣∣x ∈ �K−2

)
· Pr

(
x ∈ �K−2

)
. (12.7)

From (12.4), (12.6), and (12.7), we can easily derive:

PF = Pr (x ∈ �1) ·
K∏
k=2

Pr
(

x ∈ �k
∣∣x ∈ �k−1

)
=

K∏
k=1

Pk, (12.8)

where

P1 = Pr (x ∈ �1) , (12.9)

Pk = Pr
(

x ∈ �k
∣∣x ∈ �k−1

)
(k = 2, 3, . . . , K) . (12.10)

If {�k; k = 1, 2, . . . , K} are properly chosen, all the probabilities {Pk; k =
1, 2, . . . , K} are large and can be efficiently estimated. Once {Pk; k = 1, 2, . . . , K}
are known, the rare failure probability PF can be easily calculated by (12.8).

Note that the failure events {�k; k = 1, 2, . . . , K} are extremely difficult to
specify in a high-dimensional variation space. For this reason, we do not directly
define {�k; k = 1, 2, . . . , K} in the variation space. Instead, we utilize their
corresponding subsets {Fk; k = 1, 2, . . . , K} in the performance space:

Fk =
{
y(x); x ∈ �k

}
(k = 1, 2, . . . , K) , (12.11)

where y(x) denotes the PoI as a function of x. Since y(x) is typically a scalar,
{Fk; k = 1, 2, . . . , K} are just one-dimensional subsets of R and, therefore, easy
to be specified. Once {Fk; k = 1, 2, . . . , K} are determined, {�k; k = 1, 2, . . . , K}
are implicitly known. For instance, to know whether a given x belongs to �k , we
first run a transistor-level simulation to evaluate y(x). If y(x) belongs to Fk , x is
inside �k . Otherwise, x is outside �k .

In what follows, we will use a simple 2-D example to intuitively illustrate the
basic flow of SUS. Figure 12.1 shows this 2-D example where two random variables
x = [x1 x2]T are used to model the device-level process variations, and �1 and
�2 denote the first two subsets in (12.4). Note that �1 and �2 are depicted for
illustration purposes in this example. In practice, we do not need to explicitly know
�1 and �2, as previously explained.

Our objective is to estimate the probabilities {Pk; k = 1, 2, . . . , K} via multiple
phases. Starting from the 1st phase, we simply draw L1 independent random
samples {x(1,l); l = 1, 2, . . . , L1} from the PDF f (x) to estimate P1. Here, the
superscript “1” of the symbol x(1,l) refers to the 1st phase. Among these L1 samples,
we identify a subset of samples {x(1,t)F ; t = 1, 2, . . . , T1} that fall into �1, where T1
denotes the total number of samples in this subset. As shown in Fig. 12.1(a), the red

354 J. Tao et al.

Fig. 12.1 A 2-D example is
used to illustrate the
procedure of probability
estimation via multiple
phases by using SUS: (a)
generating MC samples and
estimating P1 in the 1st
phase, and (b) generating
MCMC samples and
estimating P2 in the 2nd
phase

0 x1

x2 Ω1

x1

x2 Ω1

0

Ω2

(a)

(b)

points represent the samples that belong to �1 and the green points represent the
samples that are out of �1. In this case, P1 can be estimated as:

P SUS
1 = 1

L1
·
L1∑
l=1

I�1

[
x(1,l)

]
= T1

L1
, (12.12)

where P SUS
1 denotes the estimated value of P1, and I�1(x) represents the indicator

function

I�1(x) =
{

1 x ∈ �1

0 x /∈ �1
. (12.13)

If P1 is large, it can be accurately estimated with a small number of random samples
(e.g., L1 is around 102∼103).

12 Fast Statistical Analysis of Rare Circuit Failure Events 355

Next, in the 2nd phase, we need to estimate the conditional probability P2 =
Pr(x ∈ �2|x ∈ �1). Towards this goal, one simple idea is to directly draw random
samples from the conditional PDF f (x|x ∈ �1) and then compute the mean of the
indicator function I�2(x)

I�2(x) =
{

1 x ∈ �2

0 x /∈ �2
. (12.14)

This approach, however, is practically infeasible since f (x|x ∈ �1) is unknown in
advance. To address this issue, we apply a modified Metropolis (MM) algorithm [1]
to generate a set of random samples that follow the conditional PDF f (x|x ∈ �1).

MM is a Markov chain Monte Carlo (MCMC) technique [3]. Starting from each
of the samples {x(1,t)F ; t = 1, 2, . . . , T1} that fall into �1 in the 1st phase, MM
generates a sequence of samples that form a Markov chain. In other words, there are
T1 independently generated Markov chains in total and x(1,t)F is the 1st sample of
the t-th Markov chain. To clearly explain the MM algorithm, we define the symbol
x(2,t,1) = x(1,t)F , where t ∈ {1, 2, . . . , T1}. The superscripts “2” and “1” of x(2,t,1)

refer to the 2nd phase and the 1st sample of the Markov chain, respectively.
For our 2-D example, we start from x(2,1,1) = [x(2,1,1)1 x

(2,1,1)
2]T to form the 1st

Markov chain. To generate the 2nd sample x(2,1,2) from x(2,1,1), we first randomly
sample a new value xNEW1 from a 1-D transition PDF q1[xNEW1 |x(2,1,1)1] that must
satisfy the following condition [1]:

q1

[
xNEW1

∣∣∣x(2,1,1)1

]
= q1

[
x
(2,1,1)
1

∣∣∣xNEW1

]
(12.15)

There are many possible ways to define q1[xNEW1 |x(2,1,1)1] in (12.15) [1]. For
example, a 1-D Normal PDF can be used

q1

[
xNEW1

∣∣∣x(2,1,1)1

]
= 1√

2π · σ1
· exp

⎧⎪⎪⎨
⎪⎪⎩−

[
xNEW1 − x(2,1,1)1

]2

2 · σ 2
1

⎫⎪⎪⎬
⎪⎪⎭ . (12.16)

where x(2,1,1)1 and σ1 are the mean and standard deviation of the distribution,
respectively. Here, σ1 is a parameter that usually be empirically chosen[19].

Next, we compute the ratio

r =
p1

(
xNEW1

)
p1

(
x
(2,1,1)
1

) , (12.17)

356 J. Tao et al.

where p1(x1) is the original PDF of the random variable x1 shown in (12.2). A
random sample u is then drawn from a 1-D uniform distribution with the following
PDF:

f (u) =
{

1 0 ≤ u ≤ 1
0 Otherwise

, (12.18)

and the value of x(2,1,2)1 is set as

x
(2,1,2)
1 =

{
xNEW1 u ≤ min(1, r)
x
(2,1,1)
1 u > min(1, r)

. (12.19)

A similar procedure is applied to generate x(2,1,2)2 . Once x(2,1,2)1 and x(2,1,2)2 are

determined, we form a candidate xNEW = [x(2,1,2)1 x
(2,1,2)
2]T and use it to create the

sample x(2,1,2)

x(2,1,2) =
{

xNEW xNEW ∈ �1

x(2,1,1) xNEW /∈ �1
. (12.20)

By repeating the aforementioned steps, we can create other samples to complete
the Markov chain {x(2,1,l); l = 1, 2, . . . , L2}, where L2 denotes the length of the
Markov chain in the 2nd phase. In addition, all other Markov chains can be similarly
formed. Since there are T1 Markov chains and each Markov chain contains L2
samples, the total number of the MCMC samples is T1 · L2 for the 2nd phase.
Figure 12.1(b) shows the sampling results in the 2nd phase for our 2-D example. In
Fig. 12.1(b), the red points represent the initial samples {x(2,t,1); t = 1, 2, . . . , T1}
of the Markov chains and they are obtained from the 1st phase. The yellow points
represent the MCMC samples created via the MM algorithm in the 2nd phase. It
has been proved in [1] that all these MCMC samples {x(2,t,l); t = 1, 2, . . . , T1; l =
1, 2, . . . , L2} in Fig. 12.1(b) approximately follow f (x|x ∈ �1). In other words, we
have successfully generated a number of random samples that follow our desired
distribution for the 2nd phase.

Among all the MCMC samples {x(2,t,l); t = 1, 2, . . . , T1; l = 1, 2, . . . , L2},
we further identify a subset of samples {x(2,t)F ; t = 1, 2, . . . , T2} that fall into �2,
where T2 denotes the total number of the samples in this subset. The conditional
probability P2 can be estimated as:

P SUS
2 = 1

T1 · L2
·
T1∑
t=1

L2∑
l=1

I�2

[
x(2,t,l)

]
= T2

T1 · L2
, (12.21)

where P SUS
2 denotes the estimated value of P2.

12 Fast Statistical Analysis of Rare Circuit Failure Events 357

By following the aforementioned idea, we can estimate all the probabilities
{Pk; k = 1, 2, . . . , K}. Once the values of {Pk; k = 1, 2, . . . , K} are estimated,
the rare failure rate PF is calculated by

P SUS
F =

K∏
k=1

P SUS
k , (12.22)

where P SUS
F represents the estimated value of PF by using SUS. If we have more

than two random variables, estimating the probabilities {Pk; k = 1, 2, . . . , K} can
be pursued in a similar way [19].

To efficiently apply SUS, we must carefully choose the subset {Fk; k =
1, 2, . . . , K} so that the probability Pk will be close to 0.1, where k ∈ {1, 2, . . . , K}.
In this case, even if the failure rate PF is extremely small (e.g., 10−8

∼10−6), SUS
only needs a small number of (e.g., K = 6∼8) phases to complete. Furthermore, it
only requires a few hundred samples during each phase to accurately estimate the
probability Pk .

In addition, to quantitatively assess the accuracy of the proposed SUS estimator,
we must estimate its confidence interval (CI). To this end, we need to know the
distribution of P SUS

F . Since P SUS
F is equal to the multiplication of {P SUS

k ; k =
1, 2, . . . , K}, we must carefully study the statistical property of P SUS

k in order to
derive the distribution for P SUS

F .
To be specific, P SUS

1 is calculated by using (12.12) with L1 independent and
identically distributed (i.i.d.) samples drawn from f (x). Hence, according to the
central limit theorem (CLT) [16], P SUS

1 approximately follows a Normal distribution

P SUS
1 ∼ N (P1, v1) , (12.23)

where the mean value P1 is defined in (12.9) and the variance value v1 can be
approximated as [16]

v1 ≈ 1

L1
· P SUS

1 ·
(

1− P SUS
1

)
. (12.24)

On the other hand, the conditional probability P SUS
k , where k ∈ {2, 3, . . . , K},

can be estimated by using the MCMC samples {x(k,t,l); t = 1, 2, . . . , Tk−1; l =
1, 2, . . . , Lk} created by MM:

P SUS
k = 1

Tk−1 · Lk ·
Tk−1∑
t=1

Lk∑
l=1

I�k

[
x(k,t,l)

]
, (12.25)

where I�k [x] represents the indicator function

I�k (x) =
{

1 x ∈ �k
0 x /∈ �k . (12.26)

358 J. Tao et al.

Since the MCMC samples {x(k,t,l); l = 1, 2, . . . , Lk}, where t ∈ {1, 2, . . . , Tk−1},
are strongly correlated, they cannot be considered as i.i.d. samples. For this reason,
we cannot directly apply CLT to derive the distribution for the estimator P SUS

k

in (12.25).
To address this issue, we define a set of new random variables

s(k,t) = 1

Lk
·
Lk∑
l=1

I�k

[
x(k,t,l)

]
, (12.27)

where t ∈ {1, 2, . . . , Tk−1}. Studying (12.27) reveals two important observations.
First, s(k,t) only depends on the t-th Markov chain {x(k,t,l); l = 1, 2, . . . , Lk}.
Since different Markov chains are created from different initial samples {x(k,t,1); t =
1, 2, . . . , Tk−1}, the random variables {s(k,t); t = 1, 2, . . . , Tk−1} are almost statis-
tically independent. Second, since all initial samples {x(k,t,1); t = 1, 2, . . . , Tk−1}
follow the same conditional PDF p(x

∣∣x ∈ �k−1) and all the Markov chains are
generated by following the same procedure, the random variables {s(k,t); t =
1, 2, . . . , Tk−1} must be identically distributed. For these reasons, we can consider
{s(k,t); t = 1, 2, . . . , Tk−1} as a set of i.i.d. random variables.

Based on (12.27), P SUS
k in (12.25), where k ∈ {2, 3, . . . , K}, can be re-written as

P SUS
k = 1

Tk−1
·
Tk−1∑
t=1

s(k,t) (12.28)

and, as a result, approximately follows a Normal distribution according to CLT:

P SUS
k ∼ N (Pk, vk) , (12.29)

where Pk is defined in (12.10) and

vk ≈ 1(
Tk−1 − 1

) · Tk−1
·
Tk−1∑
t=1

[
s(k,t) − P SUS

k

]2
. (12.30)

To further derive the distribution for P SUS
F in (12.22) based on (12.23) and

(12.29), we take logarithm on both sides of (12.22) because it is much easier to
handle summation than multiplication

log
(
P SUS
F

)
=

K∑
k=1

log
(
P SUS
k

)
. (12.31)

To derive the distribution of {log(P SUSk); k = 1, 2, . . . , K}, we approximate the
nonlinear function log(•) by the first-order Taylor expansion around the mean value

12 Fast Statistical Analysis of Rare Circuit Failure Events 359

Pk of the random variable PSUSk :

log
(
P SUS
k

)
≈ log (Pk)+ P

SUS
k − Pk
Pk

≈ log (Pk)+ P
SUS
k − Pk
P SUS
k

. (12.32)

According to the linear approximation in (12.32), log(P SUS
k) follows a Normal

distribution

log
(
P SUS
k

)
∼ N [

log (Pk) , vlog,k
]
, (12.33)

where

vlog,k = vk(
P SUS
k

)2 , (12.34)

and k ∈ {1, 2, . . . , K}.
Since log(P SUS

F) is the summation of several “approximately” Normal random
variables {log(P SUS

k); k = 1, 2, . . . , K}, log(P SUS
F) also approximately follows a

Normal distribution [16]

log
(
P SUS
F

)
∼ N

{
MEAN

[
log

(
P SUS
F

)]
,VAR

[
log

(
P SUS
F

)]}
(12.35)

Based on (12.8), (12.31), and (12.33), MEAN[log(P SUS
F)] can be expressed as

MEAN

[
log

(
P SUS
F

)]
=

K∑
k=1

log (Pk) = log

⎛
⎝ K∏
k=1

Pk

⎞
⎠ = log (PF) , (12.36)

and VAR[log(P SUS
F)] can be calculated as

VAR

[
log

(
P SUS
F

)]
= VAR

⎡
⎣ K∑
k=1

log
(
P SUS
k

)⎤⎦

=
K∑
k=1

vlog,k + 2 ·
K−1∑
i=1

K∑
j=i+1

COV

[
log

(
P SUS
i

)
, log

(
P SUS
j

)] , (12.37)

where COV(•, •) denotes the covariance of two random variables.
When applying MCMC, we often observe that an MCMC sample is strongly

correlated to its adjacent sample. However, the correlation quickly decreases as the
distance between two MCMC samples increases. Therefore, we can assume that the

360 J. Tao et al.

samples used to estimate log(P SUS
i) are weakly correlated to the samples used to

estimate log(P SUS
j), if the distance between i and j is greater than 1 (i.e., |i − j | >

1). Based on this assumption, (12.37) can be approximated as

VAR

[
log

(
P SUS
F

)]
≈

K∑
k=1

vlog,k + 2 ·
K−1∑
k=1

COV

[
log

(
P SUS
k

)
, log

(
P SUS
k+1

)]
.

(12.38)

Accurately estimating the covariance between log(P SUS
k) and log(P SUS

k+1) is
nontrivial. Here, we derive an upper bound for COV[log(P SUS

k), log(P SUS
k+1)] [16]:

COV

[
log

(
P SUS
k

)
, log

(
P SUS
k+1

)]
≤ √vlog,k · vlog,k+1, (12.39)

where k ∈ {1, 2, . . . , K − 1}. Substituting (12.39) into (12.38) yields

VAR

[
log

(
P SUS
F

)]
≤

K∑
k=1

vlog,k+2 ·
K−1∑
k=1

√
vlog,k · vlog,k+1 = vlog,SUS. (12.40)

In this chapter, we approximate VAR[log(P SUS
F)] by its upper bound vlog,SUS

defined in (12.40) to provide a conservative estimation for the CI. Based on (12.36)
and (12.40), (12.35) can be re-written as

log
(
P SUS
F

)
∼ N [

log (PF) , vlog,SUS
]
. (12.41)

According to (12.41), we can derive the CI for any given confidence level. For
instance, the 95% CI is expressed as[

exp
(

log(P SUS
F)− 1.96 · √vlog,SUS

)
, exp

(
log(P SUS

F)+ 1.96 · √vlog,SUS

)]
.

(12.42)

To demonstrate the efficacy of SUS, we consider an SRAM column example
designed in a 45 nm CMOS process, as shown in Fig. 12.2. In this example, our PoI
is the read current IREAD, which is defined as the difference between the bit-line
currents IBL and IBL_ (i.e., IREAD = IBL− IBL_) when we start to read CELL<0>.
If IREAD is greater than a pre-defined specification, we consider the SRAM circuit as
“PASS”. For process variation modeling, the local VTH mismatch of each transistor
is considered as an independent Normal random variable. In total, we have 384
independent random variables (i.e., 64 bit-cells × 6 transistors per bit-cell = 384).

We first run CMC with 109 random samples, and the estimated failure rate is
1.1 × 10−6, which is considered as the “golden” failure rate in this example. Next,
we compare SUS with the traditional importance sampling technique: MNIS [17],
where 2000 simulations are used to construct the distorted PDF. We repeatedly run

12 Fast Statistical Analysis of Rare Circuit Failure Events 361

0 1

BL_
WL<0>

1 0

1 0

BL

WL<1>

WL<63>

IBL_IBL

CELL<0>

CELL<1>

CELL<63> BL_

VDD

WL<0>

BL

Fig. 12.2 The simplified schematic is shown for an SRAM column consisting of 64 bit-cells
designed in a 45 nm CMOS process

0 20 40

(a)

(b)

60 80 100
-10

-8

-6

-4

-2

g
ol

1
0
(P

F
)

0 20 40 60 80 100
-10

-8

-6

-4

-2

g
ol

1
0
(P

F
)

Fig. 12.3 The 95% confidence intervals (blue bars) of the SRAM read current example are
estimated from 100 repeated runs with 6000 transistor-level simulations in each run for: (a) MNIS
and (b) SUS. The red line represents the “golden” failure rate

MNIS and SUS for 100 times with 6000 transistor-level simulations in each run.
Figure 12.3 shows the 100 estimated 95% CIs for each method, where each blue
bar represents the CI of a single run, and the red line represents the “golden” failure
rate.

In this example, only a single CI estimated from 100 repeated runs by MNIS
can cover the “golden” failure rate, implying that MNIS fails to estimate the CIs
accurately. This is an important limitation of MNIS, and generally most of the
importance sampling techniques, since the user cannot reliably know the actual
“confidence” of the estimator in practice. For the SUS approach, however, there are
95 CIs out of 100 runs that cover the “golden” failure rate. More importantly, the CIs

362 J. Tao et al.

estimated by SUS are relatively tight, which implies that SUS achieves substantially
better accuracy than the traditional MNIS approach in this example.

Before ending this section, we would like to emphasize that to define the
subsets {Fk; k = 1, 2, . . . , K} required by SUS, PoI must be continuous. Realizing
this limitation, we further describe a scaled-sigma sampling (SSS) approach to
efficiently estimate the rare failure rates for discrete PoIs in a high-dimensional
space, which will be presented in the next section.

12.3 Scaled-Sigma Sampling

Unlike the traditional importance sampling methods that must explicitly identify the
high-probability failure region, SSS takes a completely different strategy to address
the following questions: (1) how to efficiently draw random samples from the high-
probability failure region, and (2) how to estimate the failure rate based on these
random samples. In what follows, we will derive the mathematical formulation of
SSS and highlight its novelties.

For the application of rare failure rate estimation, a failure event often occurs at
the tail of the PDF f (x). Given (12.2), it implies that the failure region� is far away
from the origin x = 0, as shown in Fig. 12.4(a). Since the failure rate is extremely
small, the traditional CMC analysis cannot efficiently draw random samples from
the failure region. Namely, many samples cannot reach the tail of f (x).

To address the aforementioned sampling issue, SSS applies a simple idea. Given
f (x) in (12.2), we scale up the standard deviation of x by a scaling factor s (s > 1),
yielding the following distribution:

g(x) =
M∏
m=1

⎡
⎢⎢⎢⎣

exp

(
− x2

m

/
2s2

)
√

2πs

⎤
⎥⎥⎥⎦ =

exp

(
− ‖x‖2

2

/
2s2

)
(√

2π · s
)M . (12.43)

Once the standard deviation of x is increased by a factor of s, we conceptually
increase the magnitude of process variations. Hence, the PDF g(x) widely spreads
over a large region and the probability for a random sample to reach the far-away
failure region increases, as shown in Fig. 12.4(b).

It is important to note that the mean of the scaled PDF g(x) remains 0, which is
identical to the mean of the original PDF f (x). Hence, for a given sampling location
x, the likelihood defined by the scaled PDF g(x) remains inversely proportional to
the length of the vector x (i.e., ‖x‖2). Namely, it is more (or less) likely to reach the
sampling location x, if the distance between the location x and the origin 0 is smaller
(or larger). It, in turn, implies that the high-probability failure region associated with
the original PDF f (x) remains the high-probability failure region after the PDF is
scaled to g(x), as shown in Fig. 12.4(a) and (b). Scaling the PDF from f (x) to g(x)

12 Fast Statistical Analysis of Rare Circuit Failure Events 363

Fig. 12.4 The proposed SSS
is illustrated by a 2-D
example where the grey area
� denotes the failure region
and the circles represent the
contour lines of the PDF. (a)
Rare failure events occur at
the tail of the original PDF
f (x) and the failure region is
far away from the origin
x = 0. (b) The scaled PDF
g(x) widely spreads over a
large region and the scaled
samples are likely to reach
the far-away failure region

x1

x2

Ω

High-

probability

Low-

probability

x1

x2

Ω

Low-

probabilityHigh-

probability

(a)

(b)

does not change the location of the high-probability failure region; instead, it only
makes the failure region easy to sample.

Once the scaled random samples are drawn from g(x) in (12.43), we need to
further estimate the failure rate PF defined in (12.3). To this end, one straightforward
way is to apply the importance sampling method [3]. Such a simple approach,
however, has been proved to be intractable when the dimensionality (i.e., M) of
the variation space is high [21]. Namely, it does not fit the need of high-dimensional
failure rate estimation in this chapter.

Instead of relying on the theory of importance sampling, SSS attempts to estimate
the failure rate PF from a completely different avenue. We first take a look at the
“scaled” failure rate PG corresponding to g(x):

PG =
∫

x∈�
g(x) · dx =

∫ +∞

−∞
I�(x) · g(x) · dx, (12.44)

364 J. Tao et al.

where I�(x) represents the indicator function:

I�(x) =
{

1 x ∈ �
0 x /∈ � . (12.45)

Our objective is to study the relation between the scaled failure rate PG in (12.44)
and the original failure rate PF in (12.3). Towards this goal, we partition the M-
dimensional variation space into a large number of identical hyper-rectangles with
the same volume and the scaled failure rate PG in (12.44) can be approximated as:

PG ≈
∑
k

I�

[
x(k)

]
· g

[
x(k)

]
·�x, (12.46)

where�x denotes the volume of a hyper-rectangle. The approximation in (12.46) is
accurate, if each hyper-rectangle is sufficiently small. Given the definition of I�(x)
in (12.45), Eq. (12.46) can be re-written as:

PG ≈
∑
k∈�
g
[
x(k)

]
·�x, (12.47)

where {k; k ∈ �} represents the set of all hyper-rectangles that fall into the failure
region.

Substituting (12.43) into (12.47), we have

PG ≈ �x(√
2π · s

)M ·
∑
k∈�

exp

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2s2

⎤
⎥⎥⎦ . (12.48)

Taking the logarithm on both sides of (12.48) yields:

logPG ≈ log
�x

(2π)M/2
−M · log s + lse

k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2s2

⎤
⎥⎥⎦ , (12.49)

where

lse
k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2s2

⎤
⎥⎥⎦ = log

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑
k∈�

exp

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2s2

⎤
⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(12.50)

12 Fast Statistical Analysis of Rare Circuit Failure Events 365

stands for the log-sum-exp function. The function lse(•) in (12.50) is also known as
the “soft maximum” from the mathematics [4]. It can be bounded by

max
k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2s2

⎤
⎥⎥⎦+ log (T) ≥ lse

k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2s2

⎤
⎥⎥⎦ ≥ max

k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2s2

⎤
⎥⎥⎦ ,
(12.51)

where T denotes the total number of hyper-rectangles in �.
In general, there exist a number of (say, T0) dominant hyper-rectangles that are

much closer to the origin 0 than other hyper-rectangles in the set {x(k); k ∈ �}.
Without loss of generality, we assume that the first T0 hyper-rectangles {x(k); k =
1, 2, . . . , T0} are dominant. Hence, we can approximate the function lse(•) in
(12.50) as

lse
k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2s2

⎤
⎥⎥⎦ ≈ log

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
T0∑
k=1

exp

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2s2

⎤
⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (12.52)

We further assume that these dominant hyper-rectangles {x(k); k = 1, 2, . . . , T0}
have similar distances to the origin 0. Thus, Eq. (12.52) can be approximated by

lse
k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2s2

⎤
⎥⎥⎦ ≈ max

k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2s2

⎤
⎥⎥⎦+ log (T0) . (12.53)

Substituting (12.53) into (12.49) yields

logPG ≈ α + β · log s + γ

s2 , (12.54)

where

α = log
Δx

(2π)M/2
+ log (T0)

β = −M

γ = max
k∈�

⎡
⎢⎢⎣−

∥∥∥x(k)
∥∥∥2

2

2

⎤
⎥⎥⎦

. (12.55)

Equation (12.54) reveals the important relation between the scaled failure rate PG
and the scaling factor s. The approximation in (12.54) does not rely on any specific
assumption of the failure region. It is valid, even if the failure region is non-convex
or discontinuous.

366 J. Tao et al.

While (12.55) shows the theoretical definition of the model coefficients α, β
and γ , finding their exact values is not trivial. For instance, the coefficient γ is
determined by the hyper-rectangle that falls into the failure region � and is closest
to the origin x = 0. In practice, without knowing the failure region �, we cannot
directly find out the value of γ . For this reason, we fit the analytical model in
(12.54) by linear regression. Namely, we first estimate the scaled failure rates
{PG,q; q = 1, 2, . . . ,Q} by setting the scaling factor s to a number of different
values {sq; q = 1, 2, . . . ,Q}. As long as the scaling factors {sq; q = 1, 2, . . . ,Q}
are sufficiently large, the scaled failure rates {PG,q; q = 1, 2, . . . ,Q} are large and
can be accurately estimated with a small number of random samples. Next, the
model coefficients α, β, and γ are fitted by linear regression based on the values
of {(sq, PG,q); q = 1, 2, . . . ,Q}. Once α, β, and γ are known, the original failure
rate PF in (12.3) can be predicted by extrapolation. Namely, we substitute s = 1
into the analytical model in (12.54):

logP SSS
F = α + γ, (12.56)

where P SSS
F denotes the estimated value of PF by SSS. Apply the exponential

function to both sides of (12.56) and we have

P SSS
F = exp

(
α + γ) . (12.57)

To make the SSS method of practical utility, maximum likelihood estimation is
applied to fit the model coefficients in (12.54). The MLE solution can be solved
from an optimization problem and it is considered to be statistically optimal for a
given set of random samples.

Without loss of generality, we assume that Nq scaled random samples {x(n); n =
1, 2, . . . , Nq} are collected for the scaling factor sq . The scaled failure rate PG,q can
be estimated by MC

PMC
G,q =

1

Nq
·
Nq∑
n=1

I�

(
x(n)

)
, (12.58)

where I�(x) is the indicator function defined in (12.45). The variance of the
estimator PMC

G,q in (12.58) can be approximated as [16]

vMC
G,q = PMC

G,q ·
1− PMC

G,p

Nq
. (12.59)

If the number of samples Nq is sufficiently large, the estimator PMC
G,q in (12.58)

follows a Gaussian distribution according to CLT [16]

PMC
G,q ∼ Gauss

(
PG,q, v

MC
G,p

)
, (12.60)

where PG,q denotes the actual failure rate corresponding to the scaling factor sq .

12 Fast Statistical Analysis of Rare Circuit Failure Events 367

Note that the model template in (12.54) is expressed for logPG, instead of PG. To
further derive the probability distribution for logPMC

G,q , we adopt the first-order delta
method from the statistics community [16]. Namely, we approximate the nonlinear
function log(•) by the first-order Taylor expansion around the mean value logPG,q
of the random variable logPMC

G,q

logPMC
G,q ≈ logPG,q +

PMC
G,q − PG,q
PG,q

≈ logPG,q +
PMC
G,q − PG,q
PMC
G,q

. (12.61)

Based on the linear approximation in (12.61), logPMC
G,q follows the Gaussian

distribution

logPMC
G,q ∼ Gauss

⎡
⎢⎢⎣logPG,q,

vMC
G,q(
PMC
G,q

)2

⎤
⎥⎥⎦ . (12.62)

Equation (12.62) is valid for all scaling factors {sq; q = 1, 2, . . . ,Q}. In
addition, since the scaled failure rates corresponding to different scaling factors
are estimated by independent Monte Carlo simulations, the estimated failure rates
{PMC
G,q ; q = 1, 2, . . . ,Q} are mutually independent. Therefore, the Q-dimensional

random variable

log PMC
G =

[
logPMC

G,1 logPMC
G,2 · · · logPMC

G,Q

]T
(12.63)

satisfies the following jointly Gaussian distribution:

log PMC
G ∼ Gauss

(
μG,
G

)
, (12.64)

where the mean vector μG and the covariance matrix
G are equal to

μG =
[

logPG,1 logPG,2 · · · logPG,Q
]T

(12.65)

G = diag

⎡
⎢⎢⎣ vMC

G,1(
PMC
G,1

)2 ,
vMC
G,2(

PMC
G,2

)2 , · · · ,
vMC
G,Q(
PMC
G,Q

)2

⎤
⎥⎥⎦ , (12.66)

where diag(•) denotes a diagonal matrix.
The diagonal elements of the covariance matrix
G in (12.66) can be sub-

stantially different. In other words, the accuracy of {logPMC
G,q ; q = 1, 2, . . . ,Q}

associated with different scaling factors {sq; q = 1, 2, . . . ,Q} can be different,
because the scaled failure rates {PG,q; q = 1, 2, . . . ,Q} strongly depend on the

368 J. Tao et al.

scaling factors. In general, we can expect that if the scaling factor sq is small, the
scaled failure rate PG,q is small and, hence, it is difficult to accurately estimate
logPG,q from a small number of random samples. For this reason, instead of equally
“trusting” the estimators {logPMC

G,q ; q = 1, 2, . . . ,Q}, we must carefully model

the “confidence” for each estimator logPMC
G,q , as encoded by the covariance matrix

G in (12.66). Such “confidence” information will be fully exploited by the MLE
framework to fit a statistically optimal model.

Since the scaled failure rates {PG,q; q = 1, 2, . . . ,Q} follow the analytical
model in (12.54), the mean vector μG in (12.65) can be re-written as

μG = α + β ·

⎡
⎢⎢⎢⎢⎣

log s1
log s2
...

log sQ

⎤
⎥⎥⎥⎥⎦+ γ ·

⎡
⎢⎢⎢⎢⎣
s−2

1
s−2

2
...

s−2
Q

⎤
⎥⎥⎥⎥⎦ = A ·�, (12.67)

where

A =

⎡
⎢⎢⎢⎢⎣

1 log s1 s−2
1

1 log s2 s−2
2

...
...

...

1 log sQ s−2
Q

⎤
⎥⎥⎥⎥⎦ (12.68)

� =
[
α β γ

]T
. (12.69)

Equation (12.68) implies that the mean value of theQ-dimensional random variable
log PMC

G depends on the model coefficients α, β, and γ . Given {PMC
G,q ; q =

1, 2, . . . ,Q}, the key idea of MLE is to find the optimal values of α, β, and γ
so that the likelihood of observing {PMC

G,q ; q = 1, 2, . . . ,Q} is maximized.

Because the random variable log PMC
G follows the jointly Gaussian distribution

in (12.64), the likelihood associated with the estimated failure rates {PMC
G,q ; q =

1, 2, . . . ,Q} is proportional to

L ∼ exp

[
−1

2

(
log PMC

G − μG

)T ·
−1
G ·

(
log PMC

G − μG

)]
. (12.70)

Taking the logarithm for (12.70) yields

logL ∼ −
(

log PMC
G − μG

)T ·
−1
G ·

(
log PMC

G − μG

)
. (12.71)

Substitute (12.67) into (12.71), and we have

logL ∼ −
(

log PMC
G − A ·�

)T ·
−1
G ·

(
log PMC

G − A ·�
)
. (12.72)

12 Fast Statistical Analysis of Rare Circuit Failure Events 369

Note that the log-likelihood logL in (12.72) depends on the model coefficients α, β,
and γ , because the vector � is composed of these coefficients as shown in (12.69).
Therefore, the MLE solution of α, β, and γ can be determined by maximizing the
log-likelihood function

max
�

−
(

log PMC
G − A ·�

)T ·
−1
G ·

(
log PMC

G − A ·�
)
. (12.73)

Since the covariance matrix
G is positive definite, the optimization in (12.73)
is convex. In addition, since the log-likelihood logL is simply a quadratic function
of �, the unconstrained optimization in (12.73) can be directly solved by inspecting
the first-order optimality condition [4]

∂

∂�

[
−

(
log PMC

G − A ·�
)T ·
−1

G ·
(

log PMC
G − A ·�

)]

= 2 · AT ·
−1
G ·

(
log PMC

G − A ·�
)
= 0

. (12.74)

Based on the linear equation in (12.74), the optimal value of � can be determined
by

� =
(

AT ·
−1
G · A

)−1 · AT ·
−1
G · log PMC

G . (12.75)

Studying (12.75) reveals an important fact that the estimators {logPMC
G,q ; q =

1, 2, . . . ,Q} are weighted by the inverse of the covariance matrix
G. Namely, if
the variance of the estimator logPMC

G,q is large, logPMC
G,q becomes non-critical when

determining the optimal values of α, β, and γ . In other words, the MLE framework
has optimally weighted the importance of {logPMC

G,q ; q = 1, 2, . . . ,Q} based on the
“confidence” level of these estimators. Once α, β, and γ are solved by MLE, the
original failure rate PF can be estimated by (12.57).

To apply MLE, we need a set of pre-selected scaling factors {sq; q =
1, 2, . . . ,Q}. In practice, appropriately choosing these scaling factors is a critical
task due to several reasons. First, if these scaling factors are too large, the
estimator P SSS

F based on extrapolation in (12.57) would not be accurate, since
the extrapolation point s = 1 is far away from the selected scaling factors. Second,
if the scaling factors are too small, the scaled failure rates {PG,q; q = 1, 2, . . . ,Q}
are extremely small and they cannot be accurately estimated from a small number
of scaled random samples. Third, the failure rates for different performances
and/or specifications can be quite different. To estimate them both accurately
and efficiently, we should choose small scaling factors for the performance metrics
with large failure rates, but large scaling factors for the performance metrics with
small failure rates. Hence, finding an appropriate set of scaling factors for all
performances and/or specifications can be extremely challenging.

370 J. Tao et al.

In this chapter, a number of evenly distributed scaling factors covering a
relatively large range are empirically selected. For the performance metrics with
large failure rates, the scaled failure rates corresponding to a number of small
scaling factors can be used to fit the model template in (12.54). On the other hand,
the scaled failure rates corresponding to a number of large scaling factors can be
used for the performance metrics with small failure rates. As such, a broad range of
performances and/or specifications can be accurately analyzed by the SSS method.

While the MLE algorithm is able to optimally estimate the model coefficients α,
β, and γ and then predict the failure rate PF , it remains an open question how we
can quantitatively assess the accuracy of our SSS method. Since SSS is based upon
Monte Carlo simulation, a natural way for accuracy assessment is to calculate the
confidence interval of the estimator P SSS

F . However, unlike the traditional estimator
where a statistical metric is estimated by the average of multiple random samples
and, hence, the confidence interval can be derived as a closed-form expression, our
proposed estimator P SSS

F is calculated by linear regression with nonlinear expo-
nential/logarithmic transformation. Accurately estimating the confidence interval of
P SSS
F is not a trivial task.

To address the aforementioned challenge, a bootstrapping based technique [8]
is developed to accurately estimate the CI of the SSS estimator. The key idea
of bootstrap is to re-generate a large number of random samples based on a
statistical model without running additional transistor-level simulations. These
random samples are then used to repeatedly calculate the value of P SSS

F in (12.57)
for multiple times. Based on these repeated runs, the statistics (hence, the confidence
interval) of the estimator P SSS

F can be accurately estimated.
In particular, we start from the estimated failure rates {PMC

G,q ; q = 1, 2, . . . ,Q}.
Each estimator PMC

G,q follows the Gaussian distribution in (12.60). The actual
mean PG,q in (12.60) is unknown; however, we can approximate its value by the
estimated failure rate PMC

G,q . Once we know the statistical distribution of PMC
G,q , we

can re-sample its distribution and generate NRS sampled values {PMC(n)G,q ; n =
1, 2, . . . , NRS}. This re-sampling idea is applied to all scaling factors {sq; q =
1, 2, . . . ,Q}, thereby resulting in a large data set {PMC(n)G,q ; q = 1, 2, . . . ,Q; n =
1, 2, . . . , NRS}. Next, we repeatedly run SSS for NRS times and get NRS different
failure rates {PSSS(n)F ; n = 1, 2, . . . , NRS}. The confidence interval of P SSS

F can
then be estimated from the statistics of these failure rate values.

Note that to apply SSS, we only need a set of scaling factors and their
corresponding scaled failure rates: {(sq, PG,q); q = 1, 2, . . . ,Q}. As long as
{sq; q = 1, 2, . . . ,Q} are sufficiently large, {PG,q; q = 1, 2, . . . ,Q} are not
small probability values and, therefore, can be efficiently estimated by CMC. When
applying CMC, we only need to determine whether the random samples belong
to the failure region. Namely, the PoI does not have to be continuous. Due to this
reason, SSS can be applied to estimate the rare failure rates for both continuous
and discrete PoIs. However, since SUS explores additional information from the
continuous performance values, SUS is often preferred over SSS when we handle
continuous PoIs.

12 Fast Statistical Analysis of Rare Circuit Failure Events 371

Fig. 12.5 The simplified
schematic is shown for an
SRAM column consisting of
64 bit-cells and a sense
amplifier (SA) designed in a
45 nm CMOS process

BL_

VDD

WL<0>

BL

CELL<0>

BL

CELL<63>

SA

OUT

BL_

CELL<1>

0 20 40 60

(a)

(b)

80 100
-10

-8

-6

-4

-2

0 20 40 60 80 100
-10

-8

-6

-4

-2

g
ol

1
0
(P

F
)

g
ol

1
0
(P

F
)

Fig. 12.6 The 95% confidence intervals (blue bars) of the SRAM example are estimated from 100
repeated runs with 6000 transistor-level simulations in each run for: (a) MNIS and (b) SSS. The
red line represents the “golden” failure rate

To demonstrate the efficacy of SSS, we consider an SRAM column consisting
of 64 bit-cells and a sense amplifier (SA) designed in a 45 nm CMOS process.
Figure 12.5 shows the simplified circuit schematic of this SRAM column example.
Similar to the SRAM read current example shown in Fig. 12.2, we consider the
local VTH mismatch of each transistor as an independent Normal random variable.
In total, we have 384 independent random variables. In this example, the output
of SA is considered as the PoI. If the output is correct, we consider the circuit
as “PASS”. Hence, the PoI is binary, and we cannot apply SUS in this example.
For comparison purposes, we run MNIS [17] and SSS for 100 times with 6000
transistor-level simulations in each run. As shown in Fig. 12.6, there are 3 and 97 CIs
out of 100 runs that cover the “golden” failure rate for MNIS and SSS, respectively.
Here, the “golden” failure rate is estimated by CMC with 109 random samples.
MNIS, again, fails to accurately estimate the corresponding CIs. SSS, however,

372 J. Tao et al.

successfully estimates the CIs. These results demonstrate that SSS is superior to
the traditional MNIS method in this SRAM example, where the dimensionality of
the variation space is more than a few hundred.

12.4 Conclusions

Rare failure event analysis in a high-dimensional variation space has attracted more
and more attention due to aggressive technology scaling. To address this technical
challenge, we summarize two novel approaches: SUS and SSS. Several SRAM
examples are used to demonstrate the efficacy of SUS and SSS. More experimental
results of SUS and SSS can be found in the recent publications [19, 21]. Both SUS
and SSS are based upon solid mathematical background and do not pose any specific
assumption on the failure region. Hence, they can be generally applied to estimate
the rare failure rates of a broad range of other circuits, e.g., DFF.

References

1. S. Au, J. Beck, Estimation of small failure probabilities in high dimensions by subset
simulation. Probab. Eng. Mech. 16(4), 263–277 (2001)

2. A. Bhavnagarwala, X. Tang, J. Meindl, The impact of intrinsic device fluctuations on CMOS
SRAM cell stability. IEEE J. Solid-State Circuits 36(4), 658–665 (2001)

3. C. Bishop, Pattern Recognition and Machine Learning (Prentice Hall, Upper Saddle River,
2007)

4. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2009)

5. B. Calhoun, Y. Cao, X. Li, K. Mai, L. Pileggi, R. Rutenbar, K. Shepard, Digital circuit design
challenges and opportunities in the era of nanoscale CMOS. Proc. IEEE 96(2), 343–365 (2008)

6. F. Cérou, P. Moral, T. Furon, A. Guyader, Sequential Monte Carlo for rare event estimation.
Stat. Comput. 22(3), 795–808 (2012)

7. L. Dolecek, M. Qazi, D. Shah, A. Chandrakasan, Breaking the simulation barrier: SRAM
evaluation through norm minimization, in International Conference on Computer-Aided
Design (2008), pp. 322–329

8. B. Efron, R. Tibshirnani, An Introduction to the Bootstrap (Chapman & Hall/CRC, London,
1993)

9. R. Fonseca, L. Dilillo, A. Bosio, P. Girard, S. Pravossoudovitch, A. Virazel, N. Badereddine, A
statistical simulation method for reliability analysis of SRAM core-cells, in Design Automation
Conference (2010), pp. 853–856

10. C. Gu, J. Roychowdhury, An efficient, fully nonlinear, variability aware non-Monte-Carlo yield
estimation procedure with applications to SRAM cells and ring oscillators, in IEEE Asia and
South Pacific Design Automation Conference (2008), pp. 754–761

11. A. Guyader, N. Hengartner, E. Matzner-Løber, Simulation and estimation of extreme quantiles
and extreme probabilities. Appl. Math. Optim. 64(2), 171–196 (2011)

12. R. Heald, P. Wang, Variability in sub-100nm SRAM designs, in International Conference on
Computer-Aided Design (2004), pp. 347–352

12 Fast Statistical Analysis of Rare Circuit Failure Events 373

13. R. Kanj, R. Joshi, S. Nassif, Mixture importance sampling and its application to the analysis of
SRAM designs in the presence of rare failure events, in Design Automation Conference (2006),
pp. 69–72

14. R. Kanj, R. Joshi, Z. Li, J. Hayes, S. Nassif, Yield estimation via multi-cones, in Design
Automation Conference (2012), pp. 1107–1112

15. K. Katayama, S. Hagiwara, H. Tsutsui, H. Ochi, T. Sato, Sequential importance sampling for
low-probability and high-dimensional SRAM yield analysis, in International Conference on
Computer-Aided Design (2010), pp. 703–708

16. A. Papoulis, S. Pillai, Probability, Random Variables and Stochastic Process (McGraw-Hill,
New York, 2001)

17. M. Qazi, M. Tikekar, L. Dolecek, D. Shah, A. Chandrakasan, Loop flattening and spherical
sampling: highly efficient model reduction techniques for SRAM yield analysis, in Design,
Automation & Test in Europe (2010), pp. 801–806

18. A. Singhee, R. Rutenbar, Statistical blockade: very fast statistical simulation and modeling of
rare circuit events, and its application to memory design. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 28(8), 1176–1189 (2009)

19. S. Sun, X. Li, Fast statistical analysis of rare circuit failure events via subset simulation in high-
dimensional variation space, in International Conference on Computer-Aided Design (2014),
pp. 324–331

20. S. Sun, Y. Feng, C. Dong, X. Li, Efficient SRAM failure rate prediction via Gibbs sampling.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(12), 1831–1844 (2012)

21. S. Sun, X. Li, H. Liu, K. Luo, B. Gu, Fast statistical analysis of rare circuit failure events via
scaled-sigma sampling for high-dimensional variation space, in International Conference on
Computer-Aided Design (2013), pp. 478–485

22. R. Topaloglu, Early, accurate and fast yield estimation through Monte Carlo-alternative
probabilistic behavioral analog system simulations, in IEEE VLSI Test Symposium (2006), pp.
137–142

23. J. Wang, S. Yaldiz, X. Li, L. Pileggi, SRAM parametric failure analysis, in Design Automation
Conference (2009), pp. 496–501

Chapter 13
Learning from Limited Data in VLSI
CAD

Li-C. Wang

13.1 Introduction

Applying machine learning tools to analyze data collected from design and test
processes can encounter different types of learning problems. One common type
of analytics is based on dividing data samples into two classes. For example, the
analytic begins withm samples where there aremp positive samples and the rest are
negative samples. A set of n features f1, . . . , fn are used to describe each sample.
The goal is to learn a model based on those features to differentiate one or more of
the positive samples from the negative ones. It is often that mp is very small and
in some cases, even mp = 0. In addition, m is limited as well. A recent paper [1]
discusses several applications that involve this type of analytics.

For example, Fig. 13.1 illustrates an application in functional verification [2, 3].
With a functional verification environment, a testbench is instantiated through
constrained random test generation (CRTG) into a set of functional tests. The design
under verification can be a SoC (System-on-Chip) and each test can be a C program
(or a sequence of instructions). Simulating the tests results in simulation traces
which in this case are the data to be analyzed. The task might concern a coverage
point CP in the design and the goal is to help improve the coverage of CP .

To run an analytic tool, a dataset is formatted as that illustrated in Fig. 13.2. First,
we need to define what a sample represents. In the context of analyzing simulation
traces, a sample can be defined as the activities observed in a simulation cycle.
Next, we need to describe the activities with a set of features. Each feature can be
defined based on a design signal. Then, each sample can be represented as a vector
of digital values. For example, these values can be 0, 1, a rising transition, and a

L.-C. Wang (�)
Department of Electrical and Computer Engineering, University of California, Santa Barbara,
Santa Barbara, CA, USA
e-mail: licwang@ece.ucsb.edu

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_13

375

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_13&domain=pdf
mailto:licwang@ece.ucsb.edu
https://doi.org/10.1007/978-3-030-04666-8_13

376 L.-C. Wang

Fig. 13.1 An application in
functional verification

Fig. 13.2 The format of a dataset to be analyzed

falling transition. Each sample (x) is also associated with a label (y) based on the
coverage status ofCP . The coverage status can be from the same cycle or in the next
few cycles. If CP is covered, the sample is labeled as positive (+1). Otherwise, it is
labeled as negative (−1).

Usually, the coverage point CP is of concern because it receives very few or
no coverage in the simulation. This means that in the dataset, there are very few
or no positive samples. The goal of the analytics can be for deriving a rule such
that satisfying the rule is likely to achieve coverage of CP . Such a rule can be a
combination of some feature values. After a rule is reported by an analytic tool,
the testbench is modified to produce more tests that satisfy the rule. These tests are
simulated and the quality of the rule is observed in the simulation result [2, 3].

In addition to functional verification, the paper [1] discusses several other
applications that involve this type of analytics. For example, in physical verification,
a given layout can be scanned into a sequence of snippets [4], i.e. a small window
of layout image, as illustrated in Fig. 13.3. Each snippet can be described with a set
of features, such as attributes related to shape, spacing, materials, etc. A positive
sample can be defined as a snippet that potentially causes an issue (i.e., a defect-
prone spot). Then, the rest are negative samples. Our interest is often in predicting
the positive samples. Such an application can also encounter a dataset where there
are many more negative samples than positive ones. Moreover, because different
positive samples may be due to different reasons, it is likely that for a particular
analysis, we are interested in modeling only one or few selected positive samples.

Another example is timing verification. In this case, samples can be defined as
paths (e.g., a path from one flip-flop to another flip-flop). For example, Fig. 13.4
shows critical paths collected from a silicon experiment [5] and their predicted

13 Learning from Limited Data in VLSI CAD 377

Fig. 13.3 Raster scan to extract layout snippets

Fig. 13.4 350 critical paths not predicted by STA

timing slacks from a static timing analysis (STA) tool. For a path, its actual
delays are measured on a set of process cores. The measurement is carried out by
frequency stepping where step 1 has the lowest frequency. Each dot shown in the
plot represents a path. For example, at step 1 there are four silicon-critical paths.

For this particular design, the assumption is that if the timing slack is less than
a selected value (denoted as x), then the path is reported as an STA-critical path. In
the plot, the (normalized) value of x is shown and it can be observed that 350 out
of the 480 paths shown in the plot are not reported as STA-critical paths. In fact,
based on the given x value, the STA reports 21,589 STA-critical paths and only 130
of those paths show up in this plot as a silicon-critical path [5].

To understand why a silicon-critical path is not an STA-critical path, one can start
the analysis with the first four silicon-critical paths shown on the left of the plot. In
this case, the positive samples are those 4 paths. The negative samples could be the
remaining 21,459 (= 21,589 − 130) STA-critical paths which do not show up as a

378 L.-C. Wang

silicon-critical path [5]. To enable the analysis, a set of design-related features are
developed for describing a path. These features can be based on, for example, usage
of the cells, layout properties, path location, and so on [5].

Limited Number of Samples For the applications discussed above, a given dataset
can have very few or no positive samples. Moreover, the number of total samples
can also be limited. For example, in functional verification simulation cost is usually
a main concern. Hence, the number of cycles simulated in each run is limited. In the
timing verification application, the number of paths with measured timing on silicon
chips is limited.

In those applications, there can be many choices to derive a feature set. Hence,
the underlying problem can be thought of as searching among the large number of
features for those few important ones. The difficulty of this search depends on the
availability of the positive samples, the total samples, and the number of potential
features to search on. For example, to search on a large number of potential features,
one might need a large number of samples and at least some positive samples. If
obtaining sufficient samples or positive samples is practically prohibited, then the
problem can become challenging.

Feature-Based Analytics Analytics involved in the applications discussed
above can be called feature-based analytics which means the underlying
problem is to search for a small combination of features or feature values
among a large set of features.

This search is different from traditional feature selection studied in machine
learning. A traditional feature selection algorithm is entirely data-driven. On the
other hand, the core problem faced in feature-based analytics is that the data can be
insufficient to determine the importance of some features when they are included in
a dataset. If such a dataset is run with a traditional feature selection algorithm the
result can be misleading. This is because a typical learning algorithm usually reports
some optimized result based on the data but does not report if the data is sufficient
or not for learning the result.

Because of the data limitation, feature-based analytics in practice can be more
intuitively captured as an iterative feature search process [1]. In each iteration, a
subset of features are selected to run an analytic tool with the samples in hand. The
result is evaluated until the outcome is satisfied.

Learning About the Features In general, learning can be seen as achieving two
tasks, learning about the features and learning to construct a model based on
the features. Traditionally, these two tasks are separated. A learning algorithm
focuses on model building and a feature selection algorithm focuses on feature
evaluation. Modern machine learning approach such as deep learning [6] puts much

13 Learning from Limited Data in VLSI CAD 379

more emphasis on learning about the features. Similar to that, the emphasis in the
applications discussed in this chapter can also be seen as more about learning the
features.

In addition to the applications mentioned above, several other analytic tasks
involving post-silicon test data can also be seen as learning about the features.
For example, one application is to build a model to predict the Fmax (functional
maximum frequency) of a chip [7]. In this application, a feature can be based on a
flip-flop, a test pattern, a ring oscillator, or a selected critical path. The feature value
is a delay structurally measured. The term “structurally” means to measure the delay
using some scan structure. The main challenge for this analytic is to decide what
features to use. If an effective set of features are used, an accurate model can be
built rather easily. Otherwise, it can be quite difficult to learn a good model.

Another example is production yield optimization [8, 9]. In this context, a feature
can be an e-test characterizing a process parameter on each wafer. A feature can also
be based on a measurable property of a production tool. The analytic is to uncover
a feature or a combination of features to explain a yield issue. Then, the goal is to
improve the yield by adjusting those feature values accordingly [8]. In this context,
the learning problem is almost entirely about learning the features.

13.2 Iterative Feature Search

The iterative feature search process is illustrated in Fig. 13.5. First, it is common
that a tool from the machine learning toolbox (e.g., [10]) expects a dataset that
is formatted as depicted in Fig. 13.2. To produce such a dataset, three steps are
performed: sample selection, feature selection, and dataset construction.

The sample selection step defines what a sample is and selects a set ofm samples
x1, . . . , xm for the analysis. For example, in functional verification a sample consists
of signal activities in a simulation cycle. In physical verification, a sample is a layout
snippet. In timing verification, a sample is a path. For Fmax prediction, a sample is
a chip. In yield optimization, a sample can be a chip, a wafer, or a lot. If the analysis
is based on supervised learning, a label value yi is calculated for each sample xi . If
it is for unsupervised learning, no label is required.

Fig. 13.5 Iterative feature search process

380 L.-C. Wang

Calculating the label for a sample might need a separate analysis itself. For
example, in yield analysis a wafer can be classified as good or bad and deciding
this binary label can be based on outlier analysis [8] (i.e., a bad wafer has a yield
number that is classified as an outlier). Furthermore, it is possible that a particular
analysis does not use all samples. For example, after some initial analysis, it might
be decided that a subset of samples require a more focused analysis.

An analytic task begins with an initial set of features. This feature set is often
developed by consulting a domain expert. Then, in each iteration a subset of
features f1, . . . , fn are selected. After this subset is determined, in the dataset
construction step for each sample xi its feature values (xi1, . . . , xin) are computed.
This computation might require running a machine learning tool also. For example,
the original values of a feature might be divided into ranges and this division can be
based on a clustering algorithm [11].

After a dataset is constructed, running a machine learning tool on the dataset can
result in one or more models. For example, a tool can allow setting some parameter
values to affect the optimization objective of the learning algorithm. With different
parameter values, different models can be obtained. The models then go through
a model evaluation step. In this step, the meaningfulness of a model is assessed
in the context of the particular application. If model evaluation cannot determine a
meaningful model, then a different dataset is required. This invokes a new iteration
that can involve redoing one or more of the previous three steps.

13.2.1 The Need for Domain Knowledge

In Fig. 13.5, domain knowledge is involved in the analyst layer for the dataset
preparation and model evaluation. And because of this, learning in view of the
figure can be seen as using the data to enhance one’s domain knowledge. In other
words, Knowledge + Data ⇒ Learning [1]. In theory, learning from data would
not be possible without any prior knowledge [12]. Hence, the view in Fig. 13.5 is
not entirely new. However, the view emphasizes the need for domain knowledge in
practice where there is a tradeoff between the knowledge requirement and the data
requirement in an analytic task, even though such a tradeoff might not be easily
quantifiable.

In view of Fig. 13.5, it is obvious that the effectiveness of the learning is not
determined solely by the machine learning tool. For example, if relevant features
are missing in a dataset, then no tool can produce a model completely capturing the
underlying answer. Consequently, automation of the entire search process requires
automation of the steps in the analyst layer as well. This means that automation
requires implementing a way to acquire and model the analyst’s domain knowledge
and this knowledge acquisition can be very much application dependent (see, e.g.,
[9, 13–15]).

13 Learning from Limited Data in VLSI CAD 381

13.2.2 The Model Evaluation Step

In practice, the model evaluation step can be expensive and/or time consuming. For
example, in functional verification, the step might involve modifying the testbench
according to a learned rule and generating some new tests. Then, these new tests are
simulated to decide if the rule is meaningful. In other applications, the evaluation
might involve meetings with the design team. In the context of production yield
optimization, the meetings could involve engineers from a foundry outside the
company. Consequently, each search iteration can be delayed and this bottleneck
is outside the machine learning toolbox.

13.2.3 The Tool Requirement

To speed up the search process, ideally the search desires a machine learning tool
that reports not only a learned model but also a quality measure for the model. This
quality measure can help decide in the model evaluation step whether or not to go
through an expensive evaluation process.

In traditional machine learning, a tool is designed to output an “optimized” model
based on a given dataset where the optimization objective depends on the learning
algorithm. Then, the quality of the model is evaluated through cross-validation
separated from the learning algorithm. In cross-validation, there are two datasets:
a training dataset and a validation dataset. The model is learned with the training
dataset and its accuracy is calculated by applying the model to the validation dataset.
The accuracy seen on the validation dataset is supposed to represent how the model
will perform if it is applied on future unseen samples.

While cross-validation is a common practice, the no-free-lunch (NFL) theorem in
machine learning [12] warns about its misuse in practice. Unless one can ensure that
the validation dataset is somewhat a complete representation for the future unseen
samples (which is often not the case in practice), cross-validation may provide little
assurance in practice for an application.

More importantly, for the applications mentioned before, in practice cross-
validation might not be a viable option to assess the quality of a model. This is due
to the limitation on the positive samples and/or on the total samples as discussed
above. This means that in Fig. 13.5, the quality of a model has to be assessed in a
separate model evaluation step which can be expensive. The only possible assurance
a learning tool can provide on its output models is that they are “optimized” with
respect to some optimization objective. However, whether such an optimization
objective is meaningful with respect to the particular application context can be
quite difficult to assess.

In view of Fig. 13.5, ideally, the search desires a machine learning tool that by
itself can provide some quality assurance for its output model. This can alleviate
the need for cross-validation. This requirement leads to the main question for the
machine learning toolbox: What additional quality assurance a learning algorithm
can provide?

382 L.-C. Wang

In summary, there are two areas of concern in an iterative search process: (1)
How to provide more quality assurance for the models entering the model evaluation
step? (2) How to effectively incorporate the domain knowledge in the iterative
search process? In the rest of the chapter, the discussion will focus more on the
first question. Then, in Sect. 13.7 we briefly review several recent works [9, 13–15]
related to the second question.

13.3 Assumptions in Machine Learning

To address the model quality concern, we need to understand why cross-validation is
needed in the first place, i.e. why a machine learning algorithm does not provide an
assurance for its model quality and demands cross-validation to evaluate its model?
To facilitate the discussion, Fig. 13.6 illustrates a theoretical setup in the context of
supervised learning.

In this setup, a hypothesis space H is assumed. H is a set of functions
(hypotheses) and one of them f is the target function (true answer) to be learned.
A sample generator G produces a set of m samples x1, . . . , xm according to an
unknown but fixed distribution D. For each sample xi , its label yi is calculated
as f (xi). Then, the dataset comprising the m pairs (xi , yi) is given to a learning
algorithm L to learn. The algorithm L outputs its answer h. Ideally, if the answer is
correct, we would have ∀x generated from G, f (x) = h(x).

In theory, f has to be learnable [16, 17] in order for a learning algorithm to
achieve some sort of learning. To ensure learnability, some assumptions need to be
made in view of the setup. There are five areas to make an assumption, as marked
in Fig. 13.6.

The first assumption concerns the hypothesis space H . It is intuitive that
learnability depends on the complexity of H , i.e. the more complex the H is, the
more difficult the learning is (hence less learnable). If H is finite and enumerable,
then its complexity can be measured more easily. For example, if H is the set of all
Boolean functions based on n variables, then H contains 22n distinct functions.

Fig. 13.6 Five areas to make an assumption in order to enable learning

13 Learning from Limited Data in VLSI CAD 383

The difficulty is when H is infinite and/or uncountable. In this case, one cannot
rely on counting to define its complexity. One theory to measure the complexity
of H is based on its ability to fit the data. This concept is called the capacity
of H which can be characterized as the VC dimension [18]. The VC dimension
(VC-D) also represents the minimum number of samples required to identify an f
randomly chosen fromH . To learn, one needs to make an assumption on the VC-D,
for example VC-D should be on the order of poly(n) (polynomial in n, the number
of features). Otherwise, the number of required samples can be too large for the
learning to be practical.

The second assumption concerns the sample generatorG. The common assump-
tion is that G produces its samples by drawing a sample randomly according to a
fixed distribution D. Hence, as far as the learning concerns, all future samples are
generated according to the same distribution.

The third assumption concerns the number of samples (m) available to the
learning algorithm. This m has to be at least as large as the VC-D. Then, the fourth
assumption concerns the complexity of the learning algorithm. Even though m is
sufficiently large, learning the function f can still be computationally hard [17].

The computational hardness can be characterized in terms of the traditional NP-
Hardness notion [17] or the hardness to break a cryptography function [19]. For
example, learning a 3-term DNF (disjunctive normal form) formula using the DNF
representation is hard [17]. In fact, except for a few special cases, learning based on a
Boolean functional class is usually hard [17]. Moreover, learning based on a simple
neural network is hard [20]. The computational hardness implies that in practice
for most of the interesting learning problems, the learning algorithm can only be
a heuristic. Consequently, its performance cannot be guaranteed on all problem
instances.

The last assumption concerns how the answer h is evaluated. In the discussion of
the other assumptions above, we implicitly assume that the “closeness” of h to f is
evaluated through an error function Err(), for example Err(h, f) = Prob(h(x) �=
f (x)) for a randomly drawn x. Notice that with such anErr(), an acceptable answer
does not require h = f . As far as the learning concerns, as long as their outputs are
the same with a high probability, h is an acceptable answer for f . This is because
the purpose of the learning is for prediction and the goal is to have a predictor
whose accuracy is high enough. However, for many applications in design and test
processes, the use of a learning model is not for prediction but for interpretation.
For those applications, adopting such an error function can be misleading.

13.4 Traditional Machine Learning

When applying a machine learning algorithm, a practitioner is often instructed to
pay attention to the issue of model overfitting. In practice, one way to observe
overfitting is through cross-validation. Let DT and DV denote the training and
validation datasets. Let EmErr(h,D) be an error function to report an empirical

384 L.-C. Wang

error rate by applying a model h onto the dataset D. Let the learning error rate
be eT = EmErr(h,DT) and validation error rate be eV = EmErr(h,DV). In
learning, a learning algorithm has onlyDT to work on. Hence, the algorithm can try
to improve on eT but does not know what the resulting eV might look like.

Overfitting means that the learning algorithm continues to improve on eT , but eT
and eV deviate from each other and hence, the improvement does not translate to
eV . In contrast, underfitting means that eT is high and hence there is still room for
improvement. Figure 13.7 illustrates these concepts where the x-axis can be thought
of as a scale to reduce eT based on employing a more complex model.

Refer back to Fig. 13.6. A learning algorithm usually has no knowledge regarding
the actual hypothesis space H where the function f is drawn. To learn, the learning
algorithm assumes a hypothesis space HL to begin with. This is usually done by
assuming a model representation, for example, such as a particular neural network
design. When the assumption of HL is over-constrained, its capacity is smaller than
the capacity ofH . Then, it is possible thatHL does not contain a hypothesis h that is
close enough to f . As a result, it is not possible forErr(h, f) to approach zero. This
can be considered as another perspective to understand the concept of underfitting.

In practice, to avoid underfitting the learning begins with an assumed HL that is
as less constrained as possible, i.e. with a capacity as large as possible. In practice,
this assumption is constrained by the computational resources for the learning.
This is because assuming a more complex HL usually implies more computational
overhead in the learning. Also, assuming a more complex HL means more samples
needed to cover the hypothesis space. More importantly, with a HL whose capacity
is larger than the capacity of H , obtaining sufficient data samples to achieve a
complete coverage on HL might not be practically possible.

For example, Fig. 13.8 depicts such a situation. After a learning algorithm checks
the hypotheses in a hypothesis space HL against all samples in the training dataset
DT , the space can be divided into two subsets. The first includes all hypotheses h′
that are inconsistent with the samples, for example EmErr(h′,DT) �= 0. Then,
the rest R (it is called the version space) includes all consistent hypothesis h where

Fig. 13.7 Underfitting vs. overfitting

13 Learning from Limited Data in VLSI CAD 385

Fig. 13.8 Occam’s Razor in machine learning

EmErr(h,DT) = 0. In overfitting, R contains two or more distinct answers. Here
“distinct” means existing one x where x �∈ DT and the two hypotheses h1, h2 result
in two different values, i.e. h1(x) �= h2(x). In other words, there exists a sample to
differentiate h1 and h2 but this sample is not inDT . In practice R can contain a large
number of distinct hypotheses after learning on DT , for example due to insufficient
samples used in the learning.

13.4.1 Occam’s Razor

In machine learning, a common strategy to pick a model in the version space R
is based on the Occam’s Razor principle, i.e. picking the “simplest” model as
the answer. Applying the Occam’s Razor principle requires a measure for model
simplicity. Suppose this measure is defined. Then picking the model in R becomes
an optimization problem, i.e. optimizing the model according to the simplicity
measure. Because such an optimization problem can be computationally hard, a
heuristic is usually developed to tackle the problem and such a heuristic does not
guarantee always finding the optimal model.

In theory, there is also some subtlety to apply the Occam’s Razor principle in
learning [21]. Furthermore, the definition of a simplicity measure might or might
not have a physical meaning in an application context. For all those reasons, an
“optimized” model reported by a learning tool might provide little assurance on eV .
Consequently, cross-validation is required to evaluate the model even though it is
considered as an optimized model by a learning algorithm.

13.4.2 Avoid Overfitting

Ideally, one would like to assume a HL whose capacity is the same as H . However,
this can be extremely difficult to accomplish in practice. In the context of feature-
based analytics discussed before, underfitting can mean a required feature is not
included in the initial feature set. Overfitting can mean there are features included

386 L.-C. Wang

where no data are available to tell their relevance. To avoid underfitting, one desires
to begin with an initial feature set containing all possible features. However, this
strategy can lead to a problem where there is no sufficient data to find the exact
answer (when those features are considered together).

From this perspective, the iterative search process in Fig. 13.5 can be thought
of as the search for the right hypothesis space HL. Because the data might not be
sufficient for the search, the Analyst Layer is needed to assist the search based on
domain knowledge.

13.5 An Adjusted Machine Learning View

As discussed in Sect. 13.4, a traditional machine learning algorithm is designed
to find an optimized model that fits a dataset based on a given hypothesis space
assumption. In practice, such an approach may provide little quality assurance on
its answer and hence, increases the burden of the model evaluation step in Fig. 13.5.
In addition, cross-validation might not be a viable option for the applications
considered due to limitation on the available samples for the learning.

For feature-based analytics, the essence of the problem is finding the right
hypothesis space assumption. From this perspective, it is desirable to design
a machine learning tool that can automatically evaluate a hypothesis space
assumption before finding a fitting model. With this in mind, an adjusted view
for the machine learning algorithm can be stated as the following: To search
for a hypothesis space assumption where there is exactly one hypothesis that
fits all samples in a given dataset.

In other words, the adjusted machine learning view adds an additional constraint
for judging the quality of the learning—the resulting hypothesis has to be unique in
terms of the assumed hypothesis space.

It is interesting to note that the adjusted machine learning view is compatible
with the Occam’s Razor principle and with the structural risk minimization (SRM)
proposed in [18]. The difference is the addition of the uniqueness requirement. In
fact, an early work to justify the Occam’s Razor principle in machine learning [22]
already suggested that the simplest model is better because the model is more likely
to be unique, i.e. it is harder to find another answer with the same complexity which
can fit the data. In a sense, the adjusted machine learning view makes the uniqueness
an explicit requirement for learning, which is already implicitly hinted by adopting
the Occam’s Razor principle.

13 Learning from Limited Data in VLSI CAD 387

13.5.1 Search for a Hypothesis Space Assumption

To implement the adjusted machine learning view, we need a way to determine the
uniqueness for a given hypothesis space assumption. In addition, we also need a
way to define a set of hypothesis space assumptions. To facilitate the search we
may desire to order those hypothesis spaces with increasing capacity as H1,H2,
. . ., Hi,Hi+1, . . . where Hp is less complex than Hq for all p < q. This ordering
enables one to evaluate a set of hypothesis spaces incrementally by following the
Occam’s Razor principle (and the SRM in [18]). Figure 13.9 illustrates the idea.

In this figure, a version space Ri represents the set of consistent hypotheses
(see Fig. 13.8) in Hi based on a given dataset. In the figure, R1, . . . , Ri−1 are
all empty, meaning that no hypothesis in those hypothesis spaces can be found
to fit all the samples in the dataset (i.e., these hypothesis spaces underfits the
dataset). Hi is the first hypothesis space where Ri is not empty. Depending on how
stringent the uniqueness requirement is applied, the search may continue into Hi+1.
For example, uniqueness may be defined as |R| = 1, i.e. containing exactly one
consistent hypotheses. Alternatively, the requirement might be relaxed to be such as
0 < |R| ≤ 5. If the requirement is satisfied by Hi , then the consistent hypothesis
(or hypotheses) is reported.

A machine learning tool implementing the idea in Fig. 13.9 can provide two
advantages. First, the output includes a hypothesis space assumption used to
obtain the answer(s). This provides additional information for its user to judge the
meaningfulness of a reported model. Second, it is possible that the tool results in
a situation where no hypothesis space satisfies the uniqueness requirement. In this
case, the learning can fail. This failure can immediately triggers an adjustment to the
feature set in use or the set of the hypothesis spaces assumed. This means to start
another iteration in the search process in Fig. 13.5, without involving the expensive
model evaluation step.

Fig. 13.9 Search for a hypothesis space assumption

388 L.-C. Wang

13.6 A SAT-Based Implementation

One major challenge for implementing a learning tool following the idea presented
in Fig. 13.9 is to obtain an ordered sequence of hypothesis spaces. This ordering
should be based on measuring the capacities of the hypothesis spaces. If a hypothesis
space contains an infinite number of hypotheses, it is difficult to measure its
capacity. In theory the capacity can be measured in terms of its VC dimension [18].
However, in practice the effective capacity of a hypothesis space is also limited by
the learning algorithm [6], making its estimation quite difficult.

For applications discussed in Sect. 13.1, however, the number of features is
limited. Moreover, the number of values a feature can take can be limited as well.
Hence, for those applications we can assume that each feature has only a limited
number of possible values. If we use a pseudo feature to represent a particular
feature value, then we can further assume that all the features in use are binary,
i.e. yes for the occurrence of the feature value and no otherwise. Therefore, from a
theoretical perspective the underlying learning problem can be treated as a Boolean
learning problem.

13.6.1 Boolean Learning

Given n features, the Boolean space contains 22n Boolean functions. A hypothesis
space is a set of Boolean functions in this space. Usually, a hypothesis space is
specified with a representation. For example, a k-term DNF restricts the functions
to those representable with k product terms. Each product term (also called a
monomial) can have up to n literals (features in positive or negative forms).

For a given Boolean hypothesis space, its capacity can be measured in terms
of the number of Boolean functions contained in the space. Hence, assuming
that the underlying learning problem is Boolean learning avoids the difficulty for
measuring the capacity of an infinite hypothesis space. However, it does not avoid
the computational hardness discussed in Sect. 13.3 before. For example, learning
DNF formulas is as hard as solving a random K-SAT problem [23]. For k-term DNF,
even for k = 3 the problem is hard [17] (hard to find a polynomial-time algorithm
unless RP = NP. Note: P ⊆ RP ⊆ NP [24]).

13.6.2 Monomial Learning

The simplest case for k-term DNF learning is k = 1. In this case, the problem is
essentially to learn a monomial. From the perspective of computational learning
theory (CLT), monomials are efficiently learnable [17]. Even though monomial
learning is considered as an easy problem in CLT, it can still be a hard problem

13 Learning from Limited Data in VLSI CAD 389

in view of Fig. 13.9. In Fig. 13.6, consider that D is a uniform distribution. Suppose
the true answer f is the monomial f1 · · · fj for a large j . It is likely that no positive
sample is generated even for a large m, i.e. for all samples x produced by G we
have f (x) = 0. Consequently, the output model is simply the constant 0. From the
CLT perspective, the constant 0 is a good answer because the error probability for
f (x) �= 0 on a randomly drawn x is extremely low. However, in practice a constant
0 most often means the learning has failed.

With the adjusted learning view (Fig. 13.9), the concept of learnable is not based
on an error function Err(). Instead, learnable can be viewed as achieving a version
space with a very small |Ri | (e.g., |Ri | = 1). With this change, monomial learning
can be hard when there lacks a positive sample. In fact, if there is only one positive
sample and many negative samples, finding the shortest monomial is NP-hard [25].

13.6.3 Hypothesis Space Pruning

Take monomial learning as an example. The ordered sequence of hypothesis spaces
in Fig. 13.9 can be defined asH1, . . . , Hn where n is the number of features. EachHl
comprises the monomials of the same length l (i.e., with l literals). For example,H1
comprises the monomials of length 1, i.e. {f1, f

′
1, f2, f

′
2, . . . , fn, f

′
n}.H2 comprises

the monomials of length 2, which has 22
(
n
2

)
monomials: For every pair of features

fi, fj , where i �= j , we have 22 monomials {fifj , f ′i fj , fif ′j , f ′i f ′j }. In general,

Hl comprises 2l
(
n
l

)
monomials.

For a given Hl and a dataset, our goal is to compute the version space Rl . This
computation can be based on removing the monomials that are inconsistent with the
samples. For example, suppose n = 3 and l = 2. A negative sample “001” removes
the following hypotheses: f ′1f ′2, f ′1f3, f ′2f3. A positive sample “100” removes all
hypotheses except for: f1f

′
2, f1f

′
3, f ′2f ′3. In general, a negative sample removes

(
n
l

)
hypotheses while a positive sample removes all but the

(
n
l

)
hypotheses. Therefore,

the pruning power of a positive sample is larger than a negative sample.
The ordered sequence of hypothesis spaces can be generalized to include k-

term DNF learning for up to a small k, for example k ≤ 3. In this case, there are
two variables to define an ordering of the hypothesis spaces, l as the total number
of literals in a hypothesis and k as the total number of terms. For example, the
hypothesis spaces can be ordered in such a way that Hl1,k1 is before Hl2,k2 in the
sequence if l1 < l2 or l1 = l2 ∧ k1 < k2.

In pruning a hypothesis space H , each sample can be seen as a constraint that
removes a subset of hypotheses in the space. Suppose our uniqueness requirement
is |R| = 1, i.e. the version space after the pruning contains exactly one hypothesis.
Then the pruning can be formulated as a Boolean satisfiability (SAT) problem. A
satisfiable assignment represents a hypothesis that is consistent with all samples. To
check for the uniqueness requirement we need to invoke SAT twice. The first time

390 L.-C. Wang

is to find a satisfiable assignment A. Then, A is converted into a constraint to block
itself. After this constraint is added to the SAT formula, if the result is unsatisfiable
then we know A is the only satisfiable assignment. If not, we know |R| > 1.

13.6.4 SAT Encoding

To convert the pruning problem into a SAT problem, we need three groups of CNF
(conjunctive normal form) clauses: (1) clauses to constrain the hypothesis space
based on given n, l, k, where n is the number of features, l is the number of literals
in a hypothesis, and k is the number of terms; (2) clauses to constrain the space
based on positive samples (if any), and (3) clauses to constrain the space based on
negative samples. Let mp be the number of positive samples and mn be the number
of negative samples. Then, the encoding method described below results in a CNF
formula with Θ(nkl + kmp) symbols and Θ(nkl + nkmp + kmn) clauses.

The key idea for the encoding is that each feature can appear in positive, or in
negative, or does not appear at all in a term. Hence, three variables are used to
represent these three cases for a feature:

• X
j

i,1 is True iff the i-th feature in the j -th term appears in negative form

• X
j

i,2 is True iff the i-th feature in the j -th term appears in positive form

• X
j

i,3 is True iff the i-th feature does not appear in the j -th term

Since exactly one of the three cases is true, one-hot constraints are required to
enforce the requirement:

Πkj=1Π
n
i=1

(
X
j

i,1 +Xji,2 +Xji,3
) (
¬Xji,1 +¬Xji,2

)
(
¬Xji,1 +¬Xji,3

) (
¬Xji,2 +¬Xji,3

)
.

For a given (l, k), we need to constrain the space to those hypotheses containing
only l literals. This involves a cardinality constraint. The performance of different
encoding methods for a cardinality constraint can be found in [26]. In our imple-
mentation, we choose the sequential counter method [27] because its performance is
comparable to other encoding methods and it has the unit propagation property[26].
The encoding for the cardinality constraint requires additional l(nk − 1) new
symbols and Θ(nkl) clauses. Further detail can be found in [28].

To illustrate the conversion from a positive samples into clauses, consider a
positive sample s = 101. For a single term to be evaluated as true, feature 1 and
feature 3 must not appear in negative form and feature 2 must not appear in positive
form. Then, at least one term must be evaluated as true. A naive encoding leads to
nk clauses, which is not feasible. To overcome this challenge, additional k symbols,

13 Learning from Limited Data in VLSI CAD 391

A1, A2, . . . , Ak are used such that Aj is true if and only if the j -th term is evaluated
as true. The number of clauses reduces to (n+ 1)k + 1. The requirement of at least
one term is evaluated as true is encoded by a single clause:

(
Σkj=1A

j
)
,

and for each j , the relation of Aj and Xji,δ is maintained by

Πni=1

(
¬Xji,2−s[i] + ¬Aj

)
, and(

Σni=1X
j

i,2−s[i] + Aj
)
.

Similarly, suppose s = 101 is a negative sample. For a single term to be evaluated
as false, at least one of feature 1 and feature 3 must appear in negative form or feature
2 appear in positive form. Besides, all the terms must be evaluated as false. For each
sample, k clauses are required. The overall encoding is

Πkj=1

(
Σni=1X

j

i,2−s[i]
)
.

13.6.5 Effect of the Uniqueness Requirement

To illustrate the effect of including the uniqueness requirement in learning, in this
section the performance of the SAT-based learning tool is compared to a popular
decision-tree learning tool, the CART tool from the Python machine learning library
[10]. The discussion focuses on why uniqueness can be a desirable property in
learning. Detail of our learning tool is described in [28] which is named VeSC-CoL
(version space cardinality based concept learning) and uses the Lingeling solver
[29] for SAT.

In the experiment, we assume the number of features n = 100. We further assume
the length of the true answer is 6 which can be a k-term DNF formula for k = 1, 2, 3.
In each case, a k is randomly picked and the true answer is also randomly picked
from all the k-term DNF hypotheses. The dataset contains exactly k positive samples
which is randomly generated. Then, negative samples are also randomly generated.

Figure 13.10 shows a comparison result for VeSC-CoL and CART. The experi-
ment includes 20 cases. The x-axis shows the number of negative samples used in
the learning up to that particular point. In the experiment, the k positive samples are
always used first, before any negative samples are used.

For CART, the figure shows the number of cases the CART tool correctly reports
the true answer at each x value. For VeSC-CoL, the figure shows two numbers at
each x value. The first is the number of cases where VeSC-CoL reports a unique
hypothesis as its answer. This is marked as a red dot. The second is the number of

392 L.-C. Wang

Fig. 13.10 A comparison between VeSC-CoL and CART

cases where VeSC-CoL correctly finds the true answer. This is marked as a blue dot.
When these two numbers coincide, the figure shows an overlap of red dots circled
by blue edge.

For CART, the best scenario is that it finds the true answer in 6 out of the 20 cases.
This happens occasionally on some particular x values after 3000. For the range of
the x values shown, CART performs slightly better as more samples are provided.
However, in addition to being poor, its performance fluctuates quite frequently as
more samples are added.

For VeSC-CoL, notice that a unique hypothesis found by the tool does not always
guarantee it is the correct answer. However, this happens only when the x value is
still relatively small. After about x = 650, a unique hypothesis is always the correct
answer. More interestingly from x = 650 and up to about x = 1500, as more
samples are added to the learning, the VeSC-CoL result always improves. After
x = 1500, VeSC-CoL finds all the 20 true answers and the result does not change
with more samples added.

Figure 13.11 presents the result of VeSC-CoL from a different perspective and
focuses on x value up to 800. For each of the y label from 1 to 20, the figure marks
the x values where VeSC-CoL finds a unique hypothesis but it is not the true answer.
We can call each range of such x values a mistake window. Figure 13.11 shows
where such mistake windows occur as the number of samples increases.

It is interesting to observe that most of the mistake windows occur when the x
value is less than 200. The largest window size is 70. Most importantly, a mistake
window occurs only for x ≤ 647. After more than 647 samples are used in the
learning, no mistake window occurs (also see Fig. 13.10 above).

To see what a mistake window means, refer back to the hypothesis space search
process depicted in Fig. 13.9 before. Suppose Hi is the hypothesis space that
contains the true answer. When the samples used in the learning are not sufficient,
the version space Ri can still include many unfiltered hypotheses. However, it is
possible that the samples are enough to filter out most of the hypotheses in a simpler

13 Learning from Limited Data in VLSI CAD 393

hypothesis space, say H2. By chance, this filtering might result in one hypothesis
left in H2. Then, because of its uniqueness, VeSC-CoL would report the hypothesis
as its answer. However, as more samples are added to the learning, this hypothesis
will be filtered out and the wrong answer is removed. In other words, the largest
window size 70 shown in Fig. 13.11 means that such a mistake made by VeSC-CoL
is corrected after 70 additional samples are used. From this perspective, Fig. 13.11
shows that in all cases when VeSC-CoL makes a mistake, the mistake is corrected
after up to 70 new samples added in the learning.

Note that each mistake window shown in Fig. 13.11 corresponds to a hypothesis
space that is simpler to the hypothesis space containing the true answer. Because the
true answer is in a hypothesis space with l = 6 and k randomly selected between
1 and 3, there are many hypothesis spaces before the true answer as the hypothesis
spaces are arranged according to the ordering discussed in Sect. 13.6.3.

Figure 13.12 shows the result by redoing the experiment with l = 3 and k
randomly selected between 1 and 2. In other words, the result shows what happens
if we make the true answer easier to learn. For VeSC-CoL, its performance is similar
to that shown in Fig. 13.10 before. After x > 124, VeSC-CoL finds the true answer
in all 20 cases. Recall that this number is about 1500 in Fig. 13.10 before.

Fig. 13.11 The mistake
windows in VeSC-CoL
learning when the x value is
small

Fig. 13.12 Result by redoing
the experiment with l = 3 and
k = 1, 2

394 L.-C. Wang

The performance of CART is substantially better than that shown in Fig. 13.10.
It is interesting to observe that in some cases (only occur when x < 90), CART can
actually perform better than VeSC-CoL, i.e. finding true answers for more cases.
However, CART result can still fluctuate as more samples are used. But eventually
(after about x > 500), CART can also find all true answers.

The two results presented above can be summarized as follows:

• Finding a unique answer in a hypothesis space does not guarantee it is the correct
answer. However, if there are enough samples to filter out all other hypotheses in
the hypothesis space containing the true answer, the true answer is guaranteed to
be found.

• After some initial samples, the performance of VeSC-CoL becomes consistent,
i.e. more samples always leading to a better result. This is not the case for CART.

• If the true answer is easy to learn, CART can be better than VeSC-CoL, i.e. can
find the true answer with fewer samples. However, the difference in the number
of samples required to learn between CART and VeSC-CoL is not that significant.
In contrast, if the true answer is hard to learn, VeSC-CoL can significantly out-
perform CART.

• For a hard-to-learn answer, VeSC-CoL requires much less samples to learn than
CART. However, because VeSC-CoL involves a SAT solver, it is computationally
more expensive. In a sense, VeSC-CoL enables its user to trade computational
cost for sample requirement. Hence, if samples are limited, VeSC-CoL can be a
useful alternative for learning.

To conclude this section, Fig. 13.13 shows another result with the same setting as
that for generating Fig. 13.10 by adding 100 more cases. As seen, the performance
of VeSC-CoL in Fig. 13.13 is similar to that shown in Fig. 13.10. The performance
of CART is also comparable, at x = 5000 CART finds the true answer for 22 cases.
The difference between VeSC-CoL and CART remains significant.

Figure 13.14 then shows what happens to the CART’s performance if the number
of negative samples is increased up to 50,000. Close to the right end in the figure,
CART correctly finds the true answer for 45 cases. For additional 8 cases, CART

Fig. 13.13 Result by redoing
the experiment with 100
cases

13 Learning from Limited Data in VLSI CAD 395

finds the true answer occasionally at some particular x values but the result is not
stable. As a result, the number of correctly found cases fluctuates between 47 and
53 on the right side of the figure.

Table 13.1 then shows what types of the cases CART can find the true answer and
what types of the cases CART cannot. Recall that the length of each true answer is
fixed at 6. A true answer can be a 1-term, 2-term, or 3-term DNF formula. If it is a
1-term DNF, it is a length-6 monomial. If it is a 2-term DNF, the lengths of the two
terms are represented as (l1, l2) where l1 + l2 = 6. Similarly, for a 3-term DNF, the
lengths are represented as (l1, l2, l3) where l1 + l2 + l3 = 6.

Observe from Table 13.1 that if the true answer is a 1-term monomial, CART can
find the true answer for all of them. If it is a 2-term DNF with lengths (1, 5), CART
can also find the true answer. For those (1, 1, 4) cases, CART’s result fluctuates
between 2 and 8. For other cases, CART does not find the true answer at any x value
even with up to 50,000 negative samples in use.

Suppose we only consider those 53 cases CART can find the true answer at least
once. Figure 13.14 shows that it still requires about 20,000 negative samples for
CART to find all those answers. This is compared to the sample requirement for
VeSC-CoL in Fig. 13.13, where after about 1700 samples VeSC-CoL correctly finds
all 100 true answers.

Fig. 13.14 CART result by
adding up to 50,000 negative
samples in learning

Table 13.1 Detail of the
CART result for the 100 cases
in Fig. 13.14

Formula Lengths # cases # Correctly found

1-term 6 35 35

2-term (1, 5) 10 10

2-term (2, 4) 10 0

2-term (3, 3) 15 0

3-term (1, 1, 4) 10 2 to 8∗

3-term (1, 2, 3) 10 0

3-term (2, 2, 2) 10 0
∗This number fluctuates between 2 and 8

396 L.-C. Wang

From the results presented in this section, observe that the performance of
VeSC-CoL is quite consistent. In contrast, the performance of CART is not. In
Figs. 13.10, 13.13, and 13.14 CART’s performance does not look satisfactory.
In Fig. 13.12, CART seems to be doing fine. This reveals that the search strategy
of Fig. 13.9 with the uniqueness requirement can result in a learning process more
consistent, as comparing to a traditional learning method such as CART whose
performance can be largely affected by how easy or difficult to learn the true answer.

13.7 Incorporating Domain Knowledge

As discussed in Sect. 13.2.1, the analyst layer in Fig. 13.5 is driven mostly by
domain knowledge. Hence, to automate the entirety of the iterative search process,
one has to consider automation of the steps in the analyst layer. The analyst layer
essentially comprises two major components, the dataset preparation component
including the sample selection, feature selection, and dataset construction, and the
model (or result) evaluation component.

For example, in the context of functional verification the dataset preparation
involves two major tasks: generation of the tests to run the simulation and the
selection of signals to encode a simulation trace. The data quality, in this case the
quality of the simulation traces largely depends on the tests used in the simulation.
To automate the test generation, the work in [14] presents a constrained process
discovery approach that learns a test generation model based on example tests (e.g.,
C programs) written by a verification engineer. The test generation model can then
be executed to produce tests automatically. For signal selection, often a verification
engineer relies on reading the specification document to select the important and
relevant signals. To automate this task, the work in [15] develops a text-mining
approach to extract signals from a specification document.

In the context of production yield optimization, the dataset preparation involves
making several choices to decide what data to analyze and what type of analytic to
run [8]. In practice, these choices are made by the analyst. The work in [9] presents a
way to learn how an analyst makes such choices in sequence for performing a yield
data analytic task. The learning result is captured in a process model that looks like a
flowchart where each node in the model is a software script. The model can then be
executed automatically as if the analyst would perform the analytics for resolving
a yield issue. For automating the result evaluation component, recently the work in
[13] presents a learning approach to construct a plot recognizer based on example
plots instructed by an analyst. Such a plot recognizer can be used to automatically
recognize the meaningfulness of an analytic result when it is presented as a plot. The
implementation is based on the recently proposed generative adversarial networks
(GAN) learning approach [30, 31].

13 Learning from Limited Data in VLSI CAD 397

In general, where to apply learning and what type of learning to apply for
automating the analyst layer is largely application dependent. For example, in the
context of functional verification, learning is applied to automate two different tasks
in the dataset preparation and the learning approaches involved are fundamentally
different, i.e. constrained process discovery [14] vs. text mining [15]. In the context
of production yield optimization, learning is applied to automate both the dataset
preparation and result evaluation, and the learning approaches are also different,
i.e. process mining [9] vs. GAN [13]. These examples illustrate the diversity of the
problem for automating the analyst layer. Overall, whether the analyst layer for a
given application can be fully automated remains an open question to be explored
with future research.

13.8 Conclusions

In this chapter, the discussion focuses on a particular type of learning encountered
in some design and test applications where the data samples are limited, which is
given the name feature-based analytics. Because of the data limitation, in practice
it is more intuitive to view feature-based analytics in terms of an iterative feature
search process as depicted in Fig. 13.5. The effectiveness of this search depends on
the steps conducted in the analyst layer as well as on the machine learning tool in
use. For the machine learning tool, we explain the challenges to adopt a traditional
machine learning problem formulation view. Instead, an adjusted machine learning
view is presented, and illustrated in Fig. 13.9. In the adjusted view, uniqueness of
an answer is included as an additional requirement for learning and the focus of the
learning is shifted from finding a model to finding a hypothesis space. A SAT-based
approach to realize this adjusted learning view in the context of learning a k-term
DNF formula is presented and its benefits are illustrated with several experiment
results. Finally, for automating the tasks in the analyst layer, several recent works are
briefly discussed as examples to illustrate the diversity of the problem. More future
research is required in order to assess if the analyst layer can be fully automated and
such automation can also be very much application dependent.

Acknowledgements This work is supported in part by National Science Foundation under grant
No. 1618118 and in part by Semiconductor Research Corporation with project 2016-CT-2706.

The author would also like to thank his doctoral student Kuo-Kai Hsieh especially for his help
on Sects. 13.6.4 and 13.6.5.

This chapter is an extension from author’s prior work “Machine Learning for Feature-
Based Analytics,” in Proceeding 2018 International Symposium on Physical Design, pp. 74-81
©2018 Association for Computing Machinery, Inc. http://doi.acm.org/10.1145/3177540.3177555.
Reprinted by permission.

http://doi.acm.org/10.1145/3177540.3177555

398 L.-C. Wang

References

1. L.-C. Wang, Experience of data analytics in EDA and test - principles, promises, and
challenges. IEEE Trans. CAD 36(6), 885–898 (2017)

2. W. Chen, L.-C. Wang, J. Bhadra, Simulation knowledge extraction and reuse in constrained
random processor verification, in ACM/IEEE Design Automation Conference (2013)

3. L.-C. Wang, Data mining in functional test content optimization, in ACM/IEEE Asian South
Pacific Design Automation Conference (2015)

4. G. Drmanac, F. Liu, L.-C. Wang, Predicting variability in nanoscale lithography processes, in
ACM/IEEE Design Automation Conference (2009)

5. J. Chen, B. Bolin, L.-C. Wang, J. Zeng, D. (Gagi) Drmanac, M. Mateja, Mining AC delay
measurements for understanding speed-limiting paths, in IEEE International Test Conference
(2010)

6. I. Goodfellow, Y. Benjio, A. Courville, Deep Learning (The MIT Press, Cambridge, 2016)
7. J. Chen, L.-C. Wang, P.-H. Chang, J. Zeng, S. Yu, M. Metaja, Data learning techniques and

methodology for Fmax prediction, in IEEE International Test Conference (2009)
8. J. Tikkanen, S. Siatkowski, N. Sumikawa, L.-C. Wang, M.S. Abadir, Yield optimization using

advanced statistical correlation methods, in IEEE International Test Conference (2014)
9. S. Siatkowski, L.-C. Wang, N. Sumikawa, L. Winemberg, Learning the process for correlation

analysis, in IEEE VLSI Test Symposium (2017)
10. F. Pedregosa et al., Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–

2830 (2010)
11. N. Callegari, D. (Gagi) Drmanac, L.-C. Wang, M.S. Abadir, Classification rule learning using

subgroup discovery of cross-domain attributes responsible for design-silicon mismatch, in
ACM/IEEE Design Automation Conference, 374–379 (2010)

12. D.H. Wolpert, The lack of a priori distinctions between learning algorithms. Neural Comput.
8(7), 1341–1390 (1996)

13. M. Nero, J. Shan, L.-C. Wang, N. Sumikawa, Concept recognition in production yield data
analytics, in IEEE International Test Conference (2018)

14. K. Hsieh, L.-C. Wang, W. Chen, J. Bhadra, Learning to produce direct tests for security
verification using constrained process discovery, in Design Automation Conference (2017)

15. K-K. Hsieh, S. Siatkowski, L.-C. Wang, W. Chen, J. Bhadra, Feature extraction from design
documents to enable rule learning for improving assertion coverage, in ACM/IEEE Asia South
Pacific Design Automation Conference (2017)

16. L.G. Valiant, A theory of learnable. Commun. ACM 27(11), 1134–1142 (1984)
17. M.J. Kearns, U. Vazirani, An Introduction to Computational Learning Theory (The MIT Press,

Cambridge, 1994)
18. V. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 2000)
19. M.J. Kearns, U. Vazirani, Cryptographic limitations on learning Boolean formulae and finite

automata. J. ACM 14(1), 67–95 (1994)
20. A. Daniely, N. Linial, S. Shaleve-Shwartz, From average case complexity to improper learning

complexity, in ACM Symposium on Theory of Computing (2014), pp. 441–448.
21. D.H. Wolpert, The relationship between Occam’s Razor and convergent guessing. Complex

Syst. 4, 319–368 (1990)
22. J. Pearl, On the connection between the complexity and credibility of inferred models. Int. J.

General Syst. 4, 255–264 (1978)
23. A. Daniely, S. Shalev-Shwartz, Complexity theoretic limitations on learning DNF’s, in PMLR:

Proceeding of Machine Learning Research, vol. 49 (2016), pp. 815–830
24. R. Motwani, P. Raghavani, Randomized Algorithms (Cambridge University Press, Cambridge,

1995)
25. D. Haussler, Quantifying inductive bias: AI learning algorithms and valiant’s learning frame-

work. Artif. Intell. 36, 177–221 (1998)

13 Learning from Limited Data in VLSI CAD 399

26. Y. Ben-Haim, A. Ivrii, O. Margalit, A. Matsliah, Perfect hashing and CNF encodings of
cardinality constraints, in International Conference on Theory and Applications of Satisfiability
Testing (Springer, Berlin, 2012), pp. 397–409

27. C. Sinz, Towards an optimal CNF encoding of boolean cardinality constraints, in International
Conference on Principles and Practice of Constraint Programming (Springer, Berlin, 2005),
pp. 827–831

28. K. Hsieh, L.-C. Wang, A concept learning tool based on calculating version space cardinality
(2018). arXiv:1803.08625v1

29. A. Biere, Lingeling, Plingeling and Treengeling entering the SAT competition, in Proceedings
of SAT Competition (2013)

30. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
J. Bengio, Generative adversarial networks (2014). arXiv:1406.2661

31. A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolu-
tional generative adversarial networks (2016). arXiv:1511.06434v2

Part IV
Machine Learning for Analog Design

The successful construction of all machinery depends on the
perfection of the tools employed, and whoever is a master in
the art of tool-making possesses the key to the construction
of all machines.

Charles Babbage

Chapter 14
Large-Scale Circuit Performance
Modeling by Bayesian Model Fusion

Jun Tao, Fa Wang, Paolo Cachecho, Wangyang Zhang, Shupeng Sun, Xin Li,
Rouwaida Kanj, Chenjie Gu, and Xuan Zeng

14.1 Introduction

The aggressive technology scaling has made it more difficult than ever to design and
manufacture high-performance analog and mixed-signal (AMS) circuits (e.g., RF
front-end, high-speed I/O link, etc.) that are robust to large-scale process variations
[1–3]. Most AMS performance metrics (e.g., random offset) are extremely sensitive
to the inter-die and/or intra-die variations associated with today’s nanoscale man-
ufacturing technology. For this reason, AMS circuits are not as scalable as digital

J. Tao (�) · X. Zeng (�)
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University,
Shanghai, China
e-mail: taojun@fudan.edu.cn; xzeng@fudan.edu.cn

F. Wang · S. Sun
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA,
USA
e-mail: fwang1@ece.cmu.edu; shupengs@ece.cmu.edu

P. Cachecho · R. Kanj
Department of Electrical and Computer Engineering, American University of Beirut, Beirut,
Lebanon

W. Zhang
Cadence Design Systems, Inc., Pittsburgh, PA, USA
e-mail: wzhang@cadence.com

X. Li (�)
Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
e-mail: xinli.ece@duke.edu

C. Gu
Strategic CAD Labs, Intel Corporation, Hillsboro, OR, USA
e-mail: chenjie.gu@intel.com

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_14

403

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_14&domain=pdf
mailto:taojun@fudan.edu.cn
mailto:xzeng@fudan.edu.cn
mailto:fwang1@ece.cmu.edu
mailto:shupengs@ece.cmu.edu
mailto:wzhang@cadence.com
mailto:xinli.ece@duke.edu
mailto:chenjie.gu@intel.com
https://doi.org/10.1007/978-3-030-04666-8_14

404 J. Tao et al.

circuits and they have been considered as the major bottleneck for future scaling of
integrated circuit (IC) technology [4].

To address these challenges associated with AMS circuits, adaptive post-silicon
tuning has been recently proposed [5–7] to facilitate the continuous scaling of AMS
circuits. The adoption of post-silicon tuning, however, introduces tremendous new
design challenges. Each AMS circuit now becomes a large-scale, complex system
that can adaptively vary over time. It, in turn, brings up enormous technical problems
related to computer-aided design of tunable AMS circuits.

• Challenges for pre-silicon validation: A tunable AMS circuit must contain a
number of control knobs (e.g., switches, tunable bias voltage/current, etc.) for
post-silicon reconfiguration. In some cases, these circuits may even include on-
chip sensors and control blocks for “self-healing”. Hence, the complexity of these
AMS circuits substantially increases and the corresponding simulation cost for
pre-silicon validation becomes increasingly large. This cost issue is especially
critical for highly complex AMS circuits, such as phase-locked loop and high-
speed I/O link, where a single transistor-level simulation may take a few days or
even a few weeks to finish. In this case, it is extremely expensive to repeatedly
run a large number of simulations over all process variations and environmental
corners to validate a given design.

• Challenges for post-silicon tuning: Post-silicon tuning requires us to first
measure the circuit performance by either on-chip sensors and/or off-chip
equipment and then determine the optimal setup for all control knobs based on
the measurement results. Towards this goal, a tuning policy must be developed
to map the measured performance to the knob setup. In order to learn such a
tuning policy over all possible process and environmental conditions, a lot of
measurement data must be collected [8–11]. Furthermore, the tuning policy must
be periodically re-calibrated to accommodate the process shift over time, thereby
requiring additional measurement data. Collecting all these silicon data can be
expensive, or even infeasible, as silicon measurement has become extremely
time-consuming today.

In the literature, several data mining techniques [12–14] have been studied to
reduce the cost (i.e., the number of required measurement data) of functional
verification and test. However, for AMS pre-silicon validation and post-silicon
tuning, most CAD methodologies today still need to collect a large amount of
simulation and measurement data for pre-silicon validation and post-silicon tuning,
resulting in prohibitively high cost. The challenging issue here is how to make
AMS validation and tuning affordable by reducing the amount of required data.
This fundamental issue has not been appropriately addressed by the state-of-the-art
CAD tools. It, in turn, poses an immediate need to develop a radically new CAD
framework for efficient validation and tuning of today’s AMS circuits in order to
facilitate the continuous scaling of ICs.

14 Large-Scale Circuit Performance Modeling by Bayesian Model Fusion 405

Fig. 14.1 Bayesian Model
Fusion (BMF) reuses the
early-stage data to facilitate
efficient validation and tuning
of AMS circuits at a late stage

Design cycle for analog and mixed-signal circuits

Schematic

design

Layout

design

First

tape-out

Second

tape-out

Reduce pre-silicon

validation cost

Reduce post-silicon

tuning cost

In this chapter, we describe a novel idea of Bayesian Model Fusion (BMF) to
address the aforementioned challenges [15–18]. BMF is motivated by the fact that
today’s AMS design cycle typically spans multiple stages, as shown in Fig. 14.1.
At each stage, simulation and/or measurement data are collected to validate and/or
tune the AMS circuit, before moving to the next stage. Most conventional AMS
validation and tuning methods rely on the data collected at a single stage only and
they completely ignore the data that are already generated at the previous stages.
The key idea of BMF, however, is to reuse the early-stage data to facilitate efficient
validation and tuning of AMS circuits at a late stage. As such, the amount of
required data can be substantially reduced at the late stage. For instance, as shown in
Fig. 14.1, we can borrow the simulation data from the schematic design to efficiently
estimate the performance distributions of the post-layout simulation and, as a result,
reduce pre-silicon validation cost.

Mathematically, BMF is derived from the theory of Bayesian inference [19, 20].
Starting from a set of early-stage data, it first “learns” the prior knowledge from
these existing data and statistically “encodes” them as a prior distribution. Next, the
prior distribution is combined with very few late-stage data to efficiently solve the
pre-silicon validation and/or post-silicon tuning problem via Bayesian inference. By
fusing the early-stage and late-stage data together through Bayesian inference, the
simulation and/or measurement cost can be significantly reduced.

The BMF framework is generally applicable to a broad range of practical
problems related to pre-silicon validation and post-silicon tuning of AMS circuits.
The following are a few representative examples.

• Example problem for pre-silicon validation: How do we estimate the pre-
silicon performance distribution and parametric yield of an AMS circuit based
on 10 post-layout Monte Carlo simulation samples only?

• Example problem for post-silicon tuning: How do we learn the post-silicon
tuning policy for a tunable AMS circuit based on the measurement data collected
from 2 silicon chips only?

These problems seem extremely challenging, if not impossible, to solve.
However, we will show in this chapter that BMF can successfully address these
fundamental-yet-challenging problems and makes them tractable, as will be
demonstrated by the simulation and measurement data of several industrial circuit
examples.

406 J. Tao et al.

The remainder of this chapter is organized as follows. In Sect. 14.2, we first
describe the BMF formulation for two different applications of pre-silicon valida-
tion: (1) moment estimation and (2) distribution estimation. Next, we further extend
BMF to post-silicon tuning in Sect. 14.3. Finally, we conclude in Sect. 14.4.

14.2 Pre-silicon Validation

In this section, we describe the theoretical framework of BMF for pre-silicon
validation. While pre-silicon validation is a broad area involving many different
research topics, our focus is to accurately estimate the statistics of a given AMS
circuit performance (e.g., gain of an amplifier, phase noise of an oscillator, etc.).
These statistical metrics include moments (e.g., mean and variance) and distribu-
tions (e.g., probability density function and cumulative distribution function) that
are particularly useful for estimating the parametric yield of the AMS circuit.

14.2.1 Moment Estimation

Moment estimation is an important task to predict the performance distribution and,
consequently, the parametric yield. In particular, if the performance distribution is
Gaussian, it is fully characterized by the first two moments (i.e., mean and variance)
[21]. Even if the performance distribution is non-Gaussian, it can be accurately
estimated by finding the high-order moments [22].

Without loss of generality, we consider a given AMS performance of interest
x. Most conventional statistical algorithms require a lot of data to estimate the
moments of x [21–23]. However, in practice, pre-silicon simulation (e.g., post-
layout simulation) is time-consuming. Especially for large-scale, complex AMS
circuits such as phase-locked loop and high-speed I/O link, only a limited amount of
(e.g., less than 5) simulation runs can be afforded. The key idea of BMF is to reuse
the early-stage (e.g., schematic-level) data to accurately estimate the late-stage (e.g.,
post-layout) moments with very few late-stage data [16].

In this sub-section, we consider mean estimation as an example to illustrate the
mathematical formulation of BMF. It should be noted that the BMF methodology
can be generally extended to estimate other high-order moments as well [16].
Assume that the circuit performance x follows a Gaussian distribution; however,
the early-stage performance distribution pdfE(x) and the late-stage performance
distribution pdfL(x) have different mean and variance values:

pdfE(x) = 1√
2π · σE

· exp

[
− (x − μE)

2

2 · σ 2
E

]
∼ Gauss(μE, σ 2

E

)
, (14.1)

14 Large-Scale Circuit Performance Modeling by Bayesian Model Fusion 407

pdfL(x) = 1√
2π · σL

· exp

[
− (x − μL)

2

2 · σ 2
L

]
∼ Gauss(μL, σ 2

L

)
, (14.2)

whereμE and σE are the mean and standard deviation of the early-stage distribution,
respectively, and μL and σL are the mean and standard deviation of the late-stage
distribution, respectively.

The early-stage mean μE can be estimated from the early-stage data. In most
practical applications, the early-stage data are collected to validate the early-stage
design, before we move to the late stage. For this reason, we should already know the
early-stage mean μE , before estimating the late-stage mean μL. Namely, we assume
that the early-stage mean μE is provided as the input to the BMF framework. Our
goal is to find an accurate estimation of the late-stage mean μL based on very few
late-stage data.

Unlike the conventional moment estimation techniques that completely ignore
the correlation between the early-stage mean μE and the late-stage mean μL,
BMF fully exploits such correlation information to reduce the amount of required
data at the late stage. It consists of two major steps: (1) statistically encoding the
prior knowledge of the early-stage data as a prior distribution and (2) optimally
determining the late-stage mean μL by combining the prior distribution and very
few late-stage data. In what follows, we will describe the mathematical formulations
of these two steps, respectively.

Given the early-stage mean μE , we need to extract the prior knowledge that can
be used to efficiently estimate the late-stage mean μL. On one hand, we expect that
the early-stage mean μE and the late-stage mean μL are similar. In other words, the
difference between μE and μL is small. On the other hand, the early-stage mean
μE is not exactly identical to the late-stage mean μL due to multiple reasons. For
example, comparing the schematic-level (i.e., early-stage) performance distribution
with the post-layout (i.e., late-stage) performance distribution, the mean values of
these two distributions can be different because the post-layout simulation of an
AMS circuit includes the device and interconnect parasitics that are not available
during the schematic-level simulation of the same circuit.

To statistically encode the “common” information between the early-stage mean
μE and the late-stage mean μL, we conceptually assume that the “uncertainty” of
the late-stage mean μL follows a prior distribution:

pdf (μL) = 1√
2π · σμ

· exp

[
− (μL − μE)

2

2 · σ 2
μ

]
∼ Gauss(μE, σ 2

μ

)
, (14.3)

where pdf (μL) represents a Gaussian distribution with the mean μE and the
standard deviation σμ. In practice, the value of the standard deviation σμ is
unknown; however, it can be estimated by the cross-validation method developed
by the machine learning community [20], as will be further discussed later in this
sub-section.

408 J. Tao et al.

Fig. 14.2 A simple example
is shown to illustrate the
approach of extracting the
prior knowledge from the
early-stage data where the
late-stage mean μL is close to
the early-stage mean μE as
encoded by the prior
distribution pdf (μL)

PDF

0 μE

pdf(μL) ~ Gauss(μE, σμ
2)

μL

Figure 14.2 shows a simple example of the prior distribution for the late-stage
mean μL. The prior distribution defined in (14.3) has a twofold meaning. First, the
Gaussian distribution pdf (μL) is peaked at its mean value μL = μE , implying that
the early-stage mean μE and the late-stage mean μL are likely to be similar. In other
words, since the Gaussian distribution pdf (μL) exponentially decays with (μL −
μE)

2, it is unlikely to observe a late-stage mean μL that is completely different from
the early-stage mean μE . Second, the standard deviation σμ in (14.3) encodes our
“confidence” of the prior knowledge. If the standard deviation σμ is small, the prior
distribution is narrowly peaked around its mean value μE , implying that the late-
stage mean is possibly close to the early-stage mean μE . Otherwise, if the standard
deviation σμ is large, the prior distribution pdf (μL) widely spreads over a large
range and the late-stage mean μL can possibly take a value that is far away from the
early-stage mean μE .

Given the prior distribution pdf (μL) in (14.3), we further combine pdf (μL)
with a few late-stage random samples {xL,n; n = 1, 2, . . . , N} to accurately
estimate the late-stage mean μL. These late-stage samples can be generated by
running Monte Carlo simulation for the AMS circuit. Once the late-stage data are
available, they can tell us additional information about the late-stage mean μL and,
hence, help us to accurately estimate μL.

Based on Bayes’ theorem [19, 20], the uncertainties of the late-stage mean μL
after knowing the data {xL,n; n = 1, 2, . . . , N} can be mathematically described by
the following posterior distribution:

pdf (μL|xL) ∝ pdf (μL) · pdf (xL|μL), (14.4)

where xL is a vector containing the late-stage random samples {xL,n; n =
1, 2, . . . , N}. In (14.4), the prior distribution pdf (μL) is defined by (14.3). The
conditional distribution pdf (xL|μL) is referred to as the likelihood function. It
measures the probability of observing the late-stage data {xL,n; n = 1, 2, . . . , N}
associated with the performance distribution pdfL(x):

pdf (xL|μL) =
N∏
n=1

pdfL(xL,n|μL). (14.5)

14 Large-Scale Circuit Performance Modeling by Bayesian Model Fusion 409

Substituting (14.2) into (14.5) yields:

pdf (xL|μL) =
N∏
n=1

1√
2π · σL

· exp

[
− (xL,n − μL)

2

2 · σ 2
L

]
. (14.6)

As shown in (14.6), the likelihood function pdf (xL|μL) depends on the late-
stage mean μL that we aim to solve. The mean value μL controls the location
of the probability density function pdfL(x) and, therefore, directly influences the
likelihood function in (14.6).

Even after the late-stage data {xL,n; n = 1, 2, . . . , N} are available, the late-
stage mean μL is not deterministic. They must be modeled by the probability
density function pdf (μL|xL) (i.e., the posterior distribution) in (14.4). Depending
on the shape of the posterior distribution pdf (μL|xL), the late-stage mean μL
does not take all possible values with equal probability. If the posterior distribution
pdf (μL|xL) reaches its maximum value at μ∗L, the value μ∗L is considered as the
optimal estimation of the late-stage mean, since it is the mean value that is most
likely to occur. Such a method is referred to as the maximum-a-posteriori (MAP)
estimation in the literature [19, 20].

The aforementioned MAP estimation can be mathematically formulated as an
optimization problem:

max
μL

pdf (μL) · pdf (xL|μL). (14.7)

Substituting (14.3) and (14.6) into (14.7) and taking the logarithm for the merit
function, we get:

max
μL

− (μL − μE)
2

2 · σ 2
μ

−
N∑
n=1

(xL,n − μL)2
2 · σ 2

L

− log
(√

2π · σμ
)

− N · log
(√

2π · σL
) . (14.8)

Based on the first-order optimality condition [24], we have:

− μL − μE
σ 2
μ

−
N∑
n=1

μL − xL,n
σ 2
L

= 0. (14.9)

Solving (14.9) results in the optimal estimation of the late-stage mean μL:

μL = σ 2
L

N · σ 2
μ + σ 2

L

· μE +
σ 2
μ

N · σ 2
μ + σ 2

L

·
N∑
n=1

xL,n. (14.10)

410 J. Tao et al.

Defining the symbol:

ρ = σμ
σL
, (14.11)

Equation (14.10) can be re-written as:

μL = 1

N · ρ2 + 1
· μE + ρ2

N · ρ2 + 1
·
N∑
n=1

xL,n. (14.12)

Studying (14.12) reveals two important observations. First, the estimated late-
stage mean μL is a function of the early-stage mean μE . If the early-stage mean μE
appropriately carries the prior information of the late-stage mean μL, it can help us
to accurately estimate the late-stage mean μL via Bayesian inference. Second, the
optimal estimation of the late-stage meanμL depends on both the standard deviation
σμ of the prior distribution pdf (μL) in (14.3) and the standard deviation σL of the
late-stage performance distribution pdfL(x) in (14.2). In practice, both σμ and σL
are unknown. However, they can be estimated by cross-validation [20]. Importantly,
since μL is a function of the ratio ρ in (14.11), we only need to estimate the ratio ρ,
instead of the individual values of σμ and σL, by cross-validation.

To demonstrate the efficacy of BMF for mean estimation, we consider an
industrial example of high-speed I/O link. One of its critical performance metrics
is time margin. It measures the eye width at the receiver and is directly related to
the bit error rate (BER) of the link. In this example, our objective is to estimate
the mean of time margin for 8 different configurations where one configuration
refers to a specific environmental corner (i.e., supply voltage and temperature) and
a specific testing setup (i.e., channel for data transmission). Because accurately
estimating the time margin requires us to pass a large number of random bits through
the link and, hence, is extremely time-consuming, we cannot afford to simulate or
measure a large number of dies (i.e., generate a large number of random samples)
for mean estimation. For test and comparison purposes, two different estimators
are implemented: (1) the conventional direct estimation based on sample mean [21]
and (2) the BMF technique described in this sub-section. When applying BMF, we
borrow the statistical information from one configuration and consider it as our prior
knowledge to estimate the mean values of other configurations.

Figure 14.3 shows the relative error of mean estimation over 8 different
configurations. Studying Fig. 14.3 reveals an important fact that given the same
number of random samples, BMF consistently achieves 1.5× error reduction over
the conventional direct estimation based on sample mean. On the other hand, to
achieve the same accuracy, BMF can reduce the number of required random samples
and, hence, the simulation and/or measurement cost by 2.25× over the conventional
approach.

14 Large-Scale Circuit Performance Modeling by Bayesian Model Fusion 411

Fig. 14.3 Relative error of
mean estimation over 8
different configurations is
shown for the conventional
direct estimation and the
BMF method

2 4 6 8 10 12
1

2

3

4

Number of Samples per Configuration

R
el

at
iv

e
E

rr
o
r

(%
)

Direct

BMF

2.25×

1.5×

14.2.2 Distribution Estimation

In addition to moment estimation, BMF can also be applied to estimate the proba-
bility distribution of a given AMS performance metric x. Unlike most conventional
algorithms that require a lot of data to determine the distribution pdf (x) [21–
23], BMF attempts to reuse the early-stage data so that the late-stage performance
distribution can be accurately estimated with very few late-stage data [15].

Towards this goal, instead of assuming that the early-stage and late-stage prob-
ability density functions pdfE(x) and pdfL(x) follow the Gaussian distributions
in (14.1)–(14.2), we approximate pdfE(x) and pdfL(x) as the linear combinations
of a set of basis functions:

pdfE(x) ≈
M∑
m=1

αE,m · bm(x), (14.13)

pdfL(x) ≈
M∑
m=1

αL,m · bm(x), (14.14)

where {bm(x);m = 1, 2, . . . ,M} contains the basis functions (e.g., orthogonal
polynomials [25], wavelet basis functions [26], etc.), {αE,m;m = 1, 2, . . . ,M}
and {αL,m; m = 1, 2, . . . ,M} contain the early-stage and late-stage coefficients,
respectively, andM represents the total number of basis functions.

For a given set of basis functions {bm(x);m = 1, 2, . . . ,M}, the performance
distributions pdfE(x) and pdfL(x) are uniquely determined by the coefficients
{αE,m;m = 1, 2, . . . ,M} and {αL,m;m = 1, 2, . . . ,M}. Here, we assume that
the early-stage coefficients {αE,m;m = 1, 2, . . . ,M} are already known and the

412 J. Tao et al.

late-stage coefficients {αL,m;m = 1, 2, . . . ,M} should be estimated to determine
the late-stage performance distribution pdfL(x). To statistically define the prior
knowledge for the late-stage performance distribution pdfL(x), we consider the
following two possible approaches.

• Encoding the prior information based on coefficient magnitude: Several
previous works in the literature have demonstrated that when approximating a
nonlinear function such as pdfE(x) or pdfL(x) in (14.13)–(14.14) by a set of
appropriately selected basis functions (e.g., wavelet basis), many of the resulting
coefficients are close to zero [26]. In other words, these coefficients carry a
unique sparse pattern. To statistically encode such a sparse pattern as our prior
knowledge, we exploit the fact that if the early-stage coefficient αE,m has a large
(or small) magnitude, it is likely that the late-stage coefficient αL,m also has a
large (or small) magnitude. In particular, we model each late-stage coefficient as
a zero-mean Gaussian distribution:

pdf (αL,m) = 1√
2π · λ · |αE,m|

· exp

(
− α2

L,m

2 · λ2 · α2
E,m

)

∼ Gauss(0, λ2 · α2
E,m

)
(m = 1, 2, . . . ,M)

, (14.15)

where the standard deviation of the Gaussian distribution is equal to λ · |αE,m|.
In (14.15), the parameter λ is positive and it controls the variance of the
distribution. The appropriate value of λ can be determined by cross-validation
[20].

The standard deviation λ·|αE,m| in (14.15) encodes the magnitude information
of the late-stage coefficient αL,m. If the magnitude of the early-stage coefficient
|αE,m| is small and, hence, the standard deviation λ · |αE,m| is small, the prior
distribution pdf (αL,m) is narrowly peaked around zero, implying that the late-
stage coefficient αL,m is possibly close to zero. Otherwise, if the magnitude of the
early-stage coefficient |αE,m| is large and, hence, the standard deviation λ·|αE,m|
is large, the prior distribution pdf (αL,m) widely spreads over a large range and
the late-stage coefficient αL,m can possibly take a value that is far away from
zero. Figure 14.4(a) shows a simple example of the prior distribution for two
late-stage coefficients αL,1 and αL,2 where |αE,1| is small and |αE,2| is large.

• Encoding the prior information based on coefficient value: If the values of the
early-stage and late-stage coefficients, in addition to their magnitudes, are close,
we can define a prior distribution that is different from (14.15):

pdf (αL,m) = 1√
2π · λ · |αE,m|

· exp

[
− (αL,m − αE,m)

2

2 · λ2 · α2
E,m

]

∼ Gauss(αE,m, λ2 · α2
E,m

)
(m = 1, 2, . . . ,M)

, (14.16)

14 Large-Scale Circuit Performance Modeling by Bayesian Model Fusion 413

PDF

pdf(αL,1) ~ N(0, λ2·αE,1
2)

pdf(αL,2) ~ N(0, λ2·αE,2
2)

αL,1 or αL,20

(a)

αE,2αE,1

PDF

0 αL,1 or αL,2

pdf(αL,1) ~ N(αE,1, λ2·αE,1
2)

pdf(αL,2) ~ N(αE,2, λ2·αE,2
2)

(b)

Fig. 14.4 Two simple examples are shown to illustrate the approaches of extracting the prior
knowledge from the early-stage data. (a) Encode the prior information based on coefficient
magnitude where the late-stage coefficient αL,1 is possibly close to zero and the late-stage
coefficient αL,2 can possibly be far away from zero. (b) Encode the prior information based
on coefficient value where the late-stage coefficients αL,1 and αL,2 are close to the early-stage
coefficients αE,1 and αE,2, respectively, and both αL,1 and αL,2 are provided with a relatively
equal opportunity to deviate from the corresponding early-stage coefficients αE,1 and αE,2

where pdf (αL,m) represents a Gaussian distribution with the mean value αE,m
and the standard deviation λ·|αE,m|. Similar to (14.15), the parameter λ in (14.16)
is positive and its value can be determined by cross-validation [20].

The prior distribution in (14.16) has a twofold meaning. First, the Gaussian
distribution pdf (αL,m) is peaked at its mean value αL,m = αE,m, implying that
the early-stage coefficient αE,m and the late-stage coefficient αL,m are likely to
be similar. Second, the standard deviation of the prior distribution pdf (αL,m)
is proportional to |αE,m|. It means that the absolute difference between the late-
stage coefficient αL,m and the early-stage coefficient αE,m can be large (or small),
if the magnitude of the early-stage coefficient |αE,m| is large (or small). Restating
in words, each late-stage coefficient αL,m has been provided with a relatively
equal opportunity to deviate from the corresponding early-stage coefficient αE,m.
Figure 14.4b shows a simple example of the aforementioned prior distribution
for two late-stage coefficients αL,1 and αL,2 where αE,1 is negative and αE,2 is
positive.

Comparing the two prior distributions in (14.15) and (14.16), we notice that
pdf (αL,m) in (14.16) carries the sign information (i.e., positive or negative) of the
late-stage coefficient, while pdf (αL,m) in (14.15) does not. In practice, the efficacy
of different prior definitions is case-dependent. How to choose the optimal prior
distribution for a given application case remains an open question and should be
considered as an important topic for future research.

414 J. Tao et al.

To complete the definition of the prior distribution for all late-stage coefficients
{αL,m;m = 1, 2, . . . ,M}, we further assume that these coefficients are statistically
independent and their joint distribution is represented as:

pdf (αααL) =
M∏
m=1

pdf (αL,m), (14.17)

where αααL is a vector containing all late-stage coefficients {αL,m;m = 1, 2, . . . ,M}
and the prior distribution pdf (αL,m) for the mth late-stage coefficient αL,m can be
taken from either (14.15) or (14.16), depending on the specific application case.
The independence assumption in (14.17) simply implies that we do not know
the correlation information among these coefficients as our prior knowledge. The
correlation information will be learned from the late-stage data, when the posterior
distribution is calculated by Bayesian inference.

Given the prior distribution pdf (αααL) defined in (14.17), we further combine
pdf (αααL)with a few late-stage random samples {xL,n; n = 1, 2, . . . , N} to calculate
the posterior distribution:

pdf (αααL|xL) ∝ pdf (αααL) · pdf (xL|αααL), (14.18)

where xL is a vector containing the late-stage random samples {xL,n; n =
1, 2, . . . , N}. In (14.18), the likelihood function pdf (xL|αααL) measures the
probability of observing the late-stage data {xL,n; n = 1, 2, . . . , N} associated
with the performance distribution pdfL(x) in (14.14):

pdf (xL|αααL) =
N∏
n=1

M∑
m=1

αL,m · bm(xL,n). (14.19)

To determine the late-stage coefficients {αL,m;m = 1, 2, . . . ,M} by MAP
estimation, we formulate the following optimization:

max
αααL

pdf (αααL) · pdf (xL|αααL). (14.20)

Substituting (14.17) and (14.19) into (14.20) and taking the logarithm for the merit
function, we have:

max
αααL

M∑
m=1

log[pdf (αL,m)] +
N∑
n=1

log

⎡
⎣ M∑
m=1

αL,m · bm(xL,n)
⎤
⎦ (14.21)

In addition, since the integral of any probability density function must be equal to
1, we need to further consider the following constraint when solving the late-stage
coefficients {αL,m;m = 1, 2, . . . ,M}:

14 Large-Scale Circuit Performance Modeling by Bayesian Model Fusion 415

∫ +∞

−∞
pdfL(x) · dx =

M∑
m=1

αL,m ·
∫ +∞

−∞
bm(x) · dx = 1 (14.22)

Combining (14.21) and (14.22) results in the following constrained optimization
problem:

max
αααL

M∑
m=1

log[pdf (αL,m)] +
N∑
n=1

log

⎡
⎣ M∑
m=1

αL,m · bm(xL,n)
⎤
⎦

s.t.

M∑
m=1

αL,m ·
∫ +∞

−∞
bm(x) · dx = 1

(14.23)

It can be proven that the merit function in (14.23) is concave [15], if the prior dis-
tribution pdf (αL,m) is taken from either (14.15) or (14.16). Furthermore, the con-
straint function is simply linear with respect to the problem unknowns {αL,m;m =
1, 2, . . . ,M}, implying that the constraint set is convex. For these reasons, the
optimization in (14.23) is a convex programming problem and can be solved both
efficiently (i.e., with low computational cost) and robustly (i.e., with guaranteed
global optimum) [24]. Once the late-stage coefficients {αL,m;m = 1, 2, . . . ,M} are
found from (14.23), the late-stage performance distribution pdfL(x) in (14.14) is
determined.

As an example to demonstrate the efficacy of BMF for distribution estimation,
Fig. 14.5(a) shows the simplified circuit schematic of an SRAM (static random-
access memory) read path designed in a commercial 32 nm CMOS process. In this
example, our objective is to reuse the schematic-level (i.e. early-stage) simulation
data to efficiently estimate the post-layout (i.e., late-stage) probability distribution
of the read path delay from the word line (WL) to the sense amplifier output
(Out). For testing and comparison purposes, 1000 random samples are generated
by both schematic-level and post-layout simulations. The runtime to generate a
single schematic-level simulation sample is 26.44 s, and it is 104.58 s for post-
layout simulation. Two different techniques are implemented: (1) the conventional
kernel estimation based on Gaussian kernel with optimal bandwidth [27] and (2)
the BMF technique based on DCT (discrete cosine transform) basis functions [26].
Figure 14.5(b) shows the estimation error for the cumulative distribution function
(i.e., the integral of the probability density function). Note that the conventional
kernel estimation requires 10× more simulation samples than BMF to achieve the
same accuracy. In other words, BMF achieves 10× runtime speedup over kernel
estimation in this example. It reduces the total post-layout simulation time from
2.91 h (i.e., 100 samples) to 17.43 min (i.e., 10 samples).

416 J. Tao et al.

Fig. 14.5 (a) A simplified
circuit schematic is shown for
an SRAM read path designed
in a commercial 32 nm
CMOS process. (b)
Estimation error of the
cumulative distribution
function for the post-layout
read path delay is shown for
the conventional kernel
estimation and the BMF
technique

T
im

in
g

lo
g
ic

Cell array

Sense amp

WL

Out

(a)

0 50 100 150
0

2

4

6

Number of Post-layout Samples

)
%(

r
orr

E
e

vitale
R

Kernel

BMF

10×

(b)

14.3 Post-silicon Tuning

In this section, we further extend BMF to the application of post-silicon tuning. In
particular, we focus on the problem of tuning policy generation with consideration
of large-scale process shift over time. Namely, we aim to solve a regression
modeling problem to find the mapping between the measured AMS performance
and the control knob setup:

f (x) ≈
M∑
m=1

αm · bm(x), (14.24)

14 Large-Scale Circuit Performance Modeling by Bayesian Model Fusion 417

where x is a vector containing the measurement results of circuit performance, f
represents the optimal value of a control knob, {αm;m = 1, 2, . . . ,M} contains
the model coefficients, {bm(x);m = 1, 2, . . . ,M} contains the basis functions
(e.g., polynomials), and M is the total number of basis functions. Note that
the regression modeling problem in (14.24) is substantially different from the
distribution estimation problem in (14.13)–(14.14), even though both problems
involve the linear combination ofM basis functions.

There have been many regression modeling algorithms that were developed in
the literature [28–37]. Most of these existing methods require a lot of data to
fit the model, especially if the function f (x) is strongly nonlinear and/or high-
dimensional. BMF, however, reuses the early-stage data so that f (x) can be
accurately approximated with very few late-stage data [17, 18]. In what follows,
we will describe the BMF formulation for the application of post-silicon tuning.

Similar to (14.13)–(14.14), we consider two different regression models: the
early-stage model fE(x) and the late-stage model fL(x):

fE(x) ≈
M∑
m=1

αE,m · bm(x) (14.25)

fL(x) ≈
M∑
m=1

αL,m · bm(x), (14.26)

where {αE,m;m = 1, 2, . . . ,M} and {αL,m;m = 1, 2, . . . ,M} represent the early-
stage and late-stage coefficients, respectively. The early-stage model fE(x) can
be fitted by either the pre-silicon data collected from numerical simulation or the
post-silicon data measured from previous tape-out. We assume that the early-stage
model fE(x) is already available. Given the early-stage coefficients {αE,m;m =
1, 2, . . . ,M}, we can define the prior distribution pdf (αααL) based on (14.15)–
(14.17), similar to the case of pre-silicon validation described in Sect. 14.2.2.

Once the prior distribution pdf (αααL) is defined, we collect a few late-stage
data {(x(n), f (n)L); n = 1, 2, . . . , N}, where x(n) and f (n)L are the values of x
and fL(x) at the nth data point, respectively, by measuring several chips from
the new tape-out. Next, we combine the prior distribution pdf (αααL) with the
late-stage data {(x(n), f (n)L); n = 1, 2, . . . , N} to solve the late-stage coefficients
{αL,m;m = 1, 2, . . . ,M} by MAP estimation. As such, a new tuning policy is
efficiently generated to accommodate the process shift. To this end, we formulate
the following posterior distribution:

pdf (αααL|fL) ∝ pdf (αααL) · pdf (fL|αααL), (14.27)

where αααL is a vector containing all late-stage coefficients {αL,m;m = 1, 2, . . . ,M}
and fL is a vector containing the late-stage data {f (n)L ; n = 1, 2, . . . , N}.

418 J. Tao et al.

To derive the likelihood function pdf (fL|αααL), we further assume that the error
for the late-stage model fL(x) can be represented as a random variable that follows
a zero-mean Gaussian distribution and, hence, the approximate equality in (14.26)
can be re-written as:

fL(x) =
M∑
m=1

αL,m · bm(x)+ εL, (14.28)

where εL denotes the modeling error:

pdf (εL) = 1√
2π · σ0

· exp

(
− ε2

L

2 · σ 2
0

)
∼ Gauss(0, σ 2

0

)
. (14.29)

In (14.29), the standard deviation σ0 indicates the magnitude of the modeling error.
Its value can be determined by cross-validation [20]. Given (14.28)–(14.29), since
the modeling error associated with the nth data point (x(n), f (n)L) is simply one
sample of the random variable εL, it follows the Gaussian distribution:

f
(n)
L −

M∑
m=1

αL,m · bm
(
x(n)

) ∼ Gauss(0, σ 2
0

)
. (14.30)

Therefore, the probability of observing the nth data point is:

pdf
(
f
(n)
L |αααL

) = 1√
2π · σ0

· exp

{
− 1

2 · σ 2
0

·
⎡
⎣f (n)L −

M∑
m=1

αL,m · bm
(
x(n)

)⎤⎦
2
⎫⎪⎬
⎪⎭

(14.31)

Assuming that all sampling points are independently generated, we can write the
likelihood function pdf (fL|αααL) as:

pdf (fL|αααL) =
N∏
n=1

pdf
(
f
(n)
L |αααL

)
. (14.32)

Combining (14.17), (14.27), and (14.32) results in the following optimization
formulation for MAP estimation:

max
αααL

M∑
m=1

log[pdf (αL,m)] − 1

2 · σ 2
0

·
N∑
n=1

⎡
⎣f (n)L −

M∑
m=1

αL,m · bm
(
x(n)

)⎤⎦
2

.

(14.33)

14 Large-Scale Circuit Performance Modeling by Bayesian Model Fusion 419

Note that the MAP formulation in (14.33) is completely different from the formu-
lation in (14.23) that was previously developed for distribution estimation of pre-
silicon validation. It can be proven that the unconstrained optimization in (14.33) is
convex [17, 18] and, hence, can be solved both efficiently and robustly [24]. Once
the late-stage coefficients {αL,m;m = 1, 2, . . . ,M} are found from (14.33), the new
tuning policy (i.e., the late-stage model) fL(x) in (14.26) is determined.

As an example for demonstration, we apply BMF to generate the tuning policy
for a VCO (voltage-controlled oscillator) designed in a commercial 32 nm CMOS
process, as shown in Fig. 14.6(a). In this example, the objective of post-silicon
tuning is to appropriately set the bias voltage VBias controlled by a DAC so that the
phase noise of the VCO is minimized. To this end, we measure a number of impor-

Fig. 14.6 (a) A simplified
circuit schematic is shown for
a VCO designed in a
commercial 32 nm CMOS
process where 116 chips from
two wafers are measured. (b)
Parametric yield achieved by
post-silicon tuning for the
second wafer is shown for
two different tuning policies
generated by the conventional
least-squares fitting and the
BMF technique, respectively

VBias

Out+ Out–VCtrl

(a)

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

Number of Measured Chips (Second Wafer)

)refa
W

d
n

oce
S(

dlei
Y

cirte
mara

P

Least-squares

BMF

3×

(b)

420 J. Tao et al.

tant performance metrics (i.e., oscillation frequency, oscillation amplitude, bias
current, etc.) under the nominal bias voltage and then determine the optimal value
of the control knob VBias based on these measurement results. Based on these mea-
surement results, a quadratic polynomial model f (x) can be fitted to estimate the
phase noise. Next, VBias corresponding to the minimum phase noise is chosen as the
optimal solution by using a brute-force search algorithm based on the model f (x).

For this VCO example, two wafers with 116 VCO chips in total are produced
by an industrial partner. These two wafers are not manufactured at the same time
and a significant process shift is observed. Our goal is to reuse the measurement
data from the first wafer (i.e., the early-stage data) to efficiently generate the tuning
policy for the second wafer in order to accommodate the large-scale process shift.
For testing and comparison purposes, two different techniques are implemented:
(1) the conventional least-squares fitting [28] and (2) the BMF technique described
in this section. Figure 14.6(b) plots the parametric yield achieved by post-silicon
tuning for the second wafer as a function of the number of measured chips. Note that
BMF only needs to measure 2 chips from the second wafer in order to generate the
new tuning policy with the yield higher than 70%. To achieve the same parametric
yield, the conventional least-squares fitting must measure 6 chips (3× more) in this
example.

14.4 Conclusions

In this chapter, a Bayesian Model Fusion (BMF) framework is described to reduce
the simulation and/or measurement cost for both pre-silicon validation and post-
silicon tuning. The key idea of BMF is to reuse the data that was previously
generated at an early stage. It statistically extracts the prior knowledge from
the early-stage data to facilitate efficient late-stage validation and/or tuning with
minimal simulation and/or measurement cost. BMF is mathematically derived from
the theory of Bayesian theory and its efficacy is demonstrated for several industrial
circuit examples in this chapter. We envision that BMF can be generally applied to a
broad range of circuit applications and a large number of follow-up research works
are needed in this emerging area.

References

1. S. Nassif, Modeling and analysis of manufacturing variations, in IEEE Conference on Custom
Integrated Circuits (2001), pp. 223–228

2. X. Li, J. Le, L. Pileggi, Statistical Performance Modeling and Optimization (Now Publishers,
Hanover, 2007)

3. Semiconductor Industry Associate, International Technology Roadmap for Semiconductors
(Semiconductor Industry Association, Washington, 2011)

14 Large-Scale Circuit Performance Modeling by Bayesian Model Fusion 421

4. R. Rutenbar, G. Georges, J. Roychowdhury, Hierarchical modeling, optimization and synthesis
for system-level analog and RF designs. Proc. IEEE 95(3), 640–669 (2007)

5. A. Tang, F. Hsiao, D. Murphy, I. Ku, J. Liu, S. D’Souza, N. Wang, H. Wu, Y. Wang, M. Tang,
G. Virbila, M. Pham, D. Yang, Q. Gu, Y. Wu, Y. Kuan, C. Chien, M. Chang, A low-overhead
self-healing embedded system for ensuring high yield and long-term sustainability of 60GHz
4Gb/s radio-on-a-chip, in IEEE International Solid-State Circuits Conference (2012), pp. 316–
318

6. S. Bowers, K. Sengupta, K. Dasgupta, A. Hajimiri, A fully-integrated self-healing power
amplifier, in IEEE Radio Frequency Integrated Circuits Symposium (2012)

7. J. Plouchart, M. Ferriss, A. Natarajan, A. Valdes-Garcia, B. Sadhu, A. Rylyakov, B. Parker, M.
Beakes, A. Babakani, S. Yaldiz, L. Pileggi, R. Harjani, S. Reynolds, J. Tierno, D. Friedman, A
23.5GHz PLL with an adaptively biased VCO in 32nm SOI-CMOS, in IEEE Custom Integrated
Circuits Conference (2012)

8. N. Kupp, H. Huang, P. Drineas, Y. Makris, Post-production performance calibration in
analog/RF devices, in IEEE International Test Conference (2010), pp. 245–254

9. D. Han, B. Kim, A. Chatterjee, DSP-driven self-tuning of RF circuits for process-induced
performance variability. IEEE Trans. Very Large Scale Integr. Syst. 18(2), 305–314 (2010)

10. E. Acar, S. Ozev, Low cost MIMO testing for RF integrated circuits. IEEE Trans. Very Large
Scale Integr. Syst. 18(9), 1348–1356 (2010)

11. S. Yaldiz, V. Calayir, X. Li, L. Pileggi, A. Natarajan, M. Ferriss, J. Tierno, Indirect phase noise
sensing for self-healing voltage controlled oscillators, in IEEE Custom Integrated Circuits
Conference (2011)

12. L. Wang, Data mining in functional test content optimization, in IEEE Asia and South Pacific
Design Automation Conference (2015), pp. 308–315

13. L. Wang, Experience of data analytics in EDA and test-principles, promises, and challenges.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(6), 885–898 (2017)

14. W. Chen, L. Wang, J. Bhadra, M. Abadir, Simulation knowledge extraction and reuse in
constrained random processor verification, in Design Automation Conference (2013)

15. X. Li, W. Zhang, F. Wang, S. Sun, C. Gu, Efficient parametric yield estimation of analog/mixed-
signal circuits via Bayesian model fusion, in International Conference on Computer-Aided
Design (2012), pp. 627–634

16. C. Gu, E. Chiprout, X. Li, Efficient moment estimation with extremely small sample size
via Bayesian inference for analog/mixed-signal validation, in Design Automation Conference
(2013)

17. F. Wang, W. Zhang, S. Sun, X. Li, C. Gu, Bayesian model fusion: large-scale performance
modeling of analog and mixed-signal circuits by reusing early-stage data, in Design Automa-
tion Conference (2013)

18. S. Sun, F. Wang, S. Yaldiz, X. Li, L. Pileggi, A. Natarajan, M. Ferriss, J. Plouchart, B. Sadhu,
B. Parker, A. Valdes-Garcia, M. Sanduleanu, J. Tierno, D. Friedman, Indirect performance
sensing for on-chip analog self-healing via Bayesian model fusion, in IEEE Custom Integrated
Circuits Conference (2013)

19. G. Casella, R. Berger, Statistical Inference (Duxbury Press, Pacific Grove, 2001)
20. C. Bishop, Pattern Recognition and Machine Learning (Prentice Hall, Englewood Cliffs, 2007)
21. A. Papoulis, U. Pillai, Probability, Random Variables and Stochastic Processes (McGraw-Hill,

New York, 2001)
22. X. Li, J. Le, P. Gopalakrishnan, L. Pileggi, Asymptotic probability extraction for nonnormal

performance distributions. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(1), 16–37
(2007)

23. A. Graupner, W. Schwarz, R. Schufny, Statistical analysis of analog structures through variance
calculation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(8), 1071–1078 (2002)

24. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2004)

25. P. Beckmann, Orthogonal Polynomials for Engineers and Physicists (Golem Press, Boulder,
1973)

422 J. Tao et al.

26. R. Gonzalez, R. Woods, Digital Image Processing (Prentice Hall, Upper Saddle River, 2007)
27. B. Silverman, Density Estimation for Statistics and Data Analysis (Chapman & Hall/CRC,

London, 1986)
28. G. Box, N. Draper, Empirical Model-Building and Response Surfaces (Wiley, New York, 1987)
29. J. Swidzinski, M. Styblinski, G. Xu, Statistical behavioral modeling of integrated circuits. IEEE

Int. Symp. Circuits Syst. 6, 98–101 (1998)
30. W. Daems, G. Gielen, W. Sansen, An efficient optimization-based technique to generate posyn-

omial performance models for analog integrated circuits, in Design Automation Conference
(2002), pp. 431–436

31. H. Liu, A. Singhee, R. Rutenbar, L. Carley, Remembrance of circuits past: macromodeling
by data mining in large analog design spaces, in Design Automation Conference (2002), pp.
437–442

32. X. Li, J. Le, L. Pileggi, A. Strojwas, Projection-based performance modeling for inter/intra-die
variations, in International Conference on Computer-Aided Design (2005), pp. 721–727

33. Z. Feng et al., Performance-oriented statistical parameter reduction of parameterized systems
via reduced rank regression, in International Conference on Computer-Aided Design (2006),
pp. 868–875

34. A. Singhee, R. Rutenbar, Beyond low-order statistical response surfaces: latent variable
regression for efficient, highly nonlinear fitting, in Design Automation Conference (2007), pp.
256–261

35. A. Mitev, M. Marefat, D. Ma, J. Wang, Principle Hessian direction based parameter reduction
with process variation, in International Conference on Computer-Aided Design (2007), pp.
632–637

36. T. McConaghy, G. Gielen, Template-free symbolic performance modeling of analog circuits
via canonical-form functions and genetic programming. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 28(8), 1162–1175 (2009)

37. X. Li, Finding deterministic solution from underdetermined equation: large-scale performance
modeling of analog/RF circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(11),
1661–1668 (2010)

Chapter 15
Sparse Relevance Kernel Machine-Based
Performance Dependency Analysis of
Analog and Mixed-Signal Circuits

Honghuang Lin, Asad Khan, and Peng Li

15.1 Introduction

As the complexity of analog/mixed-signal (AMS) circuits keeps increasing at a
rapid pace, the tasks of design, verification, and test have become significant
challenges. Nevertheless, it is essential to characterize the dependencies of circuit
performances/specifications on various circuit and device parameters or test sig-
natures for purposes such as design, verification, and test optimization. However,
doing so is not trivial since the targeted dependencies are usually complex and
nonlinear with deep-rooted correlations, making it arduous to reliably quantify the
importance of numerous parameters.

For characterizing sophisticated circuit systems, machine learning techniques
based on circuit simulations or measurements have been proven to be effective
and produced promising outcomes. For example, support vector machines (SVMs)
[34] are used as nonlinear classifiers in [19] to capture the mapping from input
parameters to circuit performance. A regression extension to SVM is employed in
[1] to rank circuit parameters based on their correlations with unexpected timing
deviations. Additionally, Bayesian inference is often used to build statistical circuit
models. For instance, a co-learning Bayesian model is proposed in [36] to efficiently
model the performance of AMS circuits.

However, building machine learning-based circuit models faces two key chal-
lenges: (1) the availability of training data is limited, since circuit simulations or
silicon measurements are usually expensive for sophisticated AMS systems; and
(2) to describe an AMS system, it needs a huge number of analog signals and
design/device parameters, leading to an extremely high dimensional problem. Since

H. Lin · A. Khan · P. Li (�)
Texas Instruments, Dallas, TX, USA
e-mail: h-lin10@ti.com; a-khan1@ti.com; pli@tamu.edu

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_15

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_15&domain=pdf
mailto:h-lin10@ti.com
mailto:a-khan1@ti.com
mailto:pli@tamu.edu
https://doi.org/10.1007/978-3-030-04666-8_15

424 H. Lin et al.

the sensitivities of circuit performances to various parameters may vary vastly, it is
instrumental to reliably analyze circuit parameter criticality during the extraction of
accurate circuit models. While traditional feature selection or importance ranking
techniques may help to identify and select some important parameters out of a large
parameter set, building models only with the selected parameters usually degrades
the model performance and few of those techniques can guide the model to achieve
higher accuracy. These difficulties present important roadblocks to analog/mixed-
signal circuit characterization and performance dependency analysis with machine
learning techniques.

In the machine learning domain, traditionally, feature selection [3, 5, 9] may
be performed by combinatorial search [27, 35] to incrementally add or remove
features from the selected subset, which is evaluated by the performance of its
resulting predictor. Another kind of method [2, 24, 29] trims the feature space with
regularization-based methods, like introducing new regularization terms into the
cost function, to perform the feature selection. All these techniques are considered
as linear feature selection methods since they handle or formulate the features in a
linear manner, such as combinatorial search or L1 norm regularization. To capture
the nonlinear dependencies among features and their nonlinear “relevancy” to the
targets, some other methods [6, 10, 17] switch the roles of features and samples
in their learning models and apply the kernel method to the features instead of
samples. These kinds of methods also belong to the category of regularization-based
methods since their optimization models using Euclidean inner product as their
kernel functions are equivalent to Lasso regression [29] based on the conclusion
provided by Li et al. [17]. A drawback of such methods is that their results usually
only improve the regularization of the learning model but not the accuracy, since
they work independently as preceding filters of the training process.

Moreover, in complex scenarios, especially in complex circuit applications,
where features’ relevancy may vary in a large range, proper weighting of the
features may improve the learning quality by balancing the impact of features on
target. In this sense, feature selection is just a 0–1 binary weighting scheme, whose
capability is limited when it comes to these scenarios. The task of assigning weights
directly to the features and embed the weighted samples into a learning model is
extremely computationally challenging, since most commonly used learning models
are nonlinear, making weights difficult to manipulate and costly to optimize in the
training process.

To address the above challenges, this work proposes a novel Bayesian learn-
ing framework for characterizing analog circuits with sparse statistical regres-
sion/classification models. The proposed framework is named sparse relevance
kernel machine (SRKM) and can be considered as a significant extension to the
SVM [34] and relevance vector machine (RVM) [30]. Instead of directly manipu-
lating the features in a traditional way, the original kernel function is “atomized”
into bilinear terms with weighting factors that obliquely reflect the relevancy of
the features, leading to the newly defined feature kernel described in the next
section. Then, the training model of the SRKM is developed following the RVM
framework to achieve a sparse model for both regression and classification. The

15 Performance Dependency Analysis of AMS Circuits 425

SRKM simultaneously seeks relevant training samples (i.e., vectors) and parameters
(i.e., features) to derive a sparse model in both the vector and parameter spaces. As
a result, the SRKM not only produces accurate models learned from a moderate
amount of simulation or measurement data, but also computes a probabilistically
inferred weighting factor quantifying the criticality of each parameter as part of
the overall learning framework, hence offering a powerful enabler for variability
modeling, failure diagnosis, and test development. In addition, an iterative algorithm
is developed for efficient training of the proposed SRKM.

The proposed SRKM is capable of solving both classification and regression
problems. Compared to other popular kernel-based learning techniques, the SRKM
produces more accurate models, requires less amount of training data, and extracts
more reliable parametric ranking. The effectiveness of SRKM is demonstrated
in examples including statistical variability modeling of a low-dropout regulator
(LDO), built-in self-test (BIST) development of a charge-pump phase-locked loop
(PLL), and applications of building statistical variability models for a commercial
automotive interface design.

This chapter is organized as follows: In Sect. 15.2, we propose the feature kernel
weighting scheme and learning model based on the kernel methods adopted in other
SVM-related techniques. Then, in Sect. 15.3, the learning model of the SRKM is
developed following the sparse Bayesian learning framework. An iterative efficient
algorithm is developed to remedy the additional complexity that stems from the
inclusion of more variables. Lastly, to illustrate the aforementioned advantages of
the SRKM, details and results of three experiments are provided in Sect. 15.4.

15.2 Feature Kernel Weighting

Learning models of circuits are usually defined as: assuming that there are F circuit
parameters of interest with which the circuit is described by a parameter (feature)
vector x, a sample of the circuit is defined by a pair {xi , ti} where ti is the circuit
performance under the configuration xi . By collecting a number of N samples,
the objective of the learning task is to capture the mapping Ψ : x → t with a
function y(x) whose output can be used as a prediction of the performance t . If the
performance t is a quantified value, this falls into the regression category in machine
learning. If t is a binary label, for example, pass or fail in the context of verification
or test, then the learning is a binary classification task. Both regression and
classification can be solved by kernel machines such as support vector machines.

15.2.1 Kernel Methods

Support vector machines (SVMs) [25, 33] have been widely used in the EDA
domain as a powerful supervised learning toolbox solving classification and regres-

426 H. Lin et al.

sion problems. According to a recent experiment conducted by Fernández-Delgado
et al. [8], the comparison of 179 classifiers evaluated on 121 data sets shows that
SVM is still among the top learning methods.

The excellence of SVM mainly relies on two portions of its model: the cost
function and the famous “kernel trick.” Similar to some other learning methods, the
cost function of SVM is composed of a fitting loss term and a smoothing penalty
term. By using different formulas for losses and penalties, several variants of SVM
[12, 13, 26, 28] are derived from the original quadratic optimization problem. Such
composition of cost functions provides exceptional robustness and regularization
[39]. On the other hand, kernel trick or kernel method has shown great success in
handling nonlinear problems.

By using the Lagrange multipliers, the exploration of the optimal separating
hyperplane in the mapped higher dimensional space can be expressed as the
following optimization problem:

minimize
α

fSVM(α) = 1

2

N∑
i=1

N∑
j=1

yiyjαiαj 〈x̂i, x̂j〉 −
N∑
i=1

αi,

subject to
N∑
i=1

yiαi = 0,

0 ≤ αi ≤ C,∀i.

(15.1)

where yi denotes the binary label of the training sample xi, and x̂i represents a
projection of xi in a higher dimensional space.

In SVM, the idea of solving nonlinear problems is to map the original input
vectors from the input space, which are not linearly solvable, into a higher
dimensional space and explore a linear solution in that space. It is clearly shown
in (15.1) that the optimization problem can be solved by merely knowing the inner
product of any pair of the mapped input vectors 〈x̂i, x̂j〉, without explicitly defining
the mapping x → x̂. Therefore, defining a kernel function K that satisfies or
represents K(xi, xj) = 〈x̂i, x̂j〉 and substituting it into the optimization problem
should achieve the same results as what is produced by making the mapping x → x̂.
As long as the kernel function K satisfies Mercer’s condition [33], there exists a
feature space where the inner product is generated by K . In this light, a kernel
function can be considered as an implicit definition of a certain mapping.

15.2.2 Weighting via Atomized Kernel

Although the implicit mapping defined by kernel methods is very powerful in
solving nonlinear problems, similar to other learning techniques, it may easily be
confused by irrelevant or redundant features, which are commonly seen in circuit

15 Performance Dependency Analysis of AMS Circuits 427

Fig. 15.1 Examples that
cannot be linearly solved by
the kernel function
corresponding to the mapping
(x1, x2)→ (x1, x2, x

2
1 + x2

2),
where blue circles and red
stars denote two different
classes, respectively. (a) x2 is
the only relevant feature
while x1 is purely irrelevant.
(b) x1 is the dominant feature
while x2 provides subtle
information to reflect the
classes

1x

2 2x

2x 1x

2
2

1
2x1

x+

(a)
2x

1x

2x

1x

2
2

1
2x1

x+

(b)

applications. For example, in Fig. 15.1, if we only sample the center and the four
corners, all the samples can be linearly separated by using the mapping (x1, x2)→
(x1, x2, x

2
1 + x2

2), which is equivalent to using kernel function K(xa, xb) = xTa xb +
xTa xaxTb xb. But if we keep sampling more evenly in the 2-D input space to include
those small circles and asterisks in the training set, it’s possible that, as Fig. 15.1
shows, one of the two features is actually irrelevant to the target, or features may
have quite different relevancy. In both scenarios, by using the same kernel function
or its equivalent mapping, the mapped input vectors can no longer be linearly solved
in the 3-D feature space.

From another perspective, kernel function K(xi , xj) is usually viewed as a
representation of the covariance or similarity between xi and xj . If xi and xj
contain notable amount of noise or redundant features, the kernel function may
not be able to correctly reflect the covariance or similarity. For example, Gaussian
kernel, also known as radial basis function (RBF) and defined as K(xi , xj) =
exp(−γ ‖xi − xj‖2), is a commonly used kernel function. Any noisy redundant
feature included in xi and xj will directly affect the term ‖xi − xj‖2, leading to a
kernel function value that cannot truly reflect the similarity of the two samples. Such
vulnerability is critical and a flexible weighting scheme is needed especially when
there are only limited number of samples.

To approach such problems, based on the implicit mapping mechanism, we
propose to construct a new kernel by atomizing the existing kernel functions to
achieve implicit feature weighting. Considering the examples shown in Fig. 15.1,
to get rid of the interference from the redundant or much less relevant feature, the
mapping can be further extended into a 6-dimensional space:

x̂ = (x1, εx1, x2, εx2, x
2
1 + εx2

2 , εx
2
1 + x2

2)
T ,

428 H. Lin et al.

1x

3x

2x
(a)

2x

3x

1x
(b)

~ ~

~

~~

~

Fig. 15.2 3-D projections of the new 6-D mapping where the two examples in Fig. 15.1 are
linearly solved by the purple planes: (a) x̃1 = x2 + εx1, x̃2 = 0, and x̃3 = x2

2 + ε2x2
1 ; (b)

x̃1 = x1 + εx2, x̃2 = υ(x2 + εx1), and x̃3 = (x2
1 + ε2x2

2) + υ(x2
2 + ε2x2

1), where υ is a small
positive weight

where a small ε can weaken the interference of one feature to the other in the last
two dimensions of x̂. As shown in Fig. 15.2a and b respectively corresponding to
Fig. 15.1a and b, the 6-D space is linearly projected to 3-D spaces for the purpose
of illustration, and the mapped samples are linearly solvable in the new 3-D spaces,
meaning linear solutions exist in spaces which are linearly transformed from the
6-D space defined by x̂.

Since implicit mappings defined by kernel functions are more favorable, for the
exact mapping x → x̃ defined above, its corresponding kernel function is:

K̃(xa, xb) =(xa
(1))T xb

(1) + (xa
(1))T xa

(1)(xb
(1))T xb

(1)

+ (xa
(2))T xb

(2) + (xa
(2))T xa

(2)(xb
(2))T xb

(2),

where x(1) = diag(1, ε) · x and x(2) = diag(ε, 1) · x. By substituting the original
kernel function K into the new kernel, it can be re-written as:

K̃(xa, xb) =K(diag(1, ε) · xa, diag(1, ε) · xb)

+K(diag(ε, 1) · xa, diag(ε, 1) · xb),

where the first term and second term are original kernels with vectors scaled by
diag(1, ε) and diag(ε, 1), respectively. In other words, each terms scale down one
feature with a small ε and map x to a portion of the dimensions in x̃ which are
insensitive to that feature.

More generally, we define a scaling diagonal matrix Si(ε) with:

Si(ε) = diag(si) (15.2)

15 Performance Dependency Analysis of AMS Circuits 429

and

si(j) =
⎧⎨
⎩1, j = i,
ε, j �= i,

where ε ∈ [0, 1]. For any existing kernel function K(xa, xb), we define a new
feature kernel function as:

Ki(xa, xb; ε) = K(Si(ε) · xa,Si(ε) · xb). (15.3)

Such feature kernel mainly maintains the sensitivity to the i-th feature in both xa
and xb, with other features scaled by ε. If ε = 1, such feature kernel is identical
to the original kernel. If ε = 0, the i-th feature is completely isolated since all the
other features are zero out from the original kernel.

Assuming that kernel K maps samples from an F -dimensional input space to a
d-dimensional space, which may be vulnerable to irrelevant or nonlinearly relevant
features, we now atomizeK into the sum of F weighted feature kernels by assigning
one for each feature:

K̃(xa, xb; ε) =
F∑
i=1

viKi(xa, xb; ε). (15.4)

It will result in a mapping from the F -dimensional input space to another (d · F)-
dimensional space. In this much higher dimensional space, we are expecting that the
inner product of any pair of vectors can be expressed or approximated by a linear
combination of the feature kernels.

In addition, for the i-th feature kernel Ki , it mainly represents the information
provided by the i-th feature since the influence of other features in the corresponding
“axes” of the mapped space is scaled down if ε < 1 or completely removed if ε = 0.
Therefore, we propose to perform feature weighting via the weighting parameters
vi as demonstrated in (15.4). Larger |vi | means the i-th kernel is more important
in the kernel model. For example, by using ε = 0.1 as the scaling parameter, in
Fig. 15.2a, the kernel function corresponding to the projection is K̃ = 0 ·K1 +K2
while in Fig. 15.2b, it is K̃ = K1 + υ · K2 where υ = 3/8. These two atomized
kernel functions clearly reflect the relevancy of the two features.

One of the advantages of this weighting scheme is that the weighting parameters
are much easier to manipulate compared to the schemes that directly apply
weighting parameters to the input vectors. Secondly, the parameter ε makes the
model more flexible by smoothly morphing from regular kernels (ε = 1) to feature
selection (ε = 0). Moreover, similar to the original kernel method, this weighting
scheme actually avoids defining explicit feature weighting by instead weighting the
linear combination of the feature kernels, which can be considered as an implicitly
defined nonlinear weighting scheme.

430 H. Lin et al.

For an existing kernel functionK that satisfies Mercer’s condition [33], the newly
defined feature kernel Ki should also satisfy Mercer’s condition. As a result, after x
is normalized, for all square integrable g(x) we have:

∫
χ×χ

K̃(xa, xb; ε)g(xa)g(xb)dxadxa

=
F∑
i=1

∫
χ×χ

viKi(xa, xb; ε)g(xa)g(xb)dxadxa ≥ 0,

for all xa, xb ∈ χ as long as vi ≥ 0,∀i.

15.2.3 Learning Model with Feature Kernels

In SVM, the training model is often solved in its dual form and, by leveraging
Karush–Kuhn–Tucker (KKT) conditions, the prediction model is based upon the
following decision function:

y(x;w) =
N∑
i=1

wiK(x, xi), (15.5)

where {xi}Ni=1 are the training examples andwi are actually the Lagrange multipliers
referred to as αi in (15.1). The training process of learning methods using (15.5)
as their decision function is to infer all the parameters wi in (15.5) given the
corresponding targets {ti}Ni=1 of the training examples {xi}Ni=1.

Taking the error ei between ti and y(xi;w) into consideration, the kernel-based
machine can be written as:

t = Φw · w+ e, (15.6)

whereΦw is anN×N matrix defined byΦw(i, j) = K(xi, xj), t is simply the target
vector with t(i) = ti , and e is the error vector for the N training samples. Learning
methods like SVM aim at minimizing e with fitting loss term and regularizing w
with smoothing regularization term simultaneously.

As previously mentioned, most popular kernel functions such as Gaussian kernel
(also known as radial basis function) and polynomial kernel are vulnerable to
features with complicated relevancy. For training data with F features, we define
a new learning model by embedding the sum of weighted feature kernels as a new
kernel function into (15.6) to handle feature relevancy:

t = Φwv(ε) · (w⊗ v)+ e, (15.7)

15 Performance Dependency Analysis of AMS Circuits 431

where Φwv(ε) is an N × (NF) matrix defined by Φwv(ε)(i, (j − 1)F + k) =
Kk(xi, xj; ε) with i, j ∈ [1, N] and k ∈ [1, F]. Besides, w ⊗ v in (15.7) is the
tensor product of vector w and v which yields an (NF) × 1 row vector with the
definition (w⊗ v)((j − 1)F + k) = wjvk where j ∈ [1, N] and k ∈ [1, F].

A useful property of this new kernel machine is that the roles of w and v in the
model (15.7) are relatively symmetric and transposable. Model (15.6) can be derived
from model (15.7) by moving v from the tensor product to the design matrix defined
by Φw(ε)(i, j) = ∑F

k=1 vkKk(xi, xj; ε) with i, j ∈ [1, N]. Similarly, the following
model can be derived from (15.7) by instead moving w to the design matrix:

t = Φv(ε) · v+ e, (15.8)

where Φv(ε) is an N × F matrix defined by Φv(ε)(i, k) = ∑N
j=1wjKk(xi, xj; ε)

with i ∈ [1, N] and k ∈ [1, F]. This property indicates that the exploration process
of w and v may be unified, which will be discussed in detail in the next section.

15.3 Sparse Relevance Kernel Machine

While the new kernel machine is capable of solving feature weighting during the
training process, the searching space of the solution is inflated by the number of
features. A sparse treatment is highly appealing since the sparsity may help to reduce
the complexity. And in the scenario of feature selection, that is, in the cases of ε = 0,
it may help to filter out irrelevant or redundant features as much as possible if v tends
to be sparse. Since Bayesian learning frameworks with sparse prior [30, 37, 38] are
capable of producing highly sparse models, we develop a sparse relevance kernel
machine under the Bayesian learning framework in this section.

15.3.1 Relevance Vector Machine

The relevance vector machine (RVM)[30] is a sparse Bayesian model providing
a viable probabilistic framework, whose Bayesian network model is shown in
Fig. 15.3.

Fig. 15.3 The network
model of the RVM where
Kij = K(xi, xj). Circles
denote random variables and
squares denote deterministic
model parameters

it2σ

Nw

......

1w

2w
1α

2α

Nα

i j ij j it K w e= +Σ

2(| ,)p t α σMaximize

convolution

N

432 H. Lin et al.

Given the input vectors {xn}Nn=1 and their corresponding targets {tn}Nn=1, the RVM
is used to probabilistically determine the model (15.6). The given target values are
modeled as independent Bernoulli random variables with the following probability
distribution:

P(t|w) =
N∏
i=1

σ [y(xi;w)]ti · σ [1− y(xi;w)]1−ti , (15.9)

where σ is the sigmoid link function σ(y) = (1+ e−y)−1.
Different from deterministic learning models (e.g., the SVM) that compute w

directly, the RVM defines the prior distribution of w as independent zero-mean
Gaussian random variables with variance α, and compute α instead of w in the
training process:

p(w|α) =
N∏
n=1

N (0, α−1
n). (15.10)

If αi < ∞, wi is called a relevance vector since it has a variance greater than
zero, allowing xi making contributions to the decision function. Note that the RVM
performs prediction with the posterior probability of the internal variables (i.e., the
weights). Via convolution of Gaussian distributions, the covariance and mean of the
posterior p(w|t,α) can be shown to be respectively:

Σ = (ΦT Γ Φ + A)−1 (15.11)

μ = ΣΦT Γ t, (15.12)

where A = diag(α), Γ = diag(γ), and γ (i) = σ [y(xi;w)] · σ [1− y(xi;w)].
The objective of the Bayesian network is to find the most probable model param-

eters with the given training samples, i.e., to maximize the posterior probability
p(w,α|t). Based on the Bayes’ rule, such objective is equivalent to:

arg max
α

p(t|α). (15.13)

A training algorithm is proposed in [32] to compute the optimal α. After the training,
for any x̂, its predicted probability of being labeled 1 is:

σ(ŷ) = σ(μT φ(x̂)) (15.14)

where φ(x̂) is a vector of size N whose i-th entry is defined by φ(x̂)(i) = K(x̂, xi).

15 Performance Dependency Analysis of AMS Circuits 433

15.3.2 Bayesian Learning Model for SRKM

The RVM is a learning model based on the decision function (15.5) focus-
ing on producing a sparse w. Under the same framework, a feature selection
technique called relevance feature vector machine (RFVM) [6] is proposed to
exchange the roles of samples and features by defining the “feature vector” fi =
(x1(i), x2(i), . . . , xF (i))T and a new design matrix Φ ′(i, j) = K(fi , fj). This is
a regularization-based feature selection method, which focuses on building a filter
method [5] by ranking the features.

To achieve high model accuracy and high quality feature weighting with the
new kernel machine (15.7), we propose a sparse relevance kernel machine (SRKM)
whose conceptual structure is shown in Fig. 15.4.

Without using the new kernel machine model (15.7), learning method with
embedded feature weighting is often realized by directly assigning weights v to
the parameters. However, as we discussed previously, since most kernel functions
are nonlinear, it is extremely difficult to develop the models in the Bayesian learning
contexts. For example, by assigning Gaussian prior to v in a similar way p(v|β) =∏F
n=1 N (0, β−1

n), the Bayesian network described in Fig. 15.3 is extended to derive
the new model on the left of Fig. 15.5. Assuming Gaussian kernel with linear direct
feature weighting

α

β

β

α

u w v= ·

RRVM

RFVM

w Feature

Vector

v

SRKM

Fig. 15.4 The conceptual SRKM model. Small black dots denote training data, with each row
representing a vector and each column representing a feature. Circles denote random variables and
squares denote deterministic model parameters

434 H. Lin et al.

Fig. 15.5 Development of
SRKM Bayesian network
where Kijk = Kk(xi , xj ; ε).
Circles denote random
variables and squares denote
deterministic model
parameters it

2σjwjα

kvkβ
Non-linear

2(| , ,)p t α β σNo analytical expression

F

N

K
Bilinear

it

2σ

jku

jα

kβ
N F·

F

N

jk j ku w v=

Linear

Analytically computable

∼
∼∼

K(xi, xj) = e−γ ‖diag(v)·(xi−xj)‖2
,

is employed, the deterministic relationship from w and v to t is highly nonlinear. As
a result, the following optimization objective of the Bayesian training process is not
analytically computable and hence hinders the optimization-based training process:

p(t|α,β, σ 2) =
∫∫

p(t|w, v, σ 2) · p(w|α) · p(v|β)dwdv. (15.15)

As the first step towards developing the SRKM, we embed the new kernel
machine (15.7) into the Bayesian learning framework to handle the feature weight-
ing problem. Here we treat ε in the feature kernel as a kernel parameter pre-defined
before the training process, similar to the γ parameter in the Gaussian kernel, which
can be selected by standard processes like cross validation. Leveraging the relevance
kernel machine in the Bayesian network helps to simplify the highly nonlinear
deterministic relationships into a bilinear form. As described in (15.7), t can be
expressed as linear combinations of a series of w(j)v(k) terms.

However, inference in Bayesian networks with nonlinear or even bilinear deter-
ministic relationships requires great effort like piece-wise linearization [7] or
dynamic discretization [23] to deal with the nonlinearity, which may greatly boost
the complexity of the learning model. To address this problem, instead of defining w
and v as separate Gaussian random variables, we replace the term w(j)v(k) with a
single random variable ujk for all j ∈ [1, N] and k ∈ [1, F], which results in linear
deterministic relationships from ujk to t. If we define a new vector u of size (N ·F)
whose entry u((j − 1)N + k) = ujk = w(j) · v(j), the model becomes:

t = Φu(ε) · u+ e, (15.16)

where the design matrix Φu(ε) is identical to Φwv(ε) in (15.7).
In the RVM, the zero-mean Gaussian prior distribution of w tends to help the

model converge to a sparse w since the resulting marginal prior distribution over w
is the product of Student-t distributions. Similarly, to achieve sparsity in u, we also
define their prior distributions as independent zero-mean Gaussian distributions.
Considering the nature of u, if uj,k is irrelevant, meaning the distribution of uj,k

15 Performance Dependency Analysis of AMS Circuits 435

is infinitely peaked at zero, either the i-th sample ({uj,k}Fk=1) or the j -th parameter
({uj,k}Nj=1) should be irrelevant as well. To reflect this, we define a proper prior
for u as:

p(u|α,β) =
N∏
j=1

F∏
k=1

N (0, α−1
j β

−1
k), (15.17)

which leads to our proposed computable linear Bayesian network shown on the right
of Fig. 15.5 and our conceptual model described in Fig. 15.4. An infinite αjβk =
∞ means ujk = 0 and the corresponding feature kernel is irrelevant to the final
decision function. In addition, if αj → ∞, all the {uj,k}Fk=1 are zero, meaning the
j -th sample is discarded from the set of relevance vectors. Likewise, if βk < ∞,
the k-th parameter is relevant and there should be at least one non-zero ui,j for
i ∈ [1, N].

Under the same Bayesian inference framework, the posterior covariance and
mean of p(u|t,α,β, σ 2) in the proposed Bayesian network are found to be:

Σu = (σ−2(Φu
(ε))T Φu

(ε) + Au)
−1, (15.18)

μu = σ−2Σu(Φu
(ε))T t, (15.19)

where Au = diag(α1β1, α1β2, . . . , αNβF) and Φu(ε) is the new design matrix
defined in (15.16). The formulas (15.18) and (15.19) are in the same form as the
posterior covariance and mean of w in the RVM, and consequently solvable with
the existing RVM algorithms.

The SRKM classification model behaves analogously to the regression model but
using a Bernoulli likelihood instead of Gaussian for the target with the following
sigmoid link function:

#(y) = 1

1+ e−y . (15.20)

As a result, the Bernoulli likelihood is:

P(t|u) =
N∏
i=1

#[y(xi;u)]ti · #[1− y(xi;u)]1−ti , (15.21)

where the targets ti ∈ {0, 1} are for binary classifications. With likelihood in the
form of (15.21), there is no closed-form expressions for u and hence the Laplace
approximation procedure [21, 32] should be utilized and nested in each iteration of
the training.

436 H. Lin et al.

15.3.3 Efficient Training Algorithm

The marginal likelihood maximization [32] required in training the RVM model is
solved in an iterative process similar to the well-known expectation maximization
(EM) algorithm. Due to the required matrix operations, the worst case computa-
tional complexity in each iteration isO(N2F +N2M) [14] if there areM relevance
vectors in that iteration and F features in total. By performing one-time pre-
computation of the full N × N design matrix Φ with the complexity of O(N2F)

and pre-computing (ΦT Φ) (or normalizing Φ as the implementation of [31]), the
complexity of each iteration can be reduced to O(NM2) by using O(N2) memory
instead of O(NM).

For the SRKM, by solving (15.16) with this algorithm, since the size of the vector
u is (N · F), a large number of features F will blow the worst case computational
complexity for each iteration from O(NM2) to O(NFM2E2) if there are M
relevance vectors and E relevance features in that iteration.

To address this computational challenge, our proposed efficient algorithm lever-
ages the property that w and v are interchangeable in the bilinear Bayesian
network (15.7), and that either vectors can be merged into the design matrix to
reduce our model to (15.6) or (15.8). As Fig. 15.6 shows, fixing α and moving the
resulting expectation of w into the design matrix (i.e., converting Φ(ε)u in (15.16) to
Φ
(ε)
v in (15.8)) will reduce every column in Fig. 15.6 to a single weight vj with its

prior βj . Similarly, row-wise reduction by fixing β converts the proposed network
to another RVM network with w and α.

The above discussion suggests an efficient two-level iterative training process. In
each iteration of the top level, we reduce the model either row-wise or column-wise,
and update α or β subsequently. In the second level, the original algorithm [32] can
be employed to solve either Model (15.6) or Model (15.8). The complexity in each
iteration is now reduced to either O(NM2) or O(FE2).

iy

2σ 1α

nα

Nα

n fw v

1β fβ Fβ... ...

...
...

F

N

1 1w v 1 fw v
1 Fw v

1nw v

1Nw v

n Fw v

N fw v N Fw v

row-wise reduction

co
lu

m
n-

w
is

e
re

du
ct

io
n

nw nα

fv fβ
F

N

iterate

Fig. 15.6 Efficient SRKM model with network reduction. Circles denote random variables and
squares denote deterministic model parameters

15 Performance Dependency Analysis of AMS Circuits 437

15.4 Experiments

To demonstrate the superiority of the proposed SRKM, we compare its performance
with popular learning-based techniques including the SVM [34] and the RVM [30].
We also compare the SRKM with the RFVM [6] in terms of parameter (feature)
ranking. For the purposes of parameter ranking and selection, we use feature kernel
with ε = 0 in all the experiments.

15.4.1 Variability Analysis of an LDO

Building an accurate regression model for a given analog performance and per-
forming feature ranking among all sorts of process parameters are key to the
understanding of the impacts of process variabilities on analog circuits. Since
simulations or measurements are usually expensive, it is of great significance to
build an accurate regression model and obtain reliable parameter weighting with
a moderate amount of samples, which turns out to be a task well handled by the
proposed method.

We investigate the process variations in a realistic low-dropout regulator (LDO)
design (Fig. 15.7) proposed in [16]. We build SRKMs to analyze the impact of
process variations on LDO specifications including its quiescent current, undershoot
of the output voltage Vout, and load regulation. Channel length variations of all
transistors in the LDO are modeled at the SPICE level using a commercial 90 nm
CMOS technology design kit. We use various numbers of simulation samples to
build a regression model relating the model process parameters with each targeted
specification and test the accuracies of these models using a testing set of 1000
simulation samples. The results are shown in Fig. 15.8.

M1

M2

M3M4

M5 M6
M7M8

M9M10

M11

M12

M13

M14
M15

M16 M17

M18
M19

M20

R1

R2

C0

C1

C2
C3

Fig. 15.7 Low-dropout regulator (LDO)

438 H. Lin et al.

Fig. 15.8 Regression
performance comparison

N
M

SE

Number of samples

Quiescent current

Undershoot

Load regula�on

0.16%

0.06%

0.11%

> 1%

> 0.2%

> 0.25%

Fig. 15.9 Ranking quality
comparison with the number
of selected parameters (QC
quiescent current, US
undershoot, LR load
regulation)

20-Dim. 60-Dim.

13 127 13 25
15

7

6 6

18

13 21

In this experiment, normalized mean square error (NMSE) is used as the metric
to evaluate the performance of the predictors trained with different techniques. As
Fig. 15.8 shows, the SRKM out-performs the popular SVM and RVM in all cases
by achieving one order of magnitude lower NMSEs.

We compare the ranking produced by the SRKM and the RFVM on feature
ranking in Fig. 15.10. To evaluate the quality of the ranking, for each design
specification, we train two RVMs only in the process parameters selected by SRKM
and RFVM, respectively. A parameter is selected by SRKM or RFVM if its expected
weight is greater than 0.01. Such procedure is firstly applied to the regression
model with 20 channel length variations, i.e., the three columns on the left of
Fig. 15.9. Then, the same procedure is applied to an expanded full parameter set
of 60 parameters involving variations of each transistor’s channel length, oxide
thickness, and threshold voltage (on the right of Fig. 15.9). The resulting NMSEs
and the numbers of parameters selected indicate that the SRKM produces more
reliable parameter weighting and reaches similar sparsity compared to the RFVM.

We use design knowledge to provide further insights and validation for the
parameter rankings of the 20 channel length variations computed by the SRKM. For
example, based on the analysis in [15] a majority portion of the multi-loop LDO’s

15 Performance Dependency Analysis of AMS Circuits 439

Fig. 15.10 Weights of
transistor’s channel length
variation in the model of: (a)
quiescent current; (b)
undershoot; (c) load
regulation. Red lines
represent the 95% confidence
intervals estimated by SRKM

1 5 10 15 20
P

ar
am

et
er

 W
ei

gh
t

0

0.7

1.4

RFM

RVFM

(a)

1 5 10 15 20

P
ar

am
et

er
 W

ei
gh

t

0

0.4

0.8

RFM

RVFM

(b)

1 5 10 15 20

P
ar

am
et

er
 W

ei
gh

t

0

0.5

1

RFM

RVFM

(c)

quiescent current is consumed by the fastest two loops in the output stage and hence
the variation on M2 has significant impact on the quiescent current. Moreover,
variations on M3, M7, M8, and M9 may lead to mismatches and considerable
changes at the two output nodes of the error amplifier, one of which is Vg of M2.
This analysis matches the ranking shown in Fig. 15.10a.

The undershoot of the LDO is mainly determined by the load capacitor and
the loop bandwidth, which is further determined by the error amplifier (involving
M3 ∼ M10), the fast loop in the output stage (M12), and the in-band zeros locations
defined as:

440 H. Lin et al.

ωLCZ ≈
√

gm1gm11ga

gm2CC2(CC1 + CC3)
, (15.22)

where ga is the output admittance of the error amplifier defined by the gm ofM7 ∼
M10. The ranking of the SRKM in Fig. 15.10b is reliable since it captures all these
relevant variations.

Load regulation of the LDO is mainly determined by the DC loop gain, which is
the product of the gains of all stages in the loop. The gain of the EA stage is inversely
proportional to the gm of M7 ∼ M10 and the second stage is comprised of M17
and M11. Again, the ranking of the SRKM as shown in Fig. 15.10c successfully
identifies all these important variations.

15.4.2 PLL BIST Scheme Optimization

Built-in-self-test (BIST) is very effective in detecting operational failures of
deployed analog/mixed-signal circuits. Based on the concept of alternative test,
efficient BIST solutions can be formed by collecting low-cost test signatures
and relating the signatures to targeted performance specifications using statistical
prediction models. The effectiveness of BIST heavily depends on the quality of
the selected signatures and the tradeoffs between accuracy, overhead, and test
time. We apply the RFVM to the BIST of a charge-pump PLL targeting three
key specifications: lock-time (LT), frequency overshoot (OVS), and jitter (JT)
(Table 15.1).

Figure 15.11 shows the PLL along with three BIST schemes using various test
signatures. Jitter, frequency overshoot, and lock-time are important specifications
but cannot be easily measured directly on the chip. To capture failures in those
specifications, the first candidate BIST scheme [40] collects the readouts of the
counter in the divider as its test signature, while the second scheme [11] collects
the accumulated up and dn phase detector outputs via integrators and time-to-digital
converters (TDCs). The third scheme is an example of IDDQ testing, measuring
the quiescent currents of the charge-pump (CP) and the voltage control oscillator
(VCO) as test signatures similar to the approach of [22].

The first two schemes operate in a special test mode which instead of feeding
back the divider output, it first feeds the one-buffer delayed reference clock to the
phase detector for 8 reference cycles with a cycle time of 0.1 μs. Then, the reference

Table 15.1 BIST scheme synthesis

Original best Synthesized signatures Test time (μs) Test time Optimized
Spec. accuracy Sch.1 Sch.2 Sch.3 Sch.1&2 Sch.3 Total reduction accuracy

JT 97.22% 1–3 1 VCO 0.3 0.6 0.9 43.75% 99.98%

OVS 98.00% 1–3 1–7 CP 0.4 0.6 1.0 37.50% 99.88%

LT 96.40% 1–4 1–2 VCO 0.4 0.6 1.0 37.50% 99.95%

15 Performance Dependency Analysis of AMS Circuits 441

D1D2Dn
Counter readout DIV readout

Loop
filter

Phase
detector

Frequency divider

0
1

0
1

BIST
control ...

REF Sensor

IDDQ readout

UP

DN

UP/DN readout

VDD Sensor
VDD

DFF
D

Q
DFF

D

Q
DFF

D

Q

...

TDC
TDC

I-ADC

VCOCharge
pump

I-ADC

Fig. 15.11 A PLL and three BIST schemes

Fig. 15.12 Classifier
performance comparison

Er
ro

r

Scheme

Lock-time Overshoot Jitter

clock input is replaced by the double delayed reference clock for another 8 cycles.
Each cycle generates one signature for Scheme 1 and two for Scheme 2, making a
total of 16 and 32 signatures for Scheme 1 and 2, respectively. Scheme 3 reads out
two signatures, i.e., the CP and VCO quiescent currents, in the quiescent mode.

Recently, learning-based classifiers like the SVM have been trained to perform
the failure detection in BIST [4, 40]. To make better usage of the collected
test signatures, we apply the proposed SRKM in each scheme. We fit the target
specification into a sigmoid function before we employ the SRKM as a classier for
failure detection. Three classification techniques, the SVM, RVM, and SRKM, are
trained with 200 simulation samples and tested with 4000 samples. The classifying
errors are compared in Fig. 15.12 which shows the superior BIST classifier accuracy
of the proposed SRKM.

442 H. Lin et al.

In addition, the SRKM also produces reliable ranking among test signatures,
which can be further leveraged to improve the efficiency of BIST schemes. For
example, the SRKM ranks the 16 test signatures in Scheme 1 as shown in Fig. 15.13
when building the classifier for jitter failure detection. The tenth signature is the
last one with a significant weight. After that, the remaining six signatures are of
little importance and can be considered as redundant. Using the same procedure, we
reduce the test time for each of the three specifications for Scheme 1 as reported in
Table 15.2.

Assuming that realizing all three schemes on-chip does not lead to significant
overhead, we seek to improve BIST accuracy by leveraging the signatures of all the
schemes. While combing all the signatures can offer the best accuracy, it may not be
completely efficient due to the existence of redundant signatures. For this, we train
an SRKM on all the signatures across the three schemes to predict the jitter. Based
on the signature ranking shown in Fig. 15.14, we collect the first three signatures
in Scheme 1 and the first signature in Scheme 2. Although the third last signature
in Scheme 2 also possesses a notable weight, collecting such signature is not cost-
effective in terms of test time, and thus it is discarded. For Scheme 3, only the quies-
cent current of VCO is selected, which can be measured in 0.6 μs according to [22].

Fig. 15.13 Signature ranking
for jitter prediction with
Scheme 1

Shorter test time Pruned

Table 15.2 Test time optimization of Scheme 1

Spec. Original accuracy Selected readouts Resulting accuracy Test time reduction

JT 97.22% 1–10 96.20% 37.5%

OVS 95.78% 1–12 94.89% 25.0%

LT 96.20% 1–6 97.00% 62.5%

Fig. 15.14 Signature ranking
for jitter prediction with all
three schemes

Selected
Pruned

Scheme 1 Scheme 2 3

Pruned

Selected IDDQ of VCO

15 Performance Dependency Analysis of AMS Circuits 443

Based on these five selected signatures, we synthesize an optimized combined
BIST scheme for each specification and show the results in Table 15.1. As can be
been, by using the proposed SRKM, the BIST accuracy can be boosted to over
99.88% with a test time reduction of about 40%.

15.4.3 Binary Classification for Functional Check

The above two examples illustrate the effectiveness of the regression version of
SRKM. This experiment demonstrates the superiority of the proposed SRKM
algorithm for classification by applying it to analyzing a commercial dual-lane
data communication AMS system shown in Fig. 15.15. As a product designed for
automotive applications, functional safety is a key requirement. One of the safety
features, the thermal shutdown (TSD) function, is investigated in this experiment to
analyze the impact of process variations on this feature.

Figure 15.15 shows the functional blocks that are electrically related to the TSD
feature. The BG block is a bandgap reference that provides temperature independent
voltage reference to the IREF block. The IREF block provides reference currents to
multiple blocks, including the TX, RX, and TSD blocks. The Lane 1 and Lane 2 in
the system share the same design, including the TSD implementation. The shutdown
temperature threshold is designed to be 190 ◦C, meaning both Lane 1 and Lane 2
should turn off their driver to the bus when the temperature exceeds 190 ◦C.

We collected results from 1000 Monte Carlo simulations, and label them as 1 or
0 according to whether the lane can turn off the driver (TX block) at 190 ◦C or not.
We use half of the simulations as the training data to build an SRKM classification
model for each lane, and use the other half to test the performance of the trained
classifier. Based on the process design kit (PDK) we use, there are 15,015 process
parameters involved in each simulation. In other words, our goal is to build 15,015-
dimensional classifiers with merely 500 samples.

As shown in Table. 15.3, the widely used SVM can only produce a classifier
with an accuracy of about 60%, while the proposed SRKM can achieve an accuracy
of around 85%. For the trained SVM model, all 500 samples become the support
vectors, indicating that the SVM cannot find the regularity from the given training

Fig. 15.15 Block diagram of
a dual-lane data
communication AMS system

TX

RX

IREF

Other
blocks

TSD
LOGIC

BG
Lane 1

Lane 2(Same as Lane 1)

444 H. Lin et al.

data. On the contrary, the SRKM successfully achieves sparsity in the vector space
(2 relevance vectors for Lane 1 and 23 for Lane 2 out of 500 samples) and the feature
space (38 relevance features for Lane 1 and 45 relevance features for Lane 2 out of
15,015 process parameters).

In Fig. 15.16, we sum up the produced SRKM feature weights in each functional
blocks and lanes to reflect the block-wise impact of process variations. For the
SRKM trained for the Lane 1 TSD, relatively small feature weights have been
assigned to the process parameters from Lane 2, which matches the structure of the
system, where Lane 2 is indeed not directly connected to Lane 1 and hence should
have minimal impact on the Lane 1 TSD. Similarly, in the SRKM trained for Lane
2 TSD, the impact of process parameters from Lane 1 is also minimal.

Based on the block-wise break-down of the sum of feature weights, it implies
that the process parameters from the BG and IREF blocks, which determine the
reference current of the TSD block, are more critical than the process parameters
from the TSD block, which is the implementation of the TSD function. This
also matches with the design intuition since the TSD block mainly involves
components such as comparators whose performances are more resilient with
respect to process variations, while currents are usually more vulnerable to process
variations. Therefore, it can be anticipated that the feature weighting results are
reliable.

Table 15.3 Learning model
performance comparison
(SV/RV support
vectors/relevance vectors; RF
relevance features)

Model Accuracy # SV/RV # RF

Lane 1 SVM 56.4% 500 –

SRKM 85.8% 2 38

Lane 2 SVM 61.0% 500 –

SRKM 84.6% 23 45

Fig. 15.16 Process variation
impacts on TSD of various
blocks

Lane 1
Lane 2

Logic
Lane 1

Lane 2
Logic

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 s
um

 o
f f

ea
tu

re
 w

ei
gh

ts

BG
IREF
TSD
RX
TX

15 Performance Dependency Analysis of AMS Circuits 445

15.5 Conclusions

This paper proposes a novel sparse Bayesian learning framework named sparse
relevance kernel machine to capture circuit characteristics and analyze circuit
performance dependencies on assorted parameters or signatures via a statistical
model. The advantages of the proposed framework are demonstrated in examples
including statistical variability modeling of an LDO, a BIST scheme optimization
of a charge-pump PLL, and building statistical variability models for a commercial
automotive interface design.

The framework of the learning model was originally developed in our earlier
works [18, 20]. Since then, we have extended the framework to handle both
regression and classification problems, and have explored potentials of the new
learning model in practical circuit applications. One major limitation of the current
learning model is the computational complexity. Although we developed an iterative
algorithm to remedy the complexity increased by the feature kernel weighting
mechanism, based on the discussion in Sect. 15.3.3, the computational complexity
of SRKM is one order higher than the widely used SVM in each iteration. And the
overall convergence is also slower since SRKM has two levels of iterations. As a
result, to solve applications with huge amount of data, the training algorithm needs
to be further optimized for better efficiency.

Moreover, the feature kernel weighting mechanism proposed in Sect. 15.2 is
very flexible. Since sparsity is very useful in our applications, we developed the
learning model of SRKM in the Bayesian learning framework, but the feature kernel
weighting mechanism can definitely fit into other kernel-based learning framework
such as sequential minimal optimization (SMO), which poses potentials in other
application scenarios where sparsity is not in need.

Acknowledgements This material is based upon work supported by the Semiconductor Research
Corporation (SRC) through Texas Analog Center of Excellence at the University of Texas at Dallas
(Task ID:2712.004).

References

1. P. Bastani, N. Callegari, L.C. Wang, M.S. Abadir, Statistical diagnosis of unmodeled systematic
timing effects, in Proceedings of the 45th Annual Design Automation Conference (ACM, New
York, 2008), pp. 355–360

2. C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, Oxford,
1995)

3. A.L. Blum, P. Langley, Selection of relevant features and examples in machine learning. Artif.
Intell. 97(1), 245–271 (1997)

4. A. Bounceur, B. Brahmi, K. Beznia, R. Euler, Accurate analog/RF BIST evaluation based
on SVM classification of the process parameters, in 2014 9th International Design & Test
Symposium (IDT) (IEEE, Piscataway, 2014), pp. 55–60

5. G. Chandrashekar, F. Sahin, A survey on feature selection methods. Comput. Electr. Eng.
40(1), 16–28 (2014)

446 H. Lin et al.

6. H. Cheng, H. Chen, G. Jiang, K. Yoshihira, Nonlinear feature selection by relevance feature
vector machine, in Machine Learning and Data Mining in Pattern Recognition (Springer,
Berlin, 2007), pp. 144–159

7. B.R. Cobb, P.P. Shenoy, Nonlinear deterministic relationships in Bayesian networks, in
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (Springer, Berlin, 2005),
pp. 27–38

8. M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, Do we need hundreds of classifiers
to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)

9. I. Guyon, S. Gunn, M. Nikravesh, L.A. Zadeh, Feature Extraction: Foundations and Applica-
tions, vol. 207 (Springer, Berlin, 2008)

10. S. Hochreiter, K. Obermayer, Nonlinear feature selection with the potential support vector
machine, in Feature Extraction (Springer, Berlin, 2006), pp. 419–438

11. S.W. Hsiao, N. Tzou, A. Chatterjee, A programmable BIST design for PLL static phase offset
estimation and clock duty cycle detection, in 2013 IEEE 31st VLSI Test Symposium (VTS)
(IEEE, Piscataway, 2013), pp. 1–6

12. X. Huang, L. Shi, J.A. Suykens, Ramp loss linear programming support vector machine. J.
Mach. Learn. Res. 15(1), 2185–2211 (2014)

13. S.S. Keerthi, O. Chapelle, D. DeCoste, Building support vector machines with reduced
classifier complexity. J. Mach. Learn. Res. 7, 1493–1515 (2006)

14. D.E. King, Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)
15. S. Lai, Modeling, design and optimization of IC power delivery with on-chip regulation.

Doctoral dissertation, Texas A&M University, 2014
16. S. Lai, P. Li, A fully on-chip area-efficient CMOS low-dropout regulator with fast load

regulation. Analog Integr. Circuits Signal Process. 72(2), 433–450 (2012)
17. F. Li, Y. Yang, E.P. Xing, From lasso regression to feature vector machine, in Advances in

Neural Information Processing Systems (2005), pp. 779–786
18. H. Lin, Algorithms for verification of analog and mixed-signal integrated circuits. Doctoral

dissertation, Texas A&M University, 2016
19. H. Lin, P. Li, Circuit performance classification with active learning guided sampling for

support vector machines. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(9), 1467–
1480 (2015). https://doi.org/10.1109/TCAD.2015.2413840

20. H. Lin, P. Li, Relevance vector and feature machine for statistical analog circuit characteriza-
tion and built-in self-test optimization, in Proceedings of the 53rd Annual Design Automation
Conference (2016), pp. 11–16

21. D.J. MacKay, The evidence framework applied to classification networks. Neural Comput.
4(5), 720–736 (1992)

22. S. Maltabas, O.K. Ekekon, K. Kulovic, A. Meixner, M. Margala, An IDDQ BIST approach to
characterize phase-locked loop parameters, in 2013 IEEE 31st VLSI Test Symposium (VTS)
(IEEE, Piscataway, 2013), pp. 1–6

23. M. Neil, M. Tailor, D. Marquez, Inference in hybrid Bayesian networks using dynamic
discretization. Stat. Comput. 17(3), 219–233 (2007)

24. J. Neumann, C. Schnörr, G. Steidl, Combined SVM-based feature selection and classification.
Mach. Learn. 61(1–3), 129–150 (2005)

25. B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond (MIT Press, Cambridge, 2002)

26. A. Smola, B. Scholkopf, G. Ratsch, Linear programs for automatic accuracy control in
regression, in Ninth International Conference on (Conf. Publ. No. 470) Artificial Neural
Networks, 1999 (ICANN 99), vol. 2 (IET, Stevenage, 1999), pp. 575–580

27. P. Somol, P. Pudil, J. Novovičová, P. Paclık, Adaptive floating search methods in feature
selection. Pattern Recogn. Lett. 20(11), 1157–1163 (1999)

28. J.A. Suykens, J. Vandewalle, Least squares support vector machine classifiers. Neural Process.
Lett. 9(3), 293–300 (1999)

29. R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol.
58, 267–288 (1996)

https://doi.org/10.1109/TCAD.2015.2413840

15 Performance Dependency Analysis of AMS Circuits 447

30. M.E. Tipping, Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn.
Res. 1, 211–244 (2001)

31. M.E. Tipping, An efficient matlab implementation of the sparse Bayesian modelling algorithm
(version 2.0). Vector Anomaly, March 2009

32. M.E. Tipping, A.C. Faul et al., Fast marginal likelihood maximisation for sparse Bayesian
models, in Proceedings of the Ninth International Workshop on Artificial Intelligence and
Statistics (2003)

33. V.N. Vapnik, Statistical Learning Theory (Wiley, New York, 1998)
34. V. Vapnik, S. Golowich, A. Smola, Support vector method for function approximation,

regression estimation, and signal processing, in Advances in Neural Information Processing
Systems (1997), pp. 281–287

35. D. Ververidis, C. Kotropoulos, Fast and accurate sequential floating forward feature selection
with the Bayes classifier applied to speech emotion recognition. Signal Process. 88(12), 2956–
2970 (2008)

36. F. Wang, M., Zaheer, X. Li, J.O. Plouchart, A. Valdes-Garcia, Co-learning Bayesian model
fusion: efficient performance modeling of analog and mixed-signal circuits using side informa-
tion, in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(IEEE Press, Piscataway, 2015), pp. 575–582

37. P.M. Williams, Bayesian regularization and pruning using a Laplace prior. Neural Comput.
7(1), 117–143 (1995)

38. D.P. Wipf, B.D. Rao, An empirical Bayesian strategy for solving the simultaneous sparse
approximation problem. IEEE Trans. Signal Process. 55(7), 3704–3716 (2007)

39. H. Xu, C. Caramanis, S. Mannor, Robustness and regularization of support vector machines. J.
Mach. Learn. Res. 10, 1485–1510 (2009)

40. G. Yu, P. Li, A methodology for systematic built-in self-test of phase-locked loops targeting
at parametric failures, in IEEE International Test Conference, 2007 (ITC 2007) (IEEE,
Piscataway, 2007), pp. 1–10

Chapter 16
SiLVR: Projection Pursuit for Response
Surface Modeling

Amith Singhee

16.1 Motivation

In many situations it is desirable to have available an inexpensive model for
predicting circuit performance, given the values of various statistical parameters
in the circuit (e.g., Vt for the different devices in the circuit). Examples of such
situations are 1) in a circuit optimization loop where quick estimates of yield might
be necessary to drive the solution towards a high-yield design in reasonable run
time, and 2) during manual design, a simple analytical model can provide insight
into circuit operation using metrics such as sensitivities or using quick visualization,
thus helping the designer to understand and tune the circuit. As an example, consider
an operational amplifier (opamp) circuit, which has several performance metrics of
interest, such as unity gain frequency or DC offset voltage. Statistical parameters
that impact these performance metrics can include the threshold voltage values of
the circuits in the opamp and the electrical properties of any passive components. A
detailed analysis of an opamp and other examples, using the methods described in
this chapter, is provided in Sect. 16.7. Director et al. [1] provides a good overview
of general statistical design approaches. Even though the paper is not very recent,
much of the literature on statistical design (yield optimization) over the last couple
of decades proposes techniques that fall under the general types discussed therein.
Such performance models in the statistical parameter space are commonly referred
to as response surface models: we abbreviate this as RSM here. Initial approaches
employed linear regression to model circuit performance metrics, as in [2]. Soon,
the linear models were found to be inadequate for modeling nonlinear behavior and
quadratic models were proposed in [3, 4] to reduce the modeling error.

A. Singhee (�)
IBM Research, Bangalore, India
e-mail: asinghee@in.ibm.com

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_16

449

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_16&domain=pdf
mailto:asinghee@in.ibm.com
https://doi.org/10.1007/978-3-030-04666-8_16

450 A. Singhee

These low-order models worked sufficiently well for the technologies of
yesteryears, but face fundamental difficulties going forward. Any solution now
must address three large challenges:

• Dimensionality: The number of sources of variations in the circuit can be large.
Even for a simple flip-flop, there can be over 50 sources, e.g., random dopant
fluctuation (RDF), line edge roughness (LER), random poly crystal orientation
(RCO) [5], and gate oxide thickness variation. Although many such sources
can be absorbed into a few device-level parameters, for larger analog cells the
dimensionality can still easily be in the hundreds. The number of variables, s, in
a model determines the number of unknown model parameters that need to be
estimated during model fitting. The number of SPICE-simulated points needed
then is at least the number of unknown parameters.

• Large variations: The relative effect of every variation source is becoming very
large. Just considering RDF, predictions indicate that the standard deviation of
Vt can be 10% of the nominal Vt at the 70 nm node [6], growing to 21% for a
25 nm device [7], with 0.3 V Vt . If other variations (LER, RCO) are considered,
the deviation is even higher [5].

• Nonlinearity: Not all performance/variable relationships are simple. A good
example is the relationship between device Vt in a flip-flop and the flip-flop delay.
Such nonlinearity is even more pronounced in the case of analog circuits.

Linear models are able to handle the dimensionality well, since the number of
unknown model parameters is a slowly increasing s + 1, where s is the number
of input variables. These models, however, fail to capture nonlinear behaviors, for
which higher-order models are needed. Higher-order models can, however, have a
very large number of parameters: a polynomial of degree d in s dimensions has
s+dCd terms. Hence, even a quadratic model in 100 dimensions can have 5151
parameters, requiring 5151 initial SPICE simulations to generate training points for
the model! Recent attempts at reducing the number of unknowns in the quadratic
model have resulted in very efficient techniques, namely PROBE [8] and kernel
reduced-rank regression (RRR) [9]. Both these methods essentially reduce the rank
of the quadratic model, the former doing it in a more natural near-optimal manner.
We will look at PROBE in more detail in Sect. 16.2.3. However, these methods still
suffer from the severe restriction of quadratic (which includes linear) behavior. In
the presence of large variations, the nonlinearity in the circuit behavior is significant
enough to make these models unusable, as we shall see in later sections.

In this chapter, we review the latent variable regression (LVR) [10] and
projection pursuit regression (PPR) [11] strategies and show why they can be
attractive in these scenarios. Roughly speaking, these techniques iteratively extract
the next statistically most important variable (latent variable or LV), and minimize
the error in fitting the remainder of the unexplained performance variation. Hence,
they directly reduce the problem dimensionality. Further, these techniques can
be accompanied with flexible, but compact, functional forms for the model, thus
reducing a priori assumptions about the magnitude of variations and the behavior
modeled. Using these ideas this chapter will develop an RSM strategy for silicon

16 SiLVR: Projection Pursuit for Response Surface Modeling 451

design problems—SiLVR—and show its superior performance in comparison to
PROBE, in the context of the three challenges mentioned above. We will also
see how the “designer’s insight” can be obtained naturally from the structure
of the SiLVR model, in the form of some quantitative measures and insightful
visualization. Such insights into the circuit behavior can help the designer to better
understand the behavior of the circuit during manual design, and guide the optimizer
better during automatic sizing. SiLVR was first introduced by us in [12].

LVR methods have a long and interesting track record and encompass a variety of
different techniques that follow the same philosophy to meet slightly different objec-
tives, for example, partial least squares (PLS) [13], canonical correlation regression
(CCR) [10], and reduced-rank regression [14]. A good survey and comparison is
provided in [10]. These LVR techniques have found wide application, much of it
outside the realm of silicon application, in areas ranging from chemometrics [15]
to statistics [16], to bioinformatics [17]. Many LVR methods still assume a linear
relationship, or use a low-order nonlinear kernel to explain the assumed nonlinear
relationships. Thus, our own interest is in LVR methods that support a more
flexible nonlinear framework. Here, Baffi et al. [18], and Malthouse et al. [19] are
noteworthy. In addition to the single variable iterative extraction philosophy, these
show how to use a neural network [20] to capture significant nonlinear behaviors.
However, [18] suffers from unreliable and slow convergence during training and
[19] uses an excessively complex model that can be prone to computational burdens
and overfitting. SiLVR, although similar in flavor to these methods, uses a more
compact model in a new unified training framework to remove these issues.

Although SiLVR derives its name from LVR, its philosophy finds a closer fit
with projection pursuit [11, 21]. Both LVR and PP are very similar in the way
they operate, but their theory and applications seem to have developed more or
less independently: LVR in the world of chemometrics (PLS) and statistics (CCR,
RRR), while PP in the world of statistics, approximation theory, and machine
learning. Theoretical foundations for PP appear to be better developed, more so
for nonlinear regression and the particular case of the SiLVR model (PP using
sigmoidal functions). We will review relevant results from these as we move towards
developing the SiLVR model architecture.

In the rest of this chapter, we briefly review linear and quadratic models,
including PROBE, a low-rank quadratic model, after which we review the LVR and
PP techniques, along with relevant theoretical results from approximation theory.
Finally, we develop the SiLVR model, covering relevant details regarding model
training, and show experimental results.

16.2 Prevailing Response Surface Models

Before we review linear and quadratic models, let us first concretely define the RSM
problem. Let X = R

s be the statistical parameter space and Y = R
sY be the

circuit performance-metric or output space: sY is the number of outputs. For a given

452 A. Singhee

x ∈ X , y = fsim(x) ∈ Y is evaluated using a SPICE-level circuit simulation. We
want to find an approximation

ŷ = fm(x) ∈ Y : min
fm
E(‖y− ŷ‖2), (16.1)

such that the function fm is much cheaper to evaluate than fsim in terms of
computational cost. In this chapter, unless specifically mentioned, we will now
consider only any one output yi at a time, from the vector y. This is for the sake
of clarity of explanation, and we will drop the subscript i and use only y. Then, for
the output y, we can write (16.1) as

ŷ = fm(x) ∈ R : min
fm
E(‖y − ŷ‖2). (16.2)

If we use the L2 norm in (16.2), we achieve the least squared error fit. To obtain this
model in practice, some n sample points {xi , yi = fsim(x)}ni=1 are generated using
SPICE simulations and the following optimization problem is solved:

min
fm

n∑
i=1

|yi − ŷi |2 where ŷi = fm(x). (16.3)

16.2.1 Linear Model

Linear models, such as the one used in [2], model the response y as a linear function
of the parameters x. Hence, a linear model can be written as

ŷ = aT x+ c, (16.4)

where a is a vector of s unknown model parameters, a ∈ R
s and c is an unknown

real scalar. The total number of distinct, unknown model parameters is np = s+1 =
O(s). Given n ≥ np training sample points, we can estimate a and c, using the least
squares form of (16.3), as

[
aT c

]T = [X 1]+Y, where A+ =
(

ATA
)−1

AT , (16.5)

where X is an n × s matrix with the i-th row being the i-th input sample point xTi
and Y is an n-vector with the i-th element being the i-th output sample point. [X 1]
means X is augmented by a column of ones. Figure 16.1a shows an example of
a linear model with s = 2: we can immediately see that the linear model cannot
capture the nonlinear relationship in the data and the errors are very large.

16 SiLVR: Projection Pursuit for Response Surface Modeling 453

(a) (b)

Fig. 16.1 A linear RSM cannot capture the quadratic behavior, while the quadratic RSM succeeds.
(a) Linear model. (b) Quadratic model

16.2.2 Quadratic Model

Quadratic RSMs were proposed in [3, 4] to model nonlinearities when the linear
model fails. The quadratic model can be written as

ŷ = xTAx+ bT x+ c, (16.6)

where A is a symmetric s× s matrix of unknowns, b is a vector of s unknowns, and
c is an unknown scalar. The total number of distinct, unknown model parameters is
np = s+2C2 = (s + 1)(s + 2)/2 = O(s2). Hence, the number of parameters grows
quadratically with the number of dimensions. If we let Ai be the i-th row vector of
A (written as a column vector), and the Kronecker product

x⊗ x =
[
x2

1 x1x2 . . . x1xs x2x1 . . . x
2
s

]T
,

we can write (16.6) as

ŷ = aTe xe, where ae =
[
AT1 . . . ATs bT c

]T
, xe =

[
(x⊗ x)T xT 1

]T
,

(16.7)
which is similar in form to the linear model (16.4). Then, given n ≥ np
training points, the least squared error estimate for the unknowns in (16.6) can be
computed as

ae = X+e Y, (16.8)

where the i-th row of the matrix Xe is the vector xe computed for the i-th input
training point, and X+e is its pseudoinverse as in (16.5). In practice, the common
(repeated) terms in x⊗x are combined, for example, x1x3 and x3x1. From Fig. 16.1b

454 A. Singhee

we can see that a quadratic model fits the data much better than a linear model. In
this case the data was generated from a quadratic function of the two variables, and
so we get a near-exact fit with a quadratic model. This full quadratic model can have
a large number of unknowns and, hence, require a large number of training points n
for proper fitting. Also, the computations in (16.8) can be very expensive for large
s. This high fitting cost can be alleviated by using a reduced-rank quadratic model,
like PROBE [8] reviewed next.

16.2.3 PROjection-Based Extraction (PROBE): A
Reduced-Rank Quadratic Model

A reduced-rank quadratic RSM was proposed by Li et al. [8] to overcome the
dimensionality problems of the full quadratic model. The matrix A in (16.6) is
replaced by a low-rank approximation AL, given by

AL =
r∑
i=1

λipipTi , r < s, (16.9)

where λi is the i-th dominant (largest) eigenvalue of A and pi is the correspond-
ing normalized eigenvector. It is known that this approximation minimizes the
Frobenius-norm error for a given r: it is the optimal rank-r approximation [22].
Then the reduced quadratic model can be written as

ŷ =
r∑
i=1

xT λipipTi x+ bix+ ci . (16.10)

Thus, the model is a combination of r simpler quadratic models, where the i-th
quadratic part varies along the projection along the i-th eigenvector pi . This is
similar in flavor to the concept of projection pursuit that is used in a more powerful
and flexible form for the SiLVR model proposed here.

Since the matrix A is not already known, an implicit method that does not need
it is used in [8] to estimate its eigenvectors. The overall algorithm is shown in
Algorithm 16.1. Once the i-th component in (16.10) is extracted, the predicted
gi(x) values for all the sample points are subtracted out, so that the (i + 1)-
th component fits the residual y = y − gi(x). Algorithm 16.2 extracts the i-th
component using an implicit power iteration method, and constitutes the function
getRankOneQuadratic() in Algorithm 16.1. The vector qk → √

λipi with
k → ∞ in Algorithm 16.2, for the i-th call to getRankOneQuadratic() in
Algorithm 16.1. For a detailed explanation of the technique please refer to [8].

A rank-r quadratic model is effective in reducing the number of unknown model
parameters and scales well with the number of dimensions s, if r � s: the number

16 SiLVR: Projection Pursuit for Response Surface Modeling 455

Algorithm 16.1 The PROBE algorithm
Given training sample points {xj , yj }nj=1
for i = 1 to r do
gi(x)← getRankOneQuadratic({xj , yj }nj=1)
for all sample points {xj , yj }
yj ← yj − gi(xj)

The rank-r model is ŷ =∑r
i=1 gi(x)

Algorithm 16.2 PROBE: getRankOneQuadratic({xj , yj }nj=1) function to
extract the rank-1 estimate
1: Given ε, a predefined tolerance
2: Randomly select q0 ∈ R

s

3: k = 0, ψ0 = ∞
4: repeat
5: k = k + 1
6: qk−1 = qk−1/‖qk−1‖2
7: Solve (least squares error) min

qk ,bk ,c
ψk, where ψk =∑n

j=1[yj − (xTj qkqTk−1xj +bkxj +ck)]2
8: until |ψk − ψk−1| < ε
9: Return rank-1 estimate g(x) = xT qkqTk−1x+ bkx+ ck

of model parameters is np = 2r(s + 1) = O(rs), which increases linearly with s.
The authors of [8] show that r is very small for the performance metrics of some
commonly seen circuits: even a rank-1 model can suffice. However, the model still
suffers from a quadratic behavior assumption. We will now review some techniques
that, in the general case, make no assumption regarding the modeled behavior, and
then show how we can maintain much of this generality using the proposed SiLVR
model.

16.3 Latent Variables and Ridge Functions

For the rest of this chapter let us assume that all the training sample points have been
normalized—scaled and translated to mean 0 and variance 1—in both the input and
output spaces. This is for the sake of clear development of the following concepts,
without any loss of generality.

16.3.1 Latent Variable Regression

With the assumption of normalized training points, the standard linear model for the
sY -vector of outputs y can be written as

ŷ = Ax, (16.11)

456 A. Singhee

where A is an sY × s matrix of regression coefficients. Classically, latent variable
regression (LVR) has been used to modify this linear model into a reduced linear
model as

ŷ = ZWrx. (16.12)

Here Wr is an r × s matrix that projects the s-dimensional vector x to an r-
dimensional space, where r < s, and Z is an sY ×r-vector of regression coefficients
over this reduced r-dimensional space. If we denote the i-th row of Wr by wi , then
we can interpret wTi x as the i-th coordinate in the reduced r-dimensional space. We
will refer to wi as the i-th projection vector, and the new variable wTi x as the i-th
latent variable ti . Each coordinatewij of wi will be referred to as the j -th projection
weight of the i-th projection vector.

ti = wTi x. (16.13)

Wr is, then, the projection matrix.
The unknown parameters (the projection vectors wi and the regression coeffi-

cients in Z) can be chosen to satisfy a variety of criteria, each yielding a different
LVR method (e.g., RRR, PLS, CCR) as shown in [10]. The relevant method here is
reduced-rank regression (RRR), which solves the least squared error problem

min
Wr ,Z

‖Y− XWT
r ZT ‖2, (16.14)

where X,Y are matrices of n sample points: each row is one sample point. From the
discussion until now, the important idea to remember is that we are extracting the r
statistically most important LVs ({t1, . . . , tr}), such that the expected squared error
is minimized, as in (16.14).

The problem of modeling nonlinear behavior, however, remains unsolved by
these classical LVR techniques. Kernel-based methods try to address this issue
by using the well-known “kernel trick”: map the inputs (x), using fixed nonlinear
kernels (fK(x), e.g., a quadratic as in [9]), to a higher dimensional space, and then
create a reduced linear model from this higher dimensional space to the output y
[23]. This has severe limitations: it increases the problem dimensionality before
reducing it, and, more importantly, assumes a known nonlinear relationship between
x and y. Baffi [18] proposes adapting LVR to use a more flexible neural network
[20] formulation, but the model fitting is very slow (a two-step process that iterates
between model fitting and LV estimation) and unreliable (due to weak convergence
of this two-step iteration). Malthouse [19] takes this further, but produces a very
complex neural network model that can cause undesirable overfitting, especially
for small training datasets, and has a large number of unknowns to fit. Also, both
these methods solve a problem different from minimizing the least squared error as
in (16.3). As we saw in Sect. 16.2.3, the PROBE method also uses a projection-based
approach, but is restricted to a quadratic form.

16 SiLVR: Projection Pursuit for Response Surface Modeling 457

The advantages of a flexible nonlinear LVR method are multiple and signifi-
cant:

• It inherently reduces the dimensionality of the problem by extracting the LVs.
• The LVs are the “hidden variables” in the input space that impact the output in

decreasing order of importance. Having this information can be of much use to
the designer, as we shall see in the next few sections.

• The model would not be restricted to a small class of nonlinear behaviors.

All these features are very useful for addressing the problems mentioned in
Sect. 16.1, and we will construct the SiLVR model to exploit all of them. First,
though, we review the idea of projection pursuit, which bears close resemblance to
LVR, and provides some theoretical foundation for the SiLVR model.

16.3.2 Ridge Functions and Projection Pursuit Regression

Projection pursuit regression (PPR) is a class of curve fitting algorithms, formally
introduced first by Friedman and Stuetzle in [21] that approximate the output y as

ŷ =
r∑
i=1

gi(wTi x), (16.15)

where wi is the i-th projection vector, similar to LVR, and gi : R → R are
unknown functions that might be parameterized functional forms (e.g., quadratic)
or some nonparametric function, as in [21]. Hence, y is represented as the sum of
nonlinear, univariate functions gi , each varying along a different direction wi in the
input space. Each gi function is called a ridge function [24] because for s = 2
it defines a 2-dimensional surface that is constant along one direction in the input
space R

2 (orthogonal to wi), leading to “ridges” in the topology. An example is
shown in Fig. 16.2. In higher dimensions, a ridge function gi is constant along
the hyperplanes wTi x = c. Ridge functions have also been referred to as plane
waves [25] historically, particularly in the field of partial differential equations [26]
The representation in (16.15) is computed so as to minimize the modeling error as
in (16.3). Given n training sample points, we can write this criterion as

min
r,{gi ,wi }r1

n∑
j=1

‖yj −
r∑
i=1

gi(wTi xj)‖2. (16.16)

From (16.15), we can see the similarity to LVR, where we are also trying to
extract r best directions to predict the output. In fact, a nonlinear version of LVR
optimizing (16.3) will accomplish precisely the same thing as PPR.

The representation of (16.15) is also a general form of a feedforward neural
network with one hidden layer. Artificial neural networks were introduced first by
McCullough and Pitts [27] to model the behavior of neurons in the nervous system.

458 A. Singhee

We will refer to them as simply neural networks. Since then, neural networks have
been the focus of much theoretical and applied research, and have been proposed in
a large variety of forms [20, 28]. Here we refer to the simple feedforward form with
one hidden layer of r nodes, which can be written mathematically as

r∑
i=1

αiσ (wTi x+ βi), αi, βi ∈ R, (16.17)

where σ : R → R is a fixed univariate function called the activation function.
One such network is shown in Fig. 16.3. We will refer to such networks as 3-layer
perceptrons (3LP) as per [29]: the first layer is just the layer of input nodes, layer two
consists of the activation function nodes, and layer three consists of the output node.
From (16.17), we can immediately see the similarity with the PPR model of (16.15).
Hence, a 3LP is a special case of a PPR model. We will revisit the 3LP when we
develop the SiLVR model, where we use it in a somewhat different manner.

Before we proceed further, let us look at a couple of simple examples to clarify
the concept of PPR. Consider the functions

y1 = (x1 + 2x2)
3 , y2 = x1x2, (16.18)

of which the second appears also in [30] and [11]. We can represent the first
function as

Fig. 16.2 Example of a ridge
function. The arrow indicates
the projection vector

Fig. 16.3 A feedforward
neural network with one
hidden layer: a 3-layer
perceptron

16 SiLVR: Projection Pursuit for Response Surface Modeling 459

y1 = t31 , where t1 = (1 2)

(
x1

x2

)
. (16.19)

In this case projection along only one direction w1 = (1, 2) is enough to model
the entire function exactly. This is because the function varies only along that one
direction. Hence, we have reduced the dimensionality of the input space to one. t1
is the first LV, following the nomenclature from latent variable regression. On first
glance, the second function could seem unfriendly to such linear projection-based
decomposition. However, we can write y2 as

y2 = x1x2 = 0.25(x1 + x2)
2 − 0.25(x1 − x2)

2, (16.20)

which is the sum of two univariate ridge functions (quadratics) along the directions
w1 = (1, 1) and w2 = (1,−1), in the form of (16.15). The functions are shown in
Fig. 16.4.

It is interesting to note that the Fourier series representation of a function,

f (x) =
r∑
k=1

ake
iω̄Tk x, (16.21)

is also a ridge function representation, where the projection vectors ω̄Tk are points in
the s-dimensional Fourier domain. Note that the i in this equation is the imaginary
unit, and not an index. Section 16.4 discusses a theorem from [30] that deals with
representations similar to this.

Of course, for some unknown function f we would need to automatically
extract the optimal projection directions and the corresponding ridge function. This
“pursuit” of the optimal projections leads to the name projection pursuit. Before
we discuss the algorithmic details of PPR, let us review some relevant results from
approximation theory that establish a theoretical foundation for approximation using
ridge functions. The reader who is more interested in the algorithmic considerations
may skip forward to Sect. 16.5.

(a) (b) (c)

Fig. 16.4 The function of (16.20) and its component ridge functions. (a) y = x1x2. (b) 0.25(x1 +
x2)

2. (c) −0.25(x1 − x2)
2

460 A. Singhee

16.4 Approximation Using Ridge Functions: Density and
Degree of Approximation

Before we can begin to develop algorithms for PPR, some more fundamental
questions regarding ridge functions deserve attention. What can we approximate
using ridge functions? How well can we approximate? To address these questions,
let us first review some basic terminology from topology.

• C(X)—For some space or set X, C(X) is the set of all continuous functions
defined on X, f (x|x ∈ X).

• p-norm—Given some function f over some space X, we define the p-norm as

‖f ‖p =

⎧⎪⎪⎨
⎪⎪⎩

(∫
X

|f (x)|dx
)1/p

, 0 < p <∞
sup
x∈X

|f (x)| , p = ∞
. (16.22)

A norm taken over a setD ⊂ X will involve integrating or taking the supremum,
as relevant, over only D. The norm is then denoted by ‖f ‖p,D , unless obvious.

• Lp(X)—For some space or set X, Lp(X) is the set of continuous functions
defined over X that have a finite p-norm over X, equivalently

Lp(X) = {f : ‖f ‖p,X <∞}. (16.23)

• Compact set—A compact set in Euclidean space R
s is any subset of Rs that is

closed and bounded. A more general definition for any space is as follows. A set
D is compact if for every collection of open sets U = {Ui} such thatD ⊂ ∪iUi ,
there is a finite subset {Uij : j = 1, . . . , m} ⊂ U such that D ⊂ ∪j=1,...,mUij .
For example, the closed unit ball {x : ‖x‖2 ≤ 1, x ∈ R

s} is compact, while the
open unit ball {x : ‖x‖2 < 1, x ∈ R

s} is not compact.
• Dense set—Let V1 ⊂ V2 be two subsets of some space V . Then, V1 is dense in
V2 if for any v ∈ V2 and any ε > 0, there is a u ∈ V1 such that ‖v − u‖ < ε
under the p-norm specified or assumed without confusion. For example, if V2
is C[0, 1] and V1 is the space of all polynomials over [a, b], then V1 is dense
in V2 over [a, b] under the ∞-norm, because every continuous function can be
arbitrarily well approximated by polynomials, over some intervals [a, b]. This is
the well-known Weierstrass approximation theorem [31].

We now provide some answers to the questions posed at the beginning of this
section, by reviewing relevant results from the approximation theory of ridge
functions.

16 SiLVR: Projection Pursuit for Response Surface Modeling 461

16.4.1 Density: What Can Ridge Functions Approximate?

Theorem 16.1 (Diaconis and Shahshahani [30]) Functions of the form
∑
αie

wTi x

with αi ∈ R, wi ∈ Z+ are dense in C[0, 1]s under the ∞-norm.

This theorem says that any continuous function over the unit cube in s dimen-
sions can be arbitrarily well approximated by ridge functions of the exponential
form. Even though this theorem restricts itself to exponential ridge functions, it
does prove that there exists a ridge function representation (linear combination of
exponentials) for any continuous function over the unit cube. Note that the unit
cube domain can be relaxed to any compact set D in s dimensions by including all
required (continuous) transformations in the function to be approximated.

We will present a proof here, since it is simple enough for the non-mathematician
to follow, while at the same time it provides some good insight and is an interesting
read. The proof will require the following, very well-known, Stone–Weierstrass
theorem, a generalization of the Weierstrass theorem. For a proof of the Stone–
Weierstrass theorem please refer to standard textbooks on analysis, e.g., [31]. Here
we state a less general version of the theorem that suffices for our purposes.

Theorem 16.2 (Stone–Weierstrass) Let D ⊂ R
s be a compact set, and let V be a

subspace of C(D), the space of continuous functions on D, such that

(a) V contains all constant functions,
(b) u, v ∈ V ⇒ uv ∈ V , and
(c) For every pair x, y ∈ D, x �= y, ∃v ∈ V such that v(x) �= v(y).
Then, V is dense in C(D), i.e., ∀v ∈ C(D), ε > 0, ∃u ∈ V such that ‖u− v‖∞
The Stone–Weierstrass theorem gives conditions such that V , the linear span of a
given set of functions, is able to approximate any continuous function arbitrarily
well. Using this, we can now prove Theorem 16.1.

Proof (Proof of Theorem 16.1) Here V is the space of functions of the form∑
αie

wTi x with αi ∈ R, wi ∈ Z+, and it satisfies the three conditions in the Stone–
Weierstrass theorem, for the compact set D = [0, 1]s :
(a) αie0T x are all the constant functions, where 0 is the vector of zeros.

(b)
∑
i αie

wTi x ·∑j βj e
vTj x =∑

i

∑
j αiβj e

(wi+vj)T x, which lies in V .
(c) For any pair x, y ∈ [0, 1]p such that x �= y, we must have xi �= yi for at least

one i ∈ 1, . . . , s. Then choose w = ei , where the vector ei is the unit vector
along coordinate i. Then ewT x = exi �= ewT y = eyi .

Hence, the Stone–Weierstrass theorem applies and V is dense in C[0, 1]s .
More general results regarding the density of ridge functions have been devel-

oped by several authors, notably Vostrecov and Kreines [25], Sun and Cheney [32],
and Lin and Pinkus [33]. Let W ⊆ R

s be the set of possible projection vectors, and
define

462 A. Singhee

RW = span
{
g(wT x) : w ∈ W , g ∈ C(R), x ∈ R

s
}

(16.24)

as the linear span of all possible ridge functions using univariate continuous
functions along directions defined by the vectors in W . Now we state two results
that specify conditions on W such that RW is dense in C(Rs).

Theorem 16.3 (Vostrecov and Kreines [25]) RW is dense onC(Rs) under the∞-
norm over compact subsets of Rs if and only if the only homogeneous polynomial of
s variables that vanishes on W is the zero polynomial.

A homogeneous polynomial is a polynomial whose terms all have the same
degree. For example, x5

1 + x2
1x

3
2 is a homogeneous polynomial of degree 5, while

x5
1 + x2

1 is not. This theorem states that elements from RW can approximate any
continuous function over any compact subset of Rs if and only if there is no nonzero
homogeneous polynomial of s variables that has zeros at every point in W . If we
are allowed to choose any projection vector from R

s , i.e., W = R
s , this is certainly

true—the only homogeneous polynomial that is zero everywhere on R
s is the zero

polynomial. Sun and Cheney state a similar, possibly simpler to visualize result:

Theorem 16.4 (Sun and Cheney [32]) Let s ≥ 2 and let A1, A2, . . . , As be
subsets of R. Put W = A1 × A2 × · · · × As . RW is dense on C(Rs) under the
∞-norm over compact subsets of Rs if and only if at most one of the sets Ai is finite,
and this finite set, if any, contains a nonzero element.

Once again, if W = R
s , this condition is obviously met. These two theorems state

necessary and sufficient conditions for the same outcome. Hence, the conditions
must be equivalent. In fact, it is easy to see that the condition in Theorem 16.4
is sufficient for the condition in Theorem 16.3. If all sets Ai are infinite, then
no nonzero homogeneous polynomial of s variables can vanish everywhere on
W =∏

i Ai , since it would need to have an infinite number of roots. Now, consider
the case that one set Ai is finite, with at least one nonzero element. Any nonzero
homogeneous polynomial hs of s variables with no xi term would be a homogeneous
polynomial hs−1 of s−1 variables. This hs−1 would then not vanish over

∏
j �=i Aj ,

by the same argument, and, so neither would hs vanish over W . The only case that
remains is when hs does contain a term with xi . If hs now vanished everywhere
on W , it would vanish also at all points with xi equal to a nonzero value from Ai .
Replacing this value for xi in hs again gives us a homogeneous polynomial hs−1
in s − 1 variables. Hence, by the same argument as before any nonzero hs cannot
vanish over W .

These theorems answer the first question we asked at the beginning of this
section: what can we approximate using ridge functions? The answer is essentially,
any nonlinear function we are likely to encounter in practice. Now, we look at some
results that try to answer the second question: how well can we approximate?

16 SiLVR: Projection Pursuit for Response Surface Modeling 463

16.4.2 Degree of Approximation: How Good Are Ridge
Functions?

One way to address the question, “how well can ridge functions approximate?,” is
to study the convergence of approximation using ridge functions—how does the
error decrease as we increase the number of ridge functions in the model, or in
other words, the model complexity? This is a difficult question for general ridge
functions and there are some partial results here, notably [34–38]. Many of these
results exploit constraints on the ridge functions to show the convergence behavior
of the approximation.

From these, we state a general result, by Maiorov. Let Bs = {x ∈ R
s : ‖x‖2 ≤ 1}

be the closed unit ball. Let Wk,s
2 be a Sobolev class [39] of functions from L2(B

s).
This is the class of functions f ∈ L2(B

s), for which all partial derivatives ∇v
xf of

order smaller than or equal to k (
∑s
i=1 vi ≤ k, where v = {v1, . . . , vs}), satisfy

‖∇v
xf ‖2,Bs ≤ 1. These partial derivatives are taken in the weak sense [39]. Define

Rr =
⎧⎨
⎩

j∑
i=1

gi

(
wTi x

)
: j ≤ r,wi ∈ R, g ∈ L(R)

⎫⎬
⎭ , (16.25)

where byL(R), we mean the space of all functions integrable on any compact subset
of R, or equivalently, there is some compact set D ∈ R such that g ∈ L1(D). For
any two sets of functions, U,V , define the distance of U from V as

dist(U, V) = sup
u∈U

inf
v∈V ‖u− v‖2. (16.26)

In words, for any given u ∈ U find the distance to the closest approximation v
from V using the 2-norm. Then find the maximum of this distance over all possible
u ∈ U . Hence, if U is the target set of functions to be approximated and V is the set
of possible approximations, this metric computes the maximum error, using the best
possible approximations from V . It then follows that dist(Wk,s

2 ,Rr) is the maximum

error while approximating functions inWk,s
2 using best fitting approximations from

Rr . Now, we are equipped to state the following.

Theorem 16.5 (Maiorov [35]) For k > 0, s ≥ 2, the following asymptotic relation
holds:

dist
(
W
k,s
2 ,Rr

)
= Θ

(
r−k/(s−1)

)
. (16.27)

Here, Θ is the tight bound notation [40]. Hence, the maximum approximation error
using r ridge functions decreases as r−1/(s−1), for a class of functions that satisfy a
given smoothness criterion (f ∈ Wk,s

2).

464 A. Singhee

Algorithm 16.3 The projection pursuit regression algorithm of Friedman and
Stuetzle [21]
1: Given normalized training samples {xj , yj }nj=1
2: ej ← yj , j = 1, . . . , n and r = 0
3: find wr+1 to maximize the fraction of variance explained by gr+1:

I ← max
wr+1∈S s−1

1−
∑n
j=1(ej − gr+1(wTr+1xj))2∑n

j=1 e
2
j

. (16.28)

gr+1 is the smooth along the direction wr+1. Rosenbrock’s method [44] was used for the
search.

4: if I < ε
5: return {gi,wi}ri=1
6: else
7: ej ← ej − gr+1(wTr+1xj), j = 1, . . . , n
8: r ← r + 1
9: go to step 3.

10: endif

All the results stated in this section provide us with some confidence that a ridge
function-based approximation is theoretically feasible. Light [41] surveys some
methods of constructing the approximation ŷ if the original function y is known.
However, all these results deal with functions and not with finite sample sets. In a
practical response surface model generation scenario we would not know anything
about the behavior of the function we are trying to approximate, but we would have a
finite set of points from which we have to estimate the “best” projection vectors and
functions in the RSM (16.16). The projection pursuit regression technique strives
to accomplish precisely this with a statistical perspective. The next section reviews
the original projection pursuit algorithm and some relevant convergence results.

16.5 Projection Pursuit Regression

The PPR algorithm, as proposed by Friedman and Stuetzle [21], takes a nonpara-
metric approach to solve for the functions gi and projection vectors wi in (16.16).
Each gi is approximated using a smoothing over the training data. Let {tj , yj }nj=1 be
our training data projected along some projection vector w. In general, a smoothing-
based estimate uses some sort of local averaging:

g(t) = AVEtj∈[t−h,t+h](yj). (16.29)

Here AVE can denote the mean, median, any weighted mean, or any other ways
of averaging (e.g., nonparametric estimators in [42]). The parameter h defines the
bandwidth or the smoothing window. We call the function g a smooth. Specific
details of the smoothing method used by Friedman and Stuetzle can be found in
[21, 43].

16 SiLVR: Projection Pursuit for Response Surface Modeling 465

Their overall PPR algorithm is shown in Algorithm 16.3. We remind the reader
that all training data has been normalized to mean 0 and variance 1, and denote the
surface of the unit sphere in R

s as S s−1. Hence, S s−1 is the set of all s-vectors of
magnitude 1.

We can see that the algorithm is iterative. At each iteration, it tries to extract
the best direction wr+1 and the corresponding ridge function gr+1 so as to best
approximate the residue values {ej } at that iteration. We can clearly see the
similarity with latent variable regression. The i-th latent variable in this case is the
displacement along the i-th projection vector ti = wTi x. This iterative approach
simplifies the problem of extracting all the required projections and ridge functions,
by handling only one component at a time. This has the advantage of scoping down
the problem to a one-dimensional curve fitting problem, from a very difficult high-
dimensional curve fitting problem. Furthermore, since each component is extracted
to maximally model the residue at that iteration, the latent variable associated with
the i-th projection vector can be interpreted as the i-th most important variable for
explaining the output behavior. This can be very useful for extracting some deep
insight into the behavior of a circuit, when PPR is used for RSM building. We
will revisit this observation and elaborate further on it when we explain the SiLVR
model.

16.5.1 Smoothing and the Bias-Variance Trade-off

There is a subtle, but critical, observation we will make here regarding the ridge
function that is extracted in any one iteration. This is best introduced using an
illustration: we refer back to our example from (16.20), and reproduce it here in
a slightly different form for the reader’s convenience:

y2 = x1x2 = 0.25({1, 1}·x)2 − 0.25({1,−1} · x)2. (16.30)

Suppose the ridge function g1 was unconstrained with regard to any smoothness
requirement and was free to take up any shape. Then, given n training points,
a perfect, zero-error interpolation could be performed along any direction w1.
Figure 16.5 illustrates this. From (16.30) we know that w1 = {1, 1} or {1,−1}
are two good candidates for the first projection vector. In fact, any {a, b} such that
ab �= 0 is a good candidate because we can write

x1x2 = (4ab)−1
[
(ax1 + bx2)

2 − (ax1 − bx2)
2
]
. (16.31)

Therefore, {1, 0} is a bad projection vector. Figure 16.5 shows 100 training points
as (blue) dots, projected along the projection vectors {1, 0} (Fig. 16.5a) and {1, 1}
(Fig. 16.5b). With unrestricted g1 we can find perfect interpolations along both
directions, shown as solid lines joining the projected training points. In both cases,

466 A. Singhee

Fig. 16.5 Overfitting of training data along two different projection vectors (w1) for y = x1x2.
(a) w1 = 1, 0. (b) w1 = 1, 1

the metric I in step 3 of Algorithm 16.3 is maximized to 1 and the algorithm has no
way of determining which is the better direction. In fact, with such a flexible class
of functions for g1, all directions will have I = 1. Also, once the first ridge function
is extracted, the algorithm will stop because all the variance in the training data will
have been explained and I would be 0 for the second iteration, resulting in a final
model with only one component ridge function model. The solid lines shown in
Fig. 16.5a, b are, in fact, the final models. However, choosing the wrong projection
vector w1 = {1, 0} in Fig. 16.5a results in large errors on unseen test data, shown as
black circles. This is, of course, as expected because the direction of projection is
incorrect in the first place. However, even with the correct projection in Fig. 16.5b,
we get large errors on unseen test data.

The problem here is the unrestricted flexibility in the function g1. A more desired
g1 along w1 = {1, 1} is actually a very smooth function in this case, shown as a (red)
dash-dot line in Fig. 16.5b. This is the first term in expansion in (16.30). Note that
this ridge function has large errors on the training data and does not try to exactly
fit the training points along the projection. However, it lets the algorithm perform
a second iteration, in which the second projection vector {1,−1} is chosen and the
second ridge function in (16.30) is extracted, giving us a near-exact two-component
ridge function model. Such a class of smooth univariate functions will have a larger
error along the incorrect direction of Fig. 16.5a and the algorithm will easily reject
it. This illustrates the classic bias-variance trade-off in statistical learning [23]. If
we minimize the bias in our estimated model by exactly fitting the training data, we
will get a completely different approximation for a different set of training points,
resulting in high variance. This choice also results in large errors on unseen points.
If we minimize the variance, by estimating nearly the same model for different sets
of training data, we need to reconcile with a larger training error. In the extreme
version of this choice, any training sample will result in the same estimate of the
model, meaning that we are not even using any information from the training data.
Such extremes will also result in large errors on unseen data. Hence, we must find a

16 SiLVR: Projection Pursuit for Response Surface Modeling 467

balance such that we keep the error low on both the training data and on unseen test
data. This is the classic problem of generalization.

This issue is particularly critical for the case of PPR. When we project the
training data onto a single direction wi , there can be a lot of noise or variation
in the output values because of smooth dependence on other directions orthogonal
to wi , as in Fig. 16.5b for w1. If the function gi is allowed too much flexibility, it
will undesirably overfit the training data by fitting this orthogonal contribution to
the behavior of the function. Hence, it is critical that any PPR algorithm employs
some technique to avoid overfitting and improve the generalizability of the model.
Friedman and Stuetzle used variable bandwidth smoothing to achieve this: the
parameter h in (16.29) is adaptively changed to be larger in those parts of the
projected input space where the function variation is estimated to be high, since this
high variation is probably because of higher dependence on orthogonal directions
in that region. Minimizing overfitting will a prime objective when we develop the
proposed SiLVR model.

16.5.2 Convergence of Projection Pursuit Regression

PPR was proposed in [21] relying on intuitive arguments regarding why it should
work and its advantages, as mentioned in the beginning of this section (Sect. 16.5).
Unfortunately, the theoretical results developed for approximation using ridge
functions (Sect. 16.4) do not directly apply to PPR because of at least two reasons.
First, PPR uses a finite set of training points and does not have knowledge of the
original function to be modeled. Second, PPR extracts each projection iteratively.
Hence, it cannot rely on exact interpolation techniques, and must use statistical
estimation. This was discussed in the context of the bias-variance trade-off and
smoothing in Sect. 16.5.1. Also, this iterative scheme is a “greedy” approach, where
at every step only the next best decision is taken—to select the next best projection
and ridge function. The best decision at any given iteration might not be the best
decision in the global sense. It might be better sometimes to not choose the ridge
function that seems to be the best for the current iteration. In fact, later in this
section, we will show an example where the choice made by PPR does not match
the best choice suggested by analysis. Given this greedy nature, does the algorithm
still converge to a good solution (to an accurate RSM)? Researchers in statistics
have recognized these issues and questions, and there are some theoretical results
showing convergence of PPR under different conditions [11, 45–47]. In this section
we review some of these results.

Any set of training points will be drawn from some underlying probability
distribution defined over the sampling space X . We denote this distribution by
P , and the probability density is denoted by p. This scenario is reasonable for
our applications, since any statistical parameter (e.g., Vt) or design variable will
follow some probability distribution (e.g., normal distribution) or lie uniformly in
some bounded range. A bounded domain D ∈ R

s can be represented as a uniform

468 A. Singhee

distribution P that is nonzero for subsets in D and zero for subsets outside D.
Any expectation computation will then be performed over the relevant probability
distribution, unless differently specified. For example, the expectation (mean) of a
circuit performance y = f (x) will be computed as

E(y) =
∫
P

f (x)dP =
∫
X
f (x)p(x)dx. (16.32)

In general terms, P is the probability measure over the sample space X [48]. For
our circuit applications X is typically R

s .
In practice, the PPR algorithm has to deal with at least three nonidealities:

1. No exact knowledge of the original function y = f (x)—we have only a finite
number of training points n.

2. Imperfect approximation technique for estimating the best univariate function g
along any direction w.

3. Imperfect search algorithm to search for the best w in any iteration.

To the best of our knowledge, there is no theoretical result establishing the
convergence properties of PPR in the most general case allowing for all these
nonidealities. However, there are results that make ideality assumptions for one or
more of the three points mentioned above, but still provide insight into the general
working of PPR.

Let us assume that we have a perfect version of PPR, free of the three
nonidealities mentioned above. Then we ask the question,

What are the best projection vector w
and the best univariate function g?

By best we mean the pair (w, g) that gives the best approximation; that is, minimizes
the mean squared error. If we are in the i-th iteration, then we can define the residue
ei−1 as

ei−1(x) = f (x)−
i−1∑
j=1

gj

(
wT x

)
. (16.33)

Following (16.2), the best (wi , gi) will satisfy

(wi , gi) = arg min
w,g
E

[(
ei−1(x)− g(wT x)

)2
]
. (16.34)

Let us first assume some candidate w, and ask,
For any given projection vector w,

what is the best univariate function g?
From (16.34), we know that the best gi will minimize the error in approximating the
residue

16 SiLVR: Projection Pursuit for Response Surface Modeling 469

gi = arg min
g
E

[(
ei−1(x)− g(wT x)

)2
]
. (16.35)

For every g, since g(wT x) is constant (= g(t)) for all wT x = t , we can write this
criterion as follows. The best gi will minimize the error in approximating the residue
projected along w:

gi(t) = arg min
gt
E
[(
ei−1(x)− gt

)2 |wT x = t
]
,∀t, (16.36)

where gt is some scalar value. For any displacement t along the direction w, we
expect to see a distribution of values for the residue ei−1, since multiple x will map
to the same t . The best value of the new ridge function at t , gi(t), minimizes the
mean squared error between the residue and gi at t . The expectation here is taken
over the marginal distribution of x in the hyperplane wT x = t , which is a hyperplane
normal to w. This same criterion is applied for all t to obtain the complete function
gi(t) for all values of t . Then, for any t , we can write

E
[(
ei−1(x)− gt

)2 |wT x = t
]
= E

[
e2
i−1(x)− 2ei−1(x)gt + g2

t |wT x = t
]

= E
[
e2
i−1(x)|wT x = t

]
−2gtE

[
ei−1(x)|wT x = t

]
+ g2

t (16.37)

since gt is a constant for a given t . Then the optimal gi(t) for a given t is

gi(t) = gt : d
dg
E
[(
ei−1(x)− gt

)2 |wT x = t
]
= 0

⇒ −2E
(
ei−1(x)|wT x = t

)
+ 2gi(t) = 0

⇒ gi(t) = E
(
ei−1(x)|wT x = t

)
. (16.38)

Thus, the best value of gi(t) is the expectation of the residual ei−1(x). We have,
thus, proved the following theorem that appears in [11]:

Theorem 16.6 For any given projection vector w, the best function gi(t) defined
by (16.35) is given by

gi(t) = E
(
ei−1(x)|wT x = t

)
. (16.39)

This is an interesting result. The solution from this result can be quite different
from what standard approximation theory would suggest. This is easily illustrated
with our friendly example from (16.20) that is reproduced here for convenience:

470 A. Singhee

y = x1x2 = 0.25
({1, 1}·x)2 − 0.25

({1,−1} · x
)2
. (16.40)

Say we are considering one of the optimal directions w1 = {1, 1}. To achieve an
exact approximation, as per (16.40), the best g1(t) is

g1(t) = 0.25t2, (16.41)

which is just the first term on the right-hand side of (16.40) mapped on to the latent
variable t . This function is shown as the (red) dash-dot line in Fig. 16.6, and also
previously in Fig. 16.5b. It is indicated by “Best.” However, the best g1(t) for PPR,
as per Theorem 16.6, is the expectation of y taken over the hyperplane wT1 x = t .
Assuming that x ∈ [−1, 1]2, we can analytically compute this best g1 function. This
best g1 is shown as the (black) solid line in Fig. 16.5b and is indicated by “PPR.”
We can clearly see that the two ridge functions are different. This difference is a
result of PPR performing a greedy search by looking at only one projection at a
time unlike the analysis in (16.40) which looks at the function as a whole over all
the dimensions.

Given this optimal choice of gi , we now ask
What then is the best projection vector wi

that will satisfy (16.34)?
From (16.34) and (16.39), we know that such a wi must satisfy

wi = arg min
w
E

[(
ei−1(x)− gi

(
wTi x

))2
]
,

where gi(t) = E
(
ei−1(x)|wT x = t

)
.

(16.42)

Expanding the first expectation we get

Fig. 16.6 Optimal ridge
functions from analysis (red
dash-dot) and PPR (black
solid) can differ. This
example is for y = x1x2,
along the projection vector
{1, 1}

16 SiLVR: Projection Pursuit for Response Surface Modeling 471

E

[(
ei−1(x)− gi

(
wTi x

))2
]
= E

[
e2
i−1(x)

]
− 2E

[
ei−1(x)gi

(
wTi x

)]
(16.43)

+ E
[
g2
i

(
wT x

)]
.

Since gi(wTi x) is a constant for all wTi x equal to some constant t (it is a ridge
function along wi), we have

E

[
g2
i

(
wT x

)]
= E

[
g2
i (t)

]
(16.44)

Let us now expand out the second expectation term on the right-hand side of
(16.43) as

E

[
ei−1(x)gi

(
wTi x

)]
=

∫
X
ei−1(x)gi

(
wTi x

)
p(x)dx (16.45)

Let us denote the marginal probability density of any t along wi as pwi (t). Also let
Xwi denote the range of t = wTi x for x ∈X . For our circuit applications, typically
X = R

s so that Xwi = R. Given these definitions, we can rewrite (16.45) as

E

[
ei−1(x)gi

(
wTi x

)]

=
∫
t∈Xwi

[∫
x:wTi x=t

ei−1(x)gi
(

wTi x
)
p
(

x|wTi x = t
)
dx

]
pwi (t)dt

(16.46)
Since gi(wTi x = t) is a constant for a given t , we can take it out of the inner integral,
giving

E

[
ei−1(x)gi

(
wTi x

)]

=
∫
t∈Xwi

gi(t)

[∫
x:wTi x=t

ei−1(x)p
(

x|wTi x = t
)
dx

]
pwi (t)dt

(16.47)

Now, the inner integral is nothing but E(ei−1(x)|wT x = t), which is the same as
gi(t) according to Theorem 16.6. Hence, we get

E

[
ei−1(x)gi

(
wTi x

)]
=

∫
t∈Xwi

g2
i (t)pwi (t)dt = E

[
g2
i (t)

]
(16.48)

472 A. Singhee

Substituting this and (16.44) in (16.43), we get

E

[(
ei−1(x)− gi

(
wTi x

))2
]
= E

[
e2
i−1(x)

]
− E

[
g2
i (t)

]
, where t = wTi x

(16.49)
Hence, we have proved the following, which appears in [11] without a proof:

Theorem 16.7 The optimal wi of (16.34) is the one that maximizes the variance of
the function gi , where gi is chosen as in Theorem 16.6.

One would expect any approximation of a function f to maximally explain the
variance of f , and this result shows that PPR tries to achieve precisely this.

In Sect. 16.4.1 we saw that a ridge function approximation, like in (16.86),
converges to the approximated function, but does the “greedy” and statistical
PPR method converge? Jones addresses this question in [46] and proves strong
convergence of PPR, as stated by the following theorem. Here, we assume ideality
for conditions (1) and (2)—we have infinite number of points to exactly compute
expectations, and we can compute the exact best functions gi along any given
direction, respectively. However, we do allow for error in estimating the optimal
projection vector.

Theorem 16.8 (Jones [46]) Let f (x) ∈ L2(P), where P is the probability measure
(distribution) for x ∈ R

s . Let PPR choose any possibly sub-optimal wr such that
E[gr(wTr x)2] > ρ · sup

‖b‖2=1,b∈Rs
E(gr(bT x)2] for some fixed ρ, 0 < ρ < 1. Then,

er (x)→ 0, as r →∞.

Hall, in [47], proves a convergence result for a scenario closer to practical PPR,
accounting for many nonidealities. The only ideality assumption about the algorithm
is that the search for the optimal projection vector is perfect, within the constraint
of a finite number of training points n. This means that the sub-optimal projection
may seem optimal because of the incomplete information from finite number of
points, but the search algorithm will find this seemingly optimal projection. Also,
the results in the paper are for the classical PPR technique [21] that employs some
sort of smoothing (16.29) using a kernel function with window or bandwidth h, to
estimate the function g along some direction w. IfK is the kernel function used and
the training dataset is {xj , yj }nj=1, then the estimate is given as

ĝ(t) =
∑n
j=1 yjK

[(
t − wT xj

)
/h

]
∑N
j=1K

[(
t − wT xj

)
/h

] . (16.50)

Hence, there is one kernel instance centered at the projection of every training point
onto the vector w and the function value at any location along w is the weighted
sum of contributions by each of these n kernels, the weights being the yj output
values associated with each kernel center. The bandwidth h determines the range

16 SiLVR: Projection Pursuit for Response Surface Modeling 473

of influence of each kernel center. Higher values of h lead to smoother estimates
resulting in low variance error, but increase the bias error if h is too large. The
denominator performs the appropriate normalization. This is the estimate used for
prediction. A slightly different form of (16.50) is used for driving the search for
the optimal projection vector. Please refer to [47] for details. The kernel is taken to
satisfy the condition

∫ ∞

−∞
t iK(t)dt =

{
1 , i = 0
0 , 1 ≤ i ≤ k − 1

, (16.51)

and the first k + 1 directional derivatives of p(x) and f (x) exist and are continuous
in R. Under some more loose conditions on p(x) and K , the following holds.

Theorem 16.9 (Hall [47]) Let w and g be the optimal projection vector and ridge
function for any PPR iteration, and ŵ and ĝ be the sub-optimal estimates resulting
from n training points and the imperfect kernel-based approximation of (16.50).
Then, the error between ĝ(ŵT x) and g(wT x) decreases as O(n−k/(2k+1)) for
appropriately chosen h.

Implications of this result are discussed in [47] and are not immediately relevant
here. However, it shows that convergence can be achieved even with significant
nonidealities in the PPR algorithm, nonidealities that are unavoidable in any
practical implementation. We are now well-equipped to develop the proposed
SiLVR model with some confidence.

16.6 SiLVR

In this section we describe the SiLVR model and its features in detail.

16.6.1 The Model

SiLVR implements PPR, but uses building blocks and training algorithms that
are different from the classical PPR method of [21]. The SiLVR model can be
represented mathematically as a standard PPR model:

ŷ =
r∑
i=1

gi

(
wTi x

)
. (16.52)

However, the functions gi are not purely nonparametric. In this case we use a linear
combination of sigmoidal functions (σ(·)) to represent gi , as

474 A. Singhee

gi(t) =
q∑
j=1

aij σ (bij t + cij) : aij , bij , cij ∈ R, i ∈ {1, 2, . . . }, j ∈ {1, . . . , q},
(16.53)

where q is the number of sigmoids used for the approximation of one ridge function.
The complete model can then be written as

ŷ = fSiLVR(x) =
r∑
i=1

q∑
j=1

aij σ
(
bijwTi x+ cij

)
. (16.54)

A sigmoidal function or sigmoid is typically defined as a continuous, monotonic
function σ(t) such that limt→∞ σ(t) = 1 and limt→−∞ σ(t) = 0. Any such
function taken through scaling and translation is also a sigmoid. Standard examples
of sigmoidal functions are the logistic function

σl(t) = 1

1+ e−t , (16.55)

and the hyperbolic tangent function

σh(t) = tanh(t) = e
2t − 1

e2t + 1
. (16.56)

Both are shown in Fig. 16.7. In fact, these two sigmoids are equivalent in terms of
their nonlinear approximation power using linear combinations because

σh(t) = 2σl(2t)− 1. (16.57)

These functions have a very desirable property that their derivative is easily
computed:

dσh

dt
= 1− σ 2

h . (16.58)

This is useful for efficient training, which typically involves gradient computations
within some optimizer. Section 16.6.4.2 shows how we exploit this property for
SiLVR. Also, using a parametric model with few basis functions is much more
efficient computationally than using data-dependent nonparametric methods like the
PPR method of Friedman and Stuetzle. We will use the tanh function and refer to it
simply as σ .

The i-th component of the model of (16.54) is shown graphically in Fig. 16.8.
Along the lines of PPR or a nonlinear form of LVR, the model consists of two
parts:

16 SiLVR: Projection Pursuit for Response Surface Modeling 475

Fig. 16.7 Examples of
sigmoidal functions

Fig. 16.8 The network corresponding to the i-th component in the SiLVR model (16.54)

1. A linear projection ti = wTi x =∑s
j=1wijxj from the s-dimensional input space

to one-dimensional latent variable (LV) ti lying along the projection vector wi .
The projection vector is chosen to be the one that is most important for explaining
the behavior in the modeled output.

2. A nonlinear function gi(ti) defined over this one-dimensional LV. This nonlinear
function is a combination of q sigmoids, as in (16.53). This is essentially a 3-
layer perceptron with only one input, one hidden layer with q sigmoidal nodes,
and one output gi .

Together, these two components define one ridge function. This representation of
the ridge function allows us to interpret it as a neural network. Hence, we can draw
upon the theory and algorithms from the domain of statistical inference using neural
networks to compute the best model. Let us define a sampling version of the residue
for the i-th LV, similar to (16.33).

476 A. Singhee

ei,j = yj −
i∑
k=1

gk

(
wTk xj

)
= ei−1,j − gi

(
wTi xj

)
. (16.59)

This is the value of the residue for the j -th sample point, after extracting the i-th
ridge function. Then, we define our model fitting criterion for the i-th ridge function,
similar to (16.34), as follows:

(
wi , gi

) = arg min
w,g

n∑
j=1

∣∣∣∣ei−1,j − g
(

wT xj
)∣∣∣∣

2

. (16.60)

Thus, the i-th ridge function is chosen so as to minimize the least squared error
in fitting the residue at that iteration across the training set. More specifically to
SiLVR, using (16.53), we can write this objective as

(wi , ai ,bi , ci) = arg min
w,a,b,c

n∑
j=1

⎡
⎣ei−1,j −

q∑
k=1

akσ
(
bkwT xj + ck

)⎤⎦
2

.

(16.61)
We know from Theorem 16.6 that the best gi along any given wi is the expectation
of the residue at that iteration, along wi . However, it is not easy to compute this
expectation using arbitrary training points. Hence, we do not explicitly state this
constraint in the optimization formulation and assume that a good optimizer will
converge close to this optimum. We make a similarly reasonable assumption for the
best wi (given by Theorem 16.7).

Algorithm 16.4 The top-level SiLVR training algorithm
1: Given some fixed q, the number of sigmoids per LV
2: normalize the training points xj , yj nj=1 to mean 0 and variance 1
3: ej ← yj , j = 1, . . . , n
4: for i = 1 to r
5: find the “best” ridge function of the form (16.53) to approximate ej across all training

points. This involves solving the objective function (16.61) appended with some penalty
function to reduce overfitting (e.g., see (16.81)).

6: ej ← ej −∑q

j=1 aij σ (bij t + cij), j = 1, . . . , n
7: the r-LV model is (16.54)

The basic training algorithm for SiLVR is shown in Algorithm 16.4. As expected,
there is close similarity in the basic steps of the algorithm with the original PPR
algorithm (Algorithm 16.3). The primary differences are in the representation of the
ridge function, the formulation of the objective function of the “best” ridge function,
and the search algorithm for the “best” ridge function. The straightforward least
squares formulation of (16.61) can lead to overfitting issues of the type discussed in
Sect. 16.5.1, and we absolutely must avoid such problems to achieve a well-behaved

16 SiLVR: Projection Pursuit for Response Surface Modeling 477

interpretable model from SiLVR. Hence, step 5 in Algorithm 16.4 introduced a
modified objective to reduce overfitting. We discuss these issues in more detail in
Sect. 16.6.4.

16.6.1.1 Model Complexity

Note that the number of model parameters to solve for is s + 3q per LV, where q is
the number of nodes in the sigmoid layer. Hence, if r is the total number of ridge
functions that we use in the complete model, the number of model parameters is

np = r(s + 3q) = O(s), (16.62)

which increases linearly with the dimensionality, assuming that the number sig-
moids per ridge function is independent of the dimensionality. This is a reasonable
assumption, since q is determined by the anticipated nonlinearity of the functions
along a single direction. This one-dimensional curve fitting depends on the modeled
behavior and not on the dimensionality s. Also, q can be kept very small—12 for our
experiments across various circuit examples. The number of LVs, r , is also usually
small in most cases—within 2 for our experiments. Hence, SiLVR can lead to very
compact and yet, extremely flexible RSMs.

In the next section we review some theoretical results supporting this model
formulation. For further algorithmic details on training the model and interpreting it
in the context of RSM for circuits, the reader may skip forward to Sect. 16.6.4.

16.6.2 On the Convergence of SiLVR

In Sect. 16.5.2 we saw some results establishing the convergence of the PPR
approach under some conditions that retain much practical relevance. These results
do apply to SiLVR, but there is one extra consideration—the use of a finite number
of sigmoids for estimating the ridge function gi—that is not covered by them. We
review some results in this section that help “plug this last hole.”

Cybenko showed in [49] that any function continuous over the unit cube in s
dimensions can be approximated arbitrarily well by a 3-layer perceptron (3LP). This
is stated concretely in the following theorem.

Theorem 16.10 (Cybenko [49]) Let σ be any continuous sigmoidal function. Then
finite sums of the form

∑q

j=1 ajσ (b
T
j x+ cj) are dense in C[0, 1]s . In other words,

given any f ∈ C[0, 1]s and ε > 0, there is a sum of this form, for which

∣∣∣∣∣∣
q∑
j=1

ajσ
(

bTj x+ cj
)
− f (x)

∣∣∣∣∣∣ < ε,∀x ∈ [0, 1]s . (16.63)

478 A. Singhee

In the case of SiLVR, we only need the one-dimensional case of this theorem. It says
that there exists a gi(t) of the form (16.53) that can approximate any continuous
univariate function over any bounded region of the real line. Hornik et al. [50]
showed similar density results for unbounded regions, with a finite probability
distribution for the input space. This result gives us the confidence to use linear
combinations of sigmoids as the ridge function approximators for SiLVR. Also,
combined with Theorem 16.9 by Hall [47] they suggest convergence for a practical
implementation of SiLVR. In fact, Chui and Li [51] have proved density results that
can be directly applied to the complete model of SiLVR as in (16.54). We restate
this here, relating it explicitly to SiLVR:

Theorem 16.11 (Chui and Li [51]) Assume that the set of possible projection
vectors w ∈ W satisfies the condition of Theorem 16.4. Then, for any function
f continuous over any compact set D ∈ R

s , and any ε > 0, there exists a SiLVR
model as in (16.54) such that

|f (x)− fSiLVR(x)| < ε,∀x ∈ D. (16.64)

This can be extended to handle the case of probability distributions of x over all of
R
s using the arguments in Hornik et al. [50].
Barron [38] established bounds on the error of approximation using linear com-

binations of any fixed sigmoidal function. Here we only state the one-dimensional
version. For a large class of functions f over some bounded set B ∈ R, whose
Fourier transform satisfies a finite-moment criterion (refer [38]), the following
holds: ∫

B

(
f (t)− g(t))2

dP = O(1/q), (16.65)

where g(t) is a q-sigmoid approximation, as in (16.53). The 1/q behavior extends
to s dimensions; that is, it is independent of the dimensionality. This says that for
any given projection vector w, the error in nonlinear function part of one component
of the SiLVR model (Fig. 16.8) converges as 1/

√
q, as long as the Fourier transform

is bounded in the sense of [38]. The finite-moment criterion essentially restricts the
spread of the Fourier transform of f . This translates to restricting the “sharpness”
and discontinuity in the function f . A counter-example is the Dirac delta function,
which has a uniform Fourier transform and is understandably very difficult to model
with any accuracy using smooth sigmoids.

This result suggests that the more the number of sigmoids, the better the
approximation we could achieve. However, in a sampling context, where we have
only partial information because of a finite number of sampling points, this high
model flexibility (complexity) can lead to overfitting problems. This overfitting
problem is significantly exacerbated in the context of a PPR model like SiLVR,
as discussed in Sect. 16.5.1. One way to counter overfitting is to reduce the model
complexity by reducing the number of sigmoids q in the univariate approximation,

16 SiLVR: Projection Pursuit for Response Surface Modeling 479

so that the model is incapable of fitting the training sample exactly. Hence, there is
this trade-off between high accuracy and less overfitting, i.e., between variance and
bias in the model. A more detailed discussion of this issue in the context of PPR can
be found in Sect. 16.5.1.

The interested reader can refer to several other results in the literature studying
the density, convergence, and construction of neural networks under different
conditions [29, 41, 52–55]. For now, we proceed on to discuss how we can interpret
the SiLVR model in the context of response surface modeling for circuit.

16.6.3 Interpreting the SiLVR Model

The concept of latent variables behind SiLVR allows interpretations of the RSM that
lead to useful insights in the context of circuits. We will look at two quantitative
measures of these “designer’s insight” that we can immediately extract from a 1-LV
SiLVR model (i.e., r = 1).

16.6.3.1 Relative Global Sensitivity

Consider the function y = f (x1, x2) of two variables shown in Fig. 16.9. The
primary variation of f is along the shown direction {1, 2}. Assuming that SiLVR
can extract this feature well, the first projection vector will be given by w1 = {1, 2}.
The corresponding SiLVR model will be

ŷ =
q∑
j=1

a1j σ
(
b1j (1 · x1 + 2 · x2)+ c1j

)
. (16.66)

Hence, we can interpret from this that changes in x2 have twice the impact on ŷ
as similar changes in x1. In other words, ŷ is twice as “sensitive” in a global sense
to x2 than to x1. Then, if we normalize the projection vector to be of unit length

Fig. 16.9 A function of two
variables with dominant
latent variable along {1, 2}

480 A. Singhee

(w1/‖w1‖2), we can interpret the normalized projection weights (w1j /‖w1‖2) as
estimates of relative global sensitivities of the output y to the inputs xj . We can
then define the relative global sensitivity to the j -th input variable as

Sj = w1j /‖w1‖2. (16.67)

This measure of global sensitivity captures the designer’s insight regarding which
are the “important” variables or components in the circuit that have the most impact
on the relevant circuit performance metric.

Note that these measures of global sensitivity are different from the standard
measure of sensitivity ∂f (x)/∂xj that models the linear relationship between y and
the inputs xj in a small neighborhood around a given point x. Sj , however, takes a
global view, not specific to any neighborhood around any point, but over the entire
sampled input domain: it captures the overall contribution of the variable xj to
the variation in the output y. For a similar, more general interpretation of global
sensitivity based on the analysis of variance (ANOVA), please refer to [56]. Of
course, Sj can be believed to be a good estimate of the global sensitivity only if a 1-
LV SiLVR model explains the behavior of the circuit performance sufficiently well.
In general, the accuracy of these sensitivity estimates decreases with increasing error
in the 1-LV model. However, as we shall see in the results Sect. 16.7, a 1-LV model
can extract much of the circuit behavior for some commonly used circuits. A more
general definition of sensitivity using a multi-LV SiLVR model may be possible
using analysis of variance, on the lines of [56]. This, however, is not addressed here,
and can be a potential component of future work.

16.6.3.2 Input-Referred Correlation

Suppose we have 1-LV SiLVR models for two different circuit performance metrics.
We can then use the global sensitivity estimates of the previous section to define a
measure of correlation between the two outputs that is robust to the presence of
strong nonlinearities in the relationship between them. Let us first qualitatively
define the idea of “nonlinear correlation.” Two variables y1 and y2 are strongly
correlated in a nonlinear sense if they have similar causal dependencies. This means
that the perturbations that cause changes in y1 also cause changes in y2.

In a circuit design context, let us consider a standard two-stage opamp. If
changing the widths of the input pair of transistors causes significant changes in
both the DC gain and the DC offset of the opamp, we say that the DC gain and
DC offset share this causal dependence on the width of the input devices. Extending
this idea, if any design change made to impact the DC gain also impacts the DC
offset and vice versa, we say that the two metrics have similar causal dependencies.
Note that here we are not placing any conditions on the actual relationship between
the two variables. For example, Pearson’s linear correlation extracts the strength of
the linear relationship and Spearman’s rank correlation (Sect. 16.6.4.1) extracts the
strength of any monotonic relationship. Here we relax such constraints and allow

16 SiLVR: Projection Pursuit for Response Surface Modeling 481

any, possibly nonlinear, relationship. A side-effect of not assuming monotonicity
is that the sign of the relationship loses meaning. For correlation measures relying
on monotonicity, positive correlation means that y1 and y2 increase together and
negative correlation means that one decreases when the other increases. However if
we do not have monotonicity, then both behaviors might be seen for the same pair
of variables (e.g., y1 is linear while y2 is quadratic, but both have similar causal
dependencies).

1-LV SiLVR models for y1 and y2 allow us to extract this measure of “nonlinear
correlation” using input-referred correlation or IRC, defined as follows:

R(y1, y2) = S(1) · S(2) = w(1)1 · w(2)1

‖w(1)1 ‖‖w(2)1 ‖
, (16.68)

where S(i) is the vector of s relative global sensitivities (16.67) for yi , and w(i)1 is
the corresponding first projection vector. Thus, IRC between y1 and y2 is the dot
product of the relative global sensitivity vectors, or the normalized first projection
vectors, of y1 and y2. Qualitatively, the IRC value is high if y1 and y2 are similarly
sensitive to the same set of input variables. IRC can be useful for circuit design since
it quantitatively captures the designer’s insight regarding the dependencies between
different performances in the circuit. Such insight can help guide designers to make
well-informed design decisions that do not ignore significant trade-offs.

16.6.4 Training SiLVR

The last, but arguably the most important, piece of the SiLVR RSM methodology
that we have not discussed yet is the training algorithm: how do we compute all
the model parameters efficiently to achieve a near-optimal model, given a finite
set of training points? We hinted at the relevant issues in Sect. 16.6.1. We now
discuss these in detail. The search algorithm used to find the “best” ridge function
in the SiLVR training algorithm (Algorithm 16.4) has to satisfy the following three
important requirements.

1. Good generalizability: This means that the search should strive to minimize
overfitting the training points and the influence from directions orthogonal to
the candidate projection vector, as discussed in detail in Sect. 16.5.1. This is
accomplished by using a variable bandwidth smoothing kernel in the original
PPR algorithm [21], as in general nonparametric methods [42]. However,
these techniques are not directly applicable to parametric methods like neural
networks.

2. Robust convergence: The search should consistently settle on the same, or
almost the same, model every time it is run. The desired property here is that
we should be able to run the training algorithm just once and rely on the result,

482 A. Singhee

knowing that it is very unlikely that the search will settle in some deeply inferior
local minimum.

3. Fast convergence: While ensuring the previous two requirements, the search
should not sacrifice too much in terms of speed and the training time should be
reasonable (e.g., up to several seconds).

The following four techniques are used during step 5 of Algorithm 16.4 to ensure
one or more of these requirements:

1. Initialization of projection vectors using Spearman’s rank correlation [57].
This helps start the search closer to the optimal projection vector than just a
random initialization, helping achieve robust and fast convergence (requirements
2 and 3).

2. The Levenberg–Marquardt algorithm [58] is used as the search algorithm. This
algorithm blends the fast Gauss–Newton method with the robust steepest descent
method to achieve fast convergence (requirement 3).

3. Bayesian regularization [59] is used to reduce model complexity by restricting
the values of the model parameters. This helps reduce overfitting and meet
requirement 1.

4. A modified fivefold cross-validation method is used to achieve a robust model
that does not overfit the training data and, thus, helps satisfy requirements
1 and 2.

We will now discuss each of these techniques in some detail.

16.6.4.1 Initialization Using Spearman’s Rank Correlation

We saw in Sect. 16.6.3.1 that the normalized projection weights of the first LV
can be interpreted as relative global sensitivities of the output to the inputs. We
can extend this same interpretation to the i-th LV. The normalized i-th projection
weights {wij }sj=1 can be interpreted as relative global sensitivities of the residue
being modeled by the i-th ridge function. Hence, if we can initialize the projection
weights with some simple estimates of the relative global sensitivities, we can start
the search closer to the global optimum, at least in the subspace of projection
weights (the entire search space has all the model parameters (ai ,bi , ci ,wi) as
dimensions). The simple estimates we use here are the Spearman’s rank correlation
coefficients between the output and the different inputs. Spearman’s rank correlation
[57] between two variables x, y, given the sample set {xj , yj }nj=1, is given by

ρS(x, y) =
∑n
j=1(Pj − P̄)(Qj − Q̄)√∑n

j=1(Pj − P̄)2
√∑n

j=1(Qj − Q̄)2
, (16.69)

where Pj and Qj are the ranks of xj and yj in the sample set, as shown by the
example in Table 16.1. To compute the rank of, say xj , we sort all the x values in

16 SiLVR: Projection Pursuit for Response Surface Modeling 483

Table 16.1 Example
illustrating the concept of
ranks for Spearman’s rank
correlation

x P y Q

0.1 2 101 2

−0.1 1 89 1

0.89 4 130 3

0.76 3 132 4

The rank of a value is its position in
a sorted list of its class, for example,
0.76 is third in the list of x values
sorted in the increasing order

the increasing order and take the position of xj in this sorted list as its rank. P̄ and Q̄
denote the means of the ranks. Hence, ρS is just Pearson’s linear correlation on the
ranks. However, this measure of correlation does not assume linearity like the latter,
and, hence, gives better estimates of the sensitivities. It does assume a monotonic
relationship between x and y. wi is then initialized as the normalized vector of rank
correlations between the inputs and the current residue.

wi = {ρS}
‖{ρS}‖ , {ρS} = {ρS(x1, e), . . . , ρS(xs, e)}. (16.70)

If the actual relationship is non-monotonic, in the worst case the rank correlation
will not capture it and the initialization will be similar to starting at the origin.

16.6.4.2 The Levenberg–Marquardt Algorithm

We use the Levenberg–Marquardt [58] algorithm to search for the best ridge
function in step 5 of Algorithm 16.4. We refer to it as simply LM. LM has been
found to be especially well suited for training neural networks with a least squared
error formulation, as in [60]. It employs a blend of the fast, but sensitive Gauss–
Newton method and the robust, but slower steepest descent. Steepest descent takes
steps along the direction of maximum slope of the objective function. Gauss–
Newton uses a quadratic approximation of the local region around the current point
in the search space to estimate the minimum point. The same procedure is repeated
from this new point in the next iteration. Gauss–Newton is a simplified version
of Newton’s method, and, like Newton’s method, shows very desirable quadratic
convergence close to the minimum point. However, for nonconvex surfaces, Gauss–
Newton can get lost far from the global minimum. In such a situation steepest
descent is a better choice.

We now delve briefly into the mathematical details of LM. Let us denote any
point in our np-dimensional model parameter search space as p. Also denote the
objective function to be minimized by f for this discussion on LM. The steepest
descent method is an iterative procedure that traces a sequence of points pi , ideally
towards the desired minimum point pmin. The move from a current point pi−1 to the

484 A. Singhee

next point pi is called a step. Steepest descent takes steps of the form

pi = pi−1 − δ∇f (pi−1), (16.71)

where ∇f (p) is the gradient vector of f at the point p, composed of the partial
derivatives of f with respect to the model parameters,

∇f =
{
∂f

∂p1
, . . . ,

∂f

∂pnp

}T
, (16.72)

and δ is a step-size parameter. Hence, with each step, the search moves in the
direction of decreasing f . As indicated by the step equation, the step length becomes
smaller with smaller gradients, as happens close to a minimum point (∇f (p) = 0).
As a result, steepest descent performs well far from the optimum, but is a bad choice
when the search is close to the optimum. The asymptotic convergence of steepest
descent is linear.

Standard Newton’s method speeds up the convergence by also using second-
order information. The Newton step is given by

pi = pi−1 −
[
∇2f (pi−1)

]−1 ∇f (pi−1), (16.73)

where ∇2f (pi−1) is the Hessian matrix composed of second-order partial deriva-
tives of f with respect to the model parameters pj . pi here is basically the minimum
point of a quadratic model of f around the previous iteration point pi−1.

Now, suppose that the function f is a least squares objective function,

f (p) =
n∑
j=1

ε2
j (p), (16.74)

where εj (p) is the error for the j -th sample. An example is the SiLVR objective
function in (16.61). By simple differentiation we get

∇f (p) = J T (p)e(p), (16.75)

∇2f (p) = J T (p)J (p)+
n∑
j=1

εj (p)∇2εj (p), (16.76)

where J is the Jacobian matrix function

16 SiLVR: Projection Pursuit for Response Surface Modeling 485

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂ε1
∂p1

∂ε1
∂p2
. . . ∂ε1

∂pnp
∂ε2
∂p1

∂ε2
∂p2
. . . ∂ε2

∂pnp
...

...
. . .

...
∂εn
∂p1

∂εn
∂p2
. . . ∂εn

∂pnp

⎤
⎥⎥⎥⎥⎥⎥⎦
. (16.77)

The last term in (16.76) is very small near the solution, since εj (p) is very small
there by definition, and it can be assumed to be≈ 0. Then, we can write the Newton
step of (16.73) as

pi = pi−1 −
[
J T (p)J (p)

]−1
J T (p)e(p). (16.78)

This is the Gauss–Newton method. Note that this modification of Newton’s method
requires no explicit computation of second-order derivatives. Newton’s method has
quadratic convergence near the solution because it uses the second-order informa-
tion in the Hessian, and the Gauss–Newton method also shows this convergence
behavior. This is significantly faster than the steepest descent method. Hence,
the Gauss–Newton method is preferable once the search is close to the solution.
However, far from the solution, the Hessian can be ill-conditioned, or the quadratic
model might be a bad approximation of the surface, causing the search to get “lost”
and move away from the actual minimum. Here, the steepest descent method, which
is insensitive to the second-order behavior of the surface, is more robust and is
preferable.

Recognizing this, the LM step is a intuitive blend of the two

pi = pi−1 −
[
J T (p)J (p)+ μI

]−1
J T (p)e(p), (16.79)

where μ is an adaptive parameter: larger μ causes steepest descent steps, while
smaller μ causes Gauss–Newton steps. Note that larger μ effectively improves the
conditioning of the Hessian approximation [J T (p)J (p)+μI] by imposing diagonal
dominance [22]. μ is multiplied by some factor β � 1 (increased) when a step
results in an increase in f , and divided by β (decreased) when the step reduces f .
In the former case, the steepest descent part of (16.79) is increased and in the latter,
the Gauss–Newton part is increased. For further details, please refer to [60]. We can
see the flavor of typical model-trust region methods [61] where good solutions from
the quadratic model lead to increasing the belief in the quadratic model and bad
solutions lead to decreasing the belief. In fact, the LM method can be developed as
a model-trust region method [61]. Significant improvement over steepest descent or
Gauss–Newton has been seen while using LM for neural network training, as shown
in [60].

486 A. Singhee

Apart from these desirable features of LM, we also note that computing the
partial derivatives for J in (16.77) is very simple in the specific case of SiLVR,
because of the easy derivate calculation for the tanh sigmoid, shown in (16.58).
Using (16.61),

∂εj

∂pi
= ∂

∂pi

⎡
⎣ej − q∑

k=1

akσ
(
bkwT xj + ck

)⎤⎦ =
q∑
k=1

∂

∂pi

[
akσ

(
bkwT xj + ck

)]
,

(16.80)
where pi is one of ak, bk, ck for some k ∈ {1, . . . , q}. Note that we have dropped
the subscript for the LV here. Hence, the only derivative we need to compute is for
σ , which is easily done using (16.58).

16.6.4.3 Bayesian Regularization

Optimizing the objective function in (16.61) will drive the search towards a ridge
function that exactly fits the sample points along the projection vector. As discussed
in Sect. 16.5.1, this is not desirable for achieving a generalizable PPR model with
low overfitting. Regularization is a standard technique used to constrain the model
complexity and reduce this overfitting behavior and involves adding a penalty term
to the standard least squared error objective. Roughly speaking, the penalty term
models the model complexity, using the fitting parameters themselves. If we denote
the pure data-driven standard objective of (16.61) by ED , regularization augments
it as follows:

min
p
ER, ER = βED + αEp, (16.81)

where Ep is the sum of squares of the network parameters,

Ep = pT p = ‖wi‖2
2 + ‖ai‖2

2 + ‖bi‖2
2 + ‖ci‖2

2, (16.82)

and α and β determine the trade-off between accuracy and generalizability, or
variance and bias, respectively. Restricting the values of the network parameters
reduces the flexibility in the model and increases the smoothness of the response.
This is analogous to increasing the bandwidth in kernel smoothing methods [42], as
in the original PPR algorithm of [21]. Such a penalty is also known as a roughness
penalty, and has been studied by several authors, for example, [23, 55, 59, 62].

A typical problem is estimating the proper values for α and β. A Bayesian
formulation of this problem allows elegant, adaptive computation of these weights,
as shown by MacKay in [59]. The argument for this formulation is as follows. We
recognize that the optimal values for α and β are determined by the specific neural
network (or any other model) structureM , and the available training data D. Given
D andM , the posterior probability of some α, β is given by Bayes’ rule as

16 SiLVR: Projection Pursuit for Response Surface Modeling 487

P(α, β|M,D) = P(D|α, β,M)P (α, β|M)
P(D|M) . (16.83)

Under a Bayesian framework we want to use those values for α, β that maximize
this probability. If we assume a prior density P(α, β|M), this can be achieved by
maximizing P(D|α, β,M). P(D|α, β,M) is the likelihood of seeing the training
data D, given M and some α, β. Let p∗ denote the best choice of parameters that
minimizes (16.81). Under assumptions of Gaussian prior distributions for noise
in the training set, and for the network parameters, it can be shown [63] that the
optimum values of α, β at p∗ are

α0 = γ

2Ep(p∗)
, β0 = n− γ

2ED(p∗)
, γ = np − 2α0

trace(∇2E∗R)
, (16.84)

where ∇2E∗R is the Hessian of the regularization objective function (16.81) at p∗. γ
is called the effective number of parameters and is a measure of the number of model
parameters actually used for reducing the error. Foresee and Hagan [63] showed
how this elegant formulation fits with the same elegance in the LM framework.
The resulting algorithm for LM is shown in Algorithm 16.5, where the Hessian
approximation from LM is used for ∇2ER .

Algorithm 16.5 Bayesian regularization in the Levenberg–Marquardt framework
1: initialize the network parameters normally, and set α = 0 and β = 1
2: take one LM step (16.79) to minimize ER
3: use the Gauss–Newton approximation for the Hessian, from LM

∇2ER ≈ 2βJT J + 2αInp , (16.85)

where J is as in (16.77) and Inp is the np × np identity matrix, to compute γ = np −
2α/tr(∇2ER)

4: compute new estimates of α, β using the current point pi , and ER in (16.84).
5: ifd converged as per LM criterion
6: return
7: else
8: go to step 2

16.6.4.4 Modified Fivefold Cross-Validation

Even with this regularization technique, we cannot be completely confident of the
accuracy of the resulting model on unseen test data, since we are only optimizing
for the training data. Also, the surface of the objective function in (16.81) can be
nonconvex because it is defined by a sum of sigmoids. Hence, there are chances
that the search may settle on a local optimum that is much worse than the desired
global optimum (or, at least, a very good local optimum). A popular technique used

488 A. Singhee

Algorithm 16.6 Modified fivefold cross-validation used to reduce overfitting and
avoid local optima
1: Given a training set D of n points
2: divideD into 5 random, nonoverlapping sets {D1, . . . , D5}which n/5 points each—D = ∪Di
3: E∗ = ∞
4: for i = 1 to 5
5: M ← 1-LV SiLVR model trained on D \Di
6: E← sum of squared error ofMi on Di
7: E < E∗
8: E∗ = E,M∗ = M
9: returnM∗

for selecting a model that is generalizable is k-fold cross-validation. For example,
cross-validation may be used for selecting the number of sigmoids to be used in
a neural network to achieve the best generalizability. For details on how it is used
for model selection, the reader may refer to [23]. In our case, however, the model
structure is fixed. We can still exploit cross-validation to address the two issues
mentioned above by choosing good model parameter values.

The modified fivefold cross-validation that we use is shown in Algorithm 16.6.
The algorithm trains five different SiLVR models, each time excluding one of the
subsets Di , then computes the testing error for each model on its unseen Di , and
finally, picks the model that has the lowest testing error. Hence, it ensures that testing
error is used as the criterion for parameter selection, rather than only training error
(with regularization). Furthermore, it runs five different training runs, significantly
increasing the chances of finding a model close to the global optimum. Note that
the cross-validation Algorithm 16.6 is run once for each LV—it is part of step 5 in
Algorithm 16.4.

16.7 Experimental Results

SiLVR was implemented in Matlab. We now present some experimental results to
demonstrate the performance of this implementation. We first test it on our example
of (16.20), reproduced (once more) here in its general form, for the convenience of
the reader.

y2 = x1x2 = 0.25(x1 + x2)
2 − 0.25(x1 − x2)

2

= (4ab)−1
[
(ax1 + bx2)

2 − (ax1 − bx2)
2
]
.

(16.86)

We sampled 1000 values of x1 and x2 from a standard normal distribution N (0, 1),
and trained SiLVR on the resulting set, using all the techniques of Sect. 16.6.4.
The results are shown in Fig. 16.10. Figure 16.10 shows the training points and
the surface extracted by a 2-LV SiLVR model. Comparing with Fig. 16.4 we see

16 SiLVR: Projection Pursuit for Response Surface Modeling 489

Fig. 16.10 A 2-LV SiLVR model for y = x1x2 for (x1, x2) ∼ N (0, I2). (a) The surface extracted
by a 2-LV SiLVR model, and the training samples. (b) The first ridge function g1 extracted by
SiLVR, along w1 = (0.7285, 0.6851). (c) The second ridge function g2 extracted by SiLVR, along
w2 = (0.7296,−0.6838)

that SiLVR does extract a reasonable approximation of the underlying assumption
from the training set it is provided. We do see some artifacts in the under-sampled
regions, but that is because of the lack of sufficient data there, and the heavy
smoothing imposed on the training algorithm. Typically the under-sampled regions
are less important because events occur rarely there, and errors in the model can
be tolerated there. The well-sampled regions, however, must be modeled well and
SiLVR does meet this criterion. Figure 16.10b, c shows the first and second ridge
functions extracted, respectively (along the first and second projection vectors,
respectively). Again, we see agreement in shape and alignment with the solutions
in Fig. 16.4. From (16.86), we know that two candidate projection vectors are
w1 = (a, b) and w2 = (a,−b) for ab �= 0. The vectors that SiLVR extracts are
w1 = (0.7285, 0.6851) and w2 = (0.7296,−0.6838), which are very close to the
expected results. This implies that even if there are errors in the model in under-
sampled regions, we should still obtain good estimates of the dominant projection
vectors, and hence of the relative global sensitivities and IRC, when applicable. The
average absolute error on the training set is 2.23%.

Now we show results for three realistic circuit test cases, each representing a
different family of circuit behavior:

1. Master–slave flip-flop with the scan chain component,
2. Two-stage RC-compensated opamp, and
3. Sub-1 V bandgap voltage reference in CMOS.

The number of process parameters ranges from 13 to 122 (including one inter-die
parameter). SiLVR is able to extract good estimates of the LVs, along with the
accompanying ridge function model, using 1000 training samples for each case.
The training points are generated using standard Monte Carlo sampling, following
the probability distributions for the statistical parameters. The circuit simulator
used is Spectre® [64] by Cadence Design Systems. We also compare SiLVR with
a straightforward Matlab® implementation of a near-optimal, reduced quadratic

490 A. Singhee

model, built using the PROBE [8] algorithm, discussed in Sect. 16.2.3. The best
PROBE results (up to rank 10) are used for graphical comparisons. All models are
evaluated on a separate test set of 10,000 Monte Carlo samples. Training points
where the circuit does not function are not used for modeling, but no extra samples
are simulated to replace them.

16.7.1 Master–Slave Flip-Flop with Scan Chain

The first test case is a commonly seen master–slave flip-flop with scan chain shown
in Fig. 16.11, which we refer to as simply MSFF. The circuit has been implemented
using the 45 nm CMOS Predictive Technology Models of [65]. The variations
considered are random dopant fluctuation (RDF) for all transistors and one global
gate oxide thickness (tox) variation. The RDF is modeled as normally distributed
independent threshold voltage (Vt) variation:

δVt ∼ N

⎛
⎝0,

(
13.5Vt0√
WL

)2
⎞
⎠ , (16.87)

where W,L are the transistor width and length in nm, and Vt0 is the nominal
threshold voltage. This results in about 30% standard deviation for a minimum-sized
transistor. This is large for current CMOS technologies, but we want to make sure
that SiLVR is powerful enough for future technologies too, where large variations
will be inevitable. The standard deviation for tox is taken as only 2% of the nominal
value, since tox is typically better controlled than RDF. The number of statistical
parameters, or input dimensionality of the model, is 31. We are modeling one output:
the clock-output delay of the flip-flop (τcq). The setup time of the flip-flop is such
that the variations result in the onset of some metastable behavior, resulting in
strongly nonlinear behavior in some parts of the sampled region of the statistical
parameter space. This realistic situation makes the modeling problem a harder test
case.

Figure 16.12a shows the projection vector w1 for the first extracted latent
variable t1, and Fig. 16.12b plots the simulated and predicted delay values against
t1. The latter shows the predictions from SiLVR and also from the best reduced
quadratic model. We can clearly observe two things: (1) only 6–8 out of 31 input
dimensions (corresponding to transistors in the circuit) affect the output, and (2)
SiLVR performs much better than a quadratic model. Also, note that just using one
LV we are able to explain the general behavior of this test case. Figure 16.21 (a
few pages later) shows error bars comparing the error of SiLVR against the error of
PROBE, and we can immediately see the improvement in modeling accuracy. These
are errors for the best SiLVR model and the best PROBE model: both PROBE and

16 SiLVR: Projection Pursuit for Response Surface Modeling 491

Fig. 16.11 A master–slave flip-flop with the scan chain component

(a) (b)

Fig. 16.12 Performance of SiLVR on the MSFF test case. (a) The normalized projection weights
for the first LV. (b) Simulated, SiLVR-predicted (red triangle), and PROBE-predicted (green plus)
delay values, plotted against the first LV

SiLVR perform best for rank-one and a one-LV model, respectively. Beyond this, we
see only overfitting of the training data and larger errors on the test data. Table 16.2
shows this in more detail, as it compares the errors quantitatively with increasing
number of LVs/rank: the best average error is reduced by 2.5×: from 16.3% for
PROBE to 6.4%. The results for rank (number of LVs) greater than 6 do not provide
any relevant insight and are excluded to avoid clutter.

492 A. Singhee

Table 16.2 Average
percentage error on a test set
of 10,000 Monte Carlo
samples, for MSFF and the
voltage reference

MSFF delay Bandgap Vref Vdo

r SiLVR PROBE SiLVR PROBE SiLVR PROBE

1 6.41 16.3 0.278 0.639 11.1 35.4

2 7.24 19.7 0.341 0.707 10.4 39.9

3 8.15 21.3 0.374 0.726 11.9 41.9

4 8.17 22.2 0.375 0.736 11.9 42.3

5 8.35 22.9 0.374 0.739 11.9 42.4

6 7.79 23.2 0.374 0.738 11.9 42.4

r is the rank of the quadratic model or the number of LVs used in
the SiLVR model, as applicable

16.7.2 Two-Stage RC-Compensated Opamp

This next test case [66], shown in Fig. 16.13, is representative of a large class of
circuits in the analog domain: amplifiers. We test SiLVR on the DC, AC, and
transient characteristics of the opamp. The opamp has been implemented using
models from the Cadence 90 nm Generic PDK library. Once again, we model RDF
on all transistors as independent variation on the threshold voltage Vt . We also
include a global tox variation, and variations on the passives (resistors, capacitors)
and the current source. All variations are assumed to be normally distributed. The
Vt standard deviation is about 18% of nominal Vt :

δVt ∼ N

⎛
⎝0,

(
5mV√
WL

)2
⎞
⎠ , (16.88)

whereW,L are the transistor width and length in μm. The standard deviation for tox
is taken as 2% of the nominal value. Each passive and current source component has
its own normally distributed variation with a standard deviation of 5%. The resulting
input dimensionality for the RSM is 13, and we are modeling five performance
metrics (outputs):

1. DC gain
2. Unity gain frequency (UGF)
3. Phase margin (PM)
4. Settling time (ST)
5. DC input offset

For details regarding these metrics and opamp operation, please refer to any standard
textbook on circuit design, e.g., [66].

Figure 16.14 shows the first projection vector w1 for each of the outputs.
Figure 16.15 plots the simulated and predicted values for each output against the
respective first LV t1, on the test points. The following observations are obtained
immediately from these figures:

16 SiLVR: Projection Pursuit for Response Surface Modeling 493

Fig. 16.13 A 2-stage
RC-compensated operational
amplifier

1

–1

0

1 2 3 4 5 6 7 8 9 10 11 12 13

1

–1

0

1 2 3 4 5 6 7 8 9 10 11 12 13

1

–1

0

1 2 3 4 5 6 7 8 9 10 11 12 13

1

–1

0

1 2 3 4 5 6 7 8 9 10 11 12 13

1

–1

0

1 2 3 4 5 6 7 8 9 10 11 12 13
dimension number

Gain

UGF

PM

ST

Offset

Fig. 16.14 Opamp test case: normalized projection vectors for the first LVs of the opamp metrics:
we can see the strong relationship between gain, PM, and offset

494 A. Singhee

Fig. 16.15 Opamp test case: simulated, PROBE-predicted (green plus), and SiLVR-predicted (red
triangle) opamp outputs, plotted against first LV. For the nonlinear cases, the simulated and SiLVR-
predicted graphs coincide in many places

• Strongly nonlinear behavior exists even for simple circuits like the 2-stage
opamp: for DC gain and PM in this case.

• A quadratic model performs well for near-linear behaviors, as expected, but has
large errors for these strongly nonlinear behaviors.

• One (the first) LV is able to explain much of the behavior for some circuits: both
the MSFF and the opamp till now.

• SiLVR is able to model even the strongly nonlinear behaviors reasonably well.

16 SiLVR: Projection Pursuit for Response Surface Modeling 495

Fig. 16.16 Staircase
behavior for incorrectly
simulated input offset
modeled by SiLVR

Apart from these obvious ones, we make some more subtle, but important observa-
tions. Having the explicit projections, as a result of the projection pursuit approach,
provides deep insight into the circuit behavior. First, we can actually see the
behavior clearly, removing any need for guesswork. We found a direct application
of this advantage during the course of performing these experiments. Our initial
results for the input offset showed a surprising (and, as it turned out, erroneous) step-
shaped behavior when the offset values were plotted against the first LV extracted
by SiLVR. This is shown in Fig. 16.16. This result can also be found in our initial
publication [12]. However, this step behavior was unexpected for the offset of the
opamp: we expected a near-linear behavior as described in [66]. This led to further
investigation, resulting in the discovery of the cause of this anomaly—a tolerance
parameter in the circuit simulator was too loose. On correcting the parameter, and
re-running SiLVR training, we obtained the expected near-linear behavior shown
in Fig. 16.15. This example shows just one of many possible scenarios where
the better modeling flexibility, visualization potential, and interpretive power that
SiLVR provides can be practically useful. The step behavior could be observed
easily because we could reduce the dimensionality to the most important one and
visualize the behavior easily.

SiLVR also provides us some quantitative measures to better understand circuit
behavior: relative global sensitivities and input-referred correlation (Sect. 16.6.3).
If we look at the projection vectors for gain, PM, and offset in Fig. 16.14, we
can immediately see that these outputs depend almost identically on the same
parameter subset (parameters 3–6): these are the driver and load devices in the input
differential amplifier. Hence, they have similar causal dependencies, as defined in
Sect. 16.6.3.2, and are strongly correlated in a nonlinear sense. This is confirmed
by plotting all three simulated metrics against the first LV of gain, as in Fig. 16.17.
This is where the power of SiLVR is really evident. Table 16.3 compares the rank
correlation and linear correlation among these metrics, with the IRC. We see that
the rank correlation performs better than linear correlation, but both completely fail
to capture the strength of the relationship between gain and offset, and gain and PM.
At the same time, IRC succeeds nicely.

496 A. Singhee

Fig. 16.17 Simulated opamp
gain, phase margin, and offset
plotted against the LV for
gain, showing strong
correlation among the three

Table 16.3 Rank and linear
correlation compared with
IRC as a measure of
correlation between strongly
correlated opamp metrics

Output pair |Linear corr.| |Rank corr.| IRC

Gain-PM 0.871 0.986 1.000

PM-offset 0.119 0.161 1.000

Gain-offset 0.054 0.099 1.000

Table 16.4 Average percentage error on a test set of 10,000 Monte Carlo samples, for the opamp

Opamp gain UGF PM Settling time Input offset

r SiLVR PROBE SiLVR PROBE SiLVR PROBE SiLVR PROBE SiLVR PROBE

1 1.69 35.7 0.061 0.042 1.90 16.7 0.507 0.248 1.62 0.58

2 1.74 36.4 0.063 0.022 1.97 16.8 0.517 0.240 1.80 0.12

3 1.73 36.9 0.066 0.013 1.94 16.9 0.528 0.243 2.11 0.10

4 1.66 37.2 0.068 0.010 1.99 16.9 0.531 0.244 2.38 0.09

5 1.69 37.1 0.070 0.009 2.01 16.9 0.540 0.244 2.41 0.09

6 1.72 37.0 0.072 0.009 2.03 16.9 0.552 0.245 2.59 0.09

r is the rank of the quadratic model or the number of LVs used in the SiLVR model, as applicable

Figure 16.21 compares the average absolute percentage error for SiLVR and
PROBE on this test case. Quantitative comparisons of the errors are provided in
Table 16.4, for increasing number of LVs and rank of the quadratic model. The
results for rank (number of LVs) greater than 6 do not provide any relevant insight
and are excluded to avoid clutter. As expected, a quadratic model has large errors
for the nonlinear, nonquadratic behavior of gain and PM. SiLVR can model these
well and reduce the error significantly—by up to an absolute improvement of 34%
for gain. The errors for the near-linear outputs worsen a little, but are still within
reasonable limits. For this test case too, a 1-LV SiLVR model has the lowest testing
error among all SiLVR models, as we can see from the table.

16 SiLVR: Projection Pursuit for Response Surface Modeling 497

Fig. 16.18 Low-voltage CMOS bandgap voltage reference circuit from [67], with a parameter
space of 122 dimensions

16.7.3 Sub-1 V CMOS Bandgap Voltage Reference

Figure 16.18 shows a low-voltage CMOS bandgap voltage reference circuit,
proposed in [67]. The circuit is able to provide reference voltages that are less than
1 V, and is built using standard CMOS technology. It was chosen for its relevance
in today’s and tomorrow’s low-voltage designs, and also because the related RSM
problem has a high input dimensionality of 122 and strong nonlinear behavior. The
opamp in the circuit is the same as in Sect. 16.7.2. The circuit has 101 diodes. The
transistor device and variation models are the same 90 nm CMOS as the opamp.
Variations in each diode are modeled as a normally distributed variation on the
saturation current, with standard deviation of 10%. Each resistor and capacitor has
its own normally distributed variation source, with a standard deviation of 5%. There
are a total of 121 local variation parameters and one global tox variation. In this case,
we measure two metrics: (1) the output voltage Vref, and (2) the dropout voltage Vdo.
Vdo is the difference between the supply voltage and Vref, when Vref falls by 1% of
its nominal value: lower Vdo implies a circuit more robust to variations in the supply
voltage. The nominal Vref we designed for is 600 mV.

Figure 16.19a shows the 122-dimensional projection vector for the first LVs of
the bandgap performance metrics. Figure 16.20 plots the simulated and predicted
outputs against their corresponding LVs. Here we see that PROBE performs well for
the linearly behaved Vref, but completely breaks down for the nonlinearly behaved
Vdo. SiLVR, however, is able to extract a good estimate of this strong nonlinear
behavior, as evidenced also in Table 16.2. For the case of Vdo, we can actually
improve the fit further by using a 2-LV model, as shown both by Fig. 16.19b and by
the last column in Table 16.2. The former plots the simulated and SiLVR-predicted

498 A. Singhee

1
Vref

Vdo

0.5

–0.5

–1

0

0 20 40 60 80 100 120

1

0.5

–0.5

–1

0

0 20 40 60 80 100 120
dimension number

(a)

(b)

1.4

1.2

0.8

0.6

1

–4 –2

V
do

 (
V

)

–20

0

2

2
4

–4
t1

t2

Fig. 16.19 Performance of SiLVR on the sub-1 V CMOS voltage reference circuit test case.
(a) Normalized projection vector for the first LVs of the voltage reference circuit metrics. (b)
Simulated and SiLVR-predicted Vdo against the first two LVs

16 SiLVR: Projection Pursuit for Response Surface Modeling 499

(a) (b)

Fig. 16.20 Simulated, PROBE-predicted (green plus), and SiLVR-predicted (red triangle) outputs,
plotted against the first LV, for the sub-1 V CMOS voltage reference circuit test case. (a)
Comparison for Vref. (b) Comparison for Vdo—the quadratic model breaks down

Fig. 16.21 Best SiLVR errors compared with best PROBE errors: PROBE shows large errors for
the nonlinear performances. SiLVR significantly reduces those errors and maintains low errors for
the near-linear cases (UGF, Settling Time, DC offset, Vref)

values of the dropout voltage for the test set points. Only for this figure, the SiLVR
model was trained using a (separate) training set of 10,000 points to achieve a fit
that is visually obvious in three dimensions. However, the results in Table 16.2 and
in Fig. 16.21 are for a model trained using the standard sample size of 1000 points.

Hence, even though we started with a large dimensionality of 122, only 2 LVs
can still explain most of the behavior. Also, the normalized inner product of the

first two projection vectors
wT1 w2

‖w1‖‖w2 ‖ is only 1.2e–3, meaning that they are almost

orthogonal. This implies that SiLVR can extract almost all the information from
the first LV before looking at the second LV. We saw similar results supporting this
inference for the example y = x1x2 at the beginning of Sect. 16.7.

500 A. Singhee

16.7.3.1 Training Time

The training run times to build each LV are quite reasonable, even with the complex
cross-validation strategy to improve neural network robustness: each LV requires
13–24 CPU seconds of Matlab® computation. This is especially attractive for higher
dimensional cases like the voltage reference, where even the simple quadratic model
of PROBE can be relatively expensive to train.

16.8 Conclusions

SiLVR possesses some very desirable features as an RSM technique. It elegantly
handles nonlinear surfaces, enables performance-oriented dimensionality reduction,
provides useful quantitative measures to understand the circuit design problem (rela-
tive global sensitivity and IRC), and enables insightful visualization of performance
behavior in much reduced dimensions. Even before its application to automatic
optimization, these features can find good use in the manual design process. For
example, after running an increasingly popular Monte Carlo run for yield analysis,
the designer can obtain a SiLVR model and all its by-product features in a few
seconds without running any more simulations. This is a very simple use-mode that
is minimally intrusive to most circuit design flows, and still provides a useful new
design tool to the designer. The practical, real examples from the case of the opamp
in Sect. 16.7.2 illustrate this usefulness.

Given this, much can still be done to extend the power and usefulness of SiLVR.
Here we briefly introduce some possible directions of further research, targeting
various aspects of this RSM strategy.

• Researchers in statistics and data mining have developed techniques to refine
the PPR model. One relevant technique is the so-called backfitting [23]. In this
procedure, after the i-th projection in the PPR model is extracted, the previously
extracted projections are re-optimized, to better model the residue after removing
the behavior modeled by this i-th projection.

• The SiLVR training algorithm emphasizes the reduction of overfitting, by
employing a minimal number of sigmoids and using regularization and cross-
validation techniques. It is not very clear if it currently sits at the best trade-off
between accuracy and generalizability; that is, between variance and bias. This
issue deserves further investigation to determine a near-optimal trade-off for the
SiLVR model.

• Finally, a goal of most RSM strategies is to be employed as circuit performance
models in automatic yield-aware optimization. Such is also the case for SiLVR.
How can SiLVR be best incorporated in yield-aware circuit synthesis? This is a
“loaded” question and any inquiry into its answer will require answering several
other questions: How can SiLVR be adapted to work across both the statistical
parameter and design variable spaces to allow larger model-trust regions in the

16 SiLVR: Projection Pursuit for Response Surface Modeling 501

design space? How can the information available from SiLVR be best used for
guiding the search algorithm? Which search algorithms fit best with SiLVR?

References

1. S.W. Director, P. Feldmann, K. Krishna, Statistical integrated circuit design. IEEE J. Solid-
State Circuits 28(3), 193–202 (1993)

2. P. Cox, P. Yang, S.S. Mahant-Shetti, P. Chatterjee, Statistical modeling for efficient parametric
yield estimation of MOS VLSI circuits. IEEE Trans. Electron Devices 32(2), 471–478 (1985)

3. T.-K. Yu, S.M. Kang, I.N. Hajj, T.N. Trick, Statistical performance modeling and parametric
yield estimation of MOS VLSI. IEEE Trans. Comput. Aided Des. 6(6), 1013–1022 (1987)

4. P. Feldmann, S.W. Director, Integrated circuit quality optimization using surface integrals.
IEEE Trans. Comput. Aided Des. 12(12), 1868–1879 (1993)

5. M. Hane, T. Ikezawa, T. Ezaki, Atomistic 3d process/device simulation considering gate
line-edge roughness and poly-Si random crystal orientation effects, in Proceedings of IEEE
International Electron Devices Meeting (2003)

6. T. Ezaki, T. Izekawa, M. Hane, Investigation of random dopant fluctuation induced device
characteristics variation for sub-100 nm CMOS by using atomistic 3d process/device simulator,
in Proceedings of IEEE International Electron Devices Meeting (2002)

7. D.J. Frank, Y. Taur, M. Ieong, H.-S.P. Wong, Monte Carlo modeling of threshold variation due
to dopant fluctuation, in Proceedings of International Symposium on VLSI Technology (1999)

8. X. Li, J. Le, L.T. Pileggi, A. Stojwas, Projection-based performance modeling for inter/intra-
die variations, in Proceedings of IEEE/ACM International Conference on CAD (2005)

9. Z. Feng, P. Li, Performance-oriented statistical parameter reduction of parameterized systems
via reduced rank regression, in Proceedings of IEEE/ACM International Conference on CAD
(2006)

10. A.J. Burnham, R. Viveros, J.F. MacGregor, Frameworks for latent variable multivariate
regression. J. Chemom. 20, 31–45 (1996)

11. P.J. Huber, Projection pursuit. Ann. Stat. 13(2), 435–475 (1985)
12. A. Singhee, R.A. Rutenbar, Beyond low-order statistical response surfaces: latent variable

regression for efficient, highly nonlinear fitting, in Proceedings of IEEE/ACM Design Automa-
tion Conference (2007)

13. S. Wold, A. Ruhe, H. Wold, W.J. Dunn III, The collinearity problem in linear regression. The
partial least squares (PLS) approach to generalized inverses. J. Sci. Stat. Comput. 5(3), 735–
743 (1984)

14. G. Reinsel, R. Velu, Multivariate Reduced-Rank Regression, Theory and Applications
(Springer, Berlin, 1998)

15. S. Wold, M. Sjstrm, L. Eriksson, PLS-regression: a basic tool of chemometrics. Chemom.
Intell. Lab. Syst. 58, 109–130 (2001)

16. P.T. Davies, M.K.-S. Tso, Procedures for reduced-rank regression. Appl. Stat. 31(3), 244–255
(1982)

17. A-L. Boulesteix, K. Strimmer, Partial least squares: a versatile tool for the analysis of high-
dimensional genomic data. Brief. Bioinform. 8(1), 32–44 (2006)

18. G. Baffi, E.B. Martin, A.J. Morris, Non-linear projection to latent structures revisited (the
neural network PLS algorithm). Comput. Chem. Eng. 23(9), 1293–1307 (1999)

19. C. Malthouse, A.C. Tamhane, R.S.H. Mah, Nonlinear partial least squares. Comput. Chem.
Eng. 21(8), 875–890 (1997)

20. B.D. Ripley, Pattern Recognition and Neural Networks (Cambridge University Press, Cam-
bridge, 1996)

502 A. Singhee

21. J.H. Friedman, W. Stuetzle, Projection pursuit regression. J. Am. Stat. Assoc. 76(376), 817–
823 (1981)

22. G. Golub, C. Loan, Matrix Computations (JHU Press, Baltimore, 1996)
23. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,

Inference, and Prediction (Springer, Berlin, 2001)
24. B.F. Logan, L.A. Shepp, Optimal reconstruction of a function from its projections. Duke Math.

J. 42, 645–659 (1975)
25. B.A. Vostrecov, M.A. Kreines, Approximation of continuous functions by superpositions of

plane waves. Soviet Math. Dokl. 2, 1326–1329 (1961)
26. F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations (Inter-

science Publishers, New York, 1955)
27. W.S. McCullough, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Null.

Math. Biophys. 5, 115–133 (1943)
28. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)
29. B. Irie, S. Miyake, Capabilities of three-layered perceptrons, in International Conference on

Neural Networks (1988)
30. P. Diaconis, M. Shahshahani, On nonlinear functions of linear combinations. SIAM J. Sci. Stat.

Comput. 5(1), 175–191 (1984)
31. A.M. Bruckner, J.B. Bruckner, B.S. Thompson, Real Analysis (Prentice-Hall, New Jersey,

1997)
32. X. Sun, E.W. Cheney, The fundamentality of sets of ridge functions. Aequationes Math. 44,

226–235 (1992)
33. V.Y. Lin, A. Pinkus, Fundamentality of ridge functions. J. Approx. Theory 75, 295–311 (1993)
34. P.P. Petrushev, Approximation by ridge functions and neural networks. SIAM J. Math. Anal.

30(1), 155–189 (1998)
35. V.E. Maiorov, On best approximation by ridge functions. J. Approx. Theory 99, 68–94 (1999)
36. M. Burger, A. Neubauer, Error bounds for approximation with neural networks. J. Approx.

Theory 112, 235–250 (2001)
37. H.N. Mhaskar, Approximation by superposition of sigmoidal and radial basis functions. Adv.

App. Math. 13, 350–373 (1992)
38. A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function. IEEE

Trans. Inf. Theory 39(3), 930–945 (1993)
39. R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975)
40. T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, 2nd edn. (MIT Press,

Cambridge, 2001)
41. W. Light, Ridge functions, sigmoidal functions and neural networks, in Approximation Theory,

ed. by E.W. Cheney, C.K. Chui, L.L. Schumaker, vol. VII (Academic Press, New York, 1992)
42. B.L.S. Prakasa Rao, Nonparametric Functional Estimation (Academic Press, New York, 1983)
43. J.H. Friedman, A variable span smoother, Department of Statistics Tech. Report LCS 05,

Stanford University, 1984
44. H.H. Rosenbrock, An automatic method for finding the greatest or least value of a function.

Comput. J. 3, 175–184 (1960)
45. D. Donoho, I. Johnstone, P. Rousseeuw, W. Stahel, Projection pursuit (discussion). Ann. Stat.

13(2), 496–500 (1985)
46. L.K. Jones, On a conjecture of Huber concerning the convergence of projection pursuit

regression. Ann. Stat. 15(2), 880–882 (1987)
47. P. Hall, On projection pursuit regression. Ann. Stat. 17(2), 573–588 (1989)
48. M. Loéve, Probability Theory I & II, 4th edn. (Springer, Berlin, 1977)
49. G. Cybenko, Approximation by superpositions of sigmoidal functions. Math. Control Signals

Syst. 2, 303–314 (1989)
50. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal

approximators. Neural Netw. 2, 359–366 (1989)
51. C.K. Chui, X. Li, Approximation by ridge functions and neural networks with one hidden layer.

J. Approx. Theory 70, 131–141 (1992)

16 SiLVR: Projection Pursuit for Response Surface Modeling 503

52. K. Funahashi, On the approximate realization of continuous mappings by neural networks.
Neural Netw. 2, 183–192 (1989)

53. H.N. Mhaskar, Neural networks for optimal approximation of smooth and analytic functions.
Neural Comput. 8, 164–177 (1996)

54. C.K. Chui, X. Li, H.N. Mhaskar, Limitations of the approximation capabilities of neural
networks with one hidden layer. Adv. Comput. Math. 5, 233–243 (1996)

55. A.R. Barron, Statistical properties of artificial neural networks, in Proceedings of 28th
Conference on Decision and Control (1989)

56. I.M. Sobol’, S.S. Kucherenko, Global sensitivity indices for nonlinear mathematical models.
Rev. Wilmott Mag. 2, 2–7 (2005)

57. W.H. Press, B.P. Flannery, A.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art
of Scientific Computing, 2nd edn. (Cambridge University Press, Cambridge, 1992)

58. D. Marquardt, An algorithm for least squares estimation of non-linear parameters. J. Soc. Ind.
Appl. Math. 11, 431–441 (1963)

59. D.J.C. MacKay, A practical Bayesian framework for backpropagation networks. Neural
Comput. 4(3), 448–472 (1992)

60. M.T. Hagan, M.B. Menhaj, Training feedforward networks with the Marquardt algorithm.
IEEE Trans. Neural Netw. 5(6), 989–993 (1994)

61. J.E. Dennis, Jr., R.B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (SIAM, Philadelphia, 1996)

62. F. Girosi, M. Jones, T. Poggio, Regularization theory and neural network architectures. Neural
Comput. 7(2), 219–269 (1995)

63. F.D. Foresee, M.T. Hagan, Gauss–Newton approximation to Bayesian learning, in Proceedings
of International Conference on Neural Networks (1997)

64. K. Kundert, The Designer’s Guide to SPICE and Spectre® (Springer, Berlin, 1995)
65. W. Zhao, Y. Cao, New generation of predictive technology model for sub-45 nm early design

exploration. IEEE Trans. Electron Devices 53(11), 2816–2823 (2006)
66. P.R. Gray, P.J. Jurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated

Circuits, 4th edn. (Wiley, Hoboken, 2001)
67. H. Banba, H. Shiga, A. Umezawa, T. Miyaba, A CMOS bandgap reference circuit with sub-1-v

operation. IEEE J. Solid-State Circuits 34(5), 670–674 (1999)

Chapter 17
Machine Learning-Based System
Optimization and Uncertainty
Quantification for Integrated Systems

Hakki M. Torun, Mourad Larbi, and Madhavan Swaminathan

17.1 Introduction

Emerging trend in modern high-performance systems is leading to new challenges
in efficient voltage regulation architectures. Some of these include delivering high
current at a low voltage for increased processing power at very high switching
frequencies to support dynamic voltage and frequency scaling (DVFS) for energy
efficient multi-core architectures [1, 2]. The regulation efficiency of conventional
standalone DC–DC converters is limited under such operating conditions by either
the power delivery network (PDN) or AC/DC losses introduced by the inductor.
The recent trend to address these issues is towards integrating IVRs either on-
chip or in the package. Furthermore, IVRs provide a great opportunity for system
miniaturization when combined with embedded inductors. In this chapter, our focus
is on embedding solenoidal inductors in the package with a magnetic core [3].

Due to high levels of integration and increased switching frequency, IVRs have
highly non-linear response to their control parameters which include number of
phases, switching frequency, and the characteristics of embedded inductor including
type and dimensions of the magnetic material. This creates unique challenges in
deriving an accurate model that captures all the coupling between components
comprising the system along with non-linearities.

Ultimately, the goal of the model is to perform design space exploration and
optimization to determine the control parameters that will give the best performance.
In this chapter, we present a new algorithm by building upon the importance sam-
pling technique presented in [4], called two-stage Bayesian optimization (TSBO),

H. M. Torun · M. Larbi · M. Swaminathan (�)
Georgia Institute of Technology, School of Electrical & Computer Engineering, Atlanta, GA,
USA
e-mail: htorun3@gatech.edu; mourad.larbi@ece.gatech.edu;
madhavan.swaminathan@ece.gatech.edu

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_17

505

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_17&domain=pdf
mailto:htorun3@gatech.edu
mailto:mourad.larbi@ece.gatech.edu
mailto:madhavan.swaminathan@ece.gatech.edu
https://doi.org/10.1007/978-3-030-04666-8_17

506 H. M. Torun et al.

that utilizes machine learning (ML)-based Bayesian optimization (BO) to perform
tuning and optimization of the IVR over a large design space. The demonstrated
algorithm is generic in the sense that it can be applied to other types of systems
to handle design complexities caused by high dimensionality and multi-physics
interactions. For instance, TSBO has been applied to 3D ICs and systems [5, 6],
wireless power transfer systems [7], and high-speed channels [8].

Once the optimal design parameters have been found, uncertainties related to
the fabrication process, such as intrinsic characteristics of materials, geometrical
properties, and temperature variations, may cause a large variability of output
response. Hence, it is essential to carry out uncertainty quantification (UQ) in order
to ensure that the fabricated design satisfies all the electrical requirements. In this
context, the brute force Monte Carlo (MC) method is not appropriate since it will
require a high number of model evaluations to accurately estimate the variability of
the output response. For this reason, a surrogate model, which aims at replacing
the numerical model by an analytic approximation of the response, needs to be
considered. In this chapter, we build up, from a non-intrusive technique, a surrogate
model based on polynomial chaos (PC) [9, 10] to predict the variability of the IVR
efficiency. The surrogate model is then used to estimate statistical quantities such as
moments, probability density functions (PDF), and sensitivity analysis of the output.

The rest of this chapter is structured as follows: Sect. 17.2 presents a new design
flow enabled by the TSBO algorithm; Sect. 17.3 provides background on black-
box optimization and BO; Sect. 17.4 presents the TSBO algorithm with empirical
analysis; Sect. 17.5 shows the application and performance of the algorithm pre-
sented in co-optimization of IVR and embedded inductor with the objective of
maximizing IVR efficiency while minimizing the inductor area; Sect. 17.6 discusses
background on UQ using sparse polynomial chaos followed by its application to
IVR in Sect. 17.7 and conclusion in Sect. 17.8.

17.2 Optimization Oriented Design Flow

In practice, the use of optimization algorithms in EDA is mainly limited to fine-
tuning an already good design. This is due to lack of a method capable of finding
the optimum set of control parameters from the beginning. Conventional methods
often depend on initial point selection, are limited to a few design parameters, and
can lead to slow convergence to the desired solution. The majority of these methods
are gradient based which can result in convergence to local extrema and require
excessive sampling to calculate or approximate the gradient. As a result, designers
are left with no choice but to hand-tune the parameters to meet design specifications,
which requires decades of experience especially for complex structures.

Moreover, converging to a good design requires going through a rigorous, CPU
extensive process that involves human intervention at multiple stages of the design
flow, as shown in Fig. 17.1. The first step of a design cycle usually involves design

17 Optimization and Uncertainty Quantification for Voltage Regulators 507

Fig. 17.1 The proposed optimization oriented design flow

space exploration to identify which parameters significantly affect the response of
the system. This identification requires designers to manually decide on component-
level trade-offs, which can result in suboptimal system-level performance due to
high levels of coupling between different components comprising the system. Once
a preliminary design has been developed, a burdensome parameter tuning process
needs to be performed while checking the validity of the design during each cycle
and finally, the winning parameters are selected for final implementation.

The proposed method, TSBO, is developed with the purpose to realizing the
optimization oriented design flow in Fig. 17.1, which enables designers spend more
time on innovation and less time on tuning the parameters to arrive at an optimized
design. In order to achieve this, TSBO uses three new techniques to enhance ML-
based BO, namely (1) incorporation of fast exploration and pure exploitation stages,
(2) learning acquisition functions, and (3) intelligent sampling. The goal of each
technique is to address aforementioned drawbacks of conventional methods, while
ensuring that the proposed design flow remains practical in terms of minimizing
CPU time and substantially reducing human intervention. For this flow, inputs to
TSBO consist of control parameters of the system along with the design goal. The
design goal can consist of a weighted sum of multiple objectives, i.e., prioritizing
minimization of clock skew over reducing maximum temperature for 3D ICs, as an
example [11]. By letting the designer determine the design goal, we allow domain
expertise to couple with the ML algorithm for enabling faster convergence.

17.3 Black-Box Optimization

Non-convex optimization attracts attention in many fields of engineering problems
since a major portion of realistic systems do not tend to have linear responses to their
control parameters. The problem can be posed from the perspective of optimization
as:

508 H. M. Torun et al.

max
x∈Rd

f (x) or min
x∈Rd

f (x) (17.1)

where x is the d dimensional input vector (control parameters) and f (x) is the
objective function.

In the domain of advanced electronics design, f (x) can represent a high-
dimensional, highly coupled, multi-uncertainty, and multi-scale system such as 3D
ICs, IVRs, or high-speed channels. As it is not trivial to develop accurate and precise
models of such systems, a necessity of approaching the problem in (17.1) in the
black-box setting arises.

17.3.1 Why Machine Learning for Optimization?

While operating in the black-box setting, the only way to get information from the
underlying system is to query the design under evaluation for certain parameters.
In microelectronics applications, this is often obtained through multi-physics
simulations which can be CPU extensive to achieve high accuracy.

Conventional optimization techniques take a step-by-step approach, meaning the
search for next parameter only involves analyzing the current point. In order to
do this in the black-box setting, simulations are performed in proximity of the
current best point to identify patterns or approximate gradients. This can lead to
excessive simulations or inaccurate approximations in high-dimensional systems
and can result in convergence to local extrema.

In contrast, machine learning techniques leverage experience to make inference.
In the context of optimization, this means that the next set of parameters is
determined by analyzing all the previous observations, which enables capability
of differentiating between local and global optima as well as using intelligent
parameter elimination and selection to avoid excessive search.

BO based on Gaussian process is a ML technique that uses this concept to ensure
convergence to global optima with a reduced number of simulations as compared to
non-ML methods. Park et al. [11] provide a comparison of BO with other mostly
used methods for EDA in Fig. 17.2 that show significant reduction in the required
number of simulations.

The BO algorithm shown in Fig. 17.2, IMGPO [12], is a general purpose method,
which does not necessarily address the challenges encountered in the EDA domain
such as the ability to handle higher dimensions and focusing on reducing the number
of simulations required instead of minimizing the algorithm progression time. The
TSBO algorithm presented in this work is specifically developed to be more EDA
oriented than general purpose BO algorithms by prioritizing reduction in total
computational overhead through significantly reducing the number of simulations
required for optimization.

17 Optimization and Uncertainty Quantification for Voltage Regulators 509

Fig. 17.2 Comparison of BO to other mostly used methods in EDA [11]. (a) Multistart (function
counts = 345). (b) Global search (function counts = 273). (c) Pattern search (function counts =
272). (d) Genetic algorithm (function counts = 2650). (e) BO (function counts = 100)

17.3.2 Bayesian Optimization Based on Gaussian Process

In majority of black-box systems, including IVRs, it is not possible to directly access
gradient information of f (x) at an arbitrary point, x. Using BO based on Gaussian
processes (GP), gradient information is not required; hence, it becomes a suitable
and promising candidate for black-box optimization. BO is a well-known method
in the machine learning community and has been mainly used for hyperparameter
tuning for various machine learning algorithms. It is as an active learning algorithm,
as in the process of optimization, BO selects the next point to maximize reward
towards finding the solution of Eq. (17.1). The approach is based on Bayes’ theorem:

P(f |D1:t) ∝ P(D1:t |f)P (f) (17.2)

where D1:t =
[
(x1, y1), (x2, y2), . . . , (xt , yt)

]
represent observations made so far;

P(f), P(f |D1:t), and P(D1:t |f) are probabilities of prior, posterior, and likelihood,
respectively.

In BO, the underlying function to be optimized, f (x), is represented as a joint,
multi-dimensional GP with a mean (μ) and co-variance (K), given by:

f1:t = N (μ(x1:t), K(x1:t)) (17.3)

510 H. M. Torun et al.

This step of BO is where the training of the predictive GP occurs. It should also
be noted that unlike other ML algorithms, the objective in BO is not to derive a
predictor covering the entire sample space, but only accurately predict where global
extrema lie in the sample space using the previous observations.

As the problem in Eq. (17.1) is to be solved in a black-box setting, it is assumed
that there is no prior information about the underlying function. Hence, we choose
a zero mean GP for P(f) and use one of the popular kernel functions used in the
literature, namely automatic relevance determination (ARD) Matern 5/2 function,
given as:

K(x) =

⎡
⎢⎢⎣
k(x1, x1) . . . k(x1, xt)

...
. . .

...

k(xt , x1) . . . k(xt , xt)

⎤
⎥⎥⎦ (17.4)

k(xi, xj) = σ 2
f

(
1+√5r + 5

3
r2
)
e−
√

5r (17.5)

where r(xi, xj) =
(∑D

d=1
(xi,d−xj,d)2

σ 2
d

)1/2

; σf and σd are hyperparameters of K(x)

which are updated during the training process to minimize the negative log marginal
likelihood of the GP, given by:

logp(y1:t | x1:t) = −1

2
yT1:t

(
K + σ 2

n I
)−1

y1:t − 1

2
log |K + σ 2

n I | −
t

2
log 2π

(17.6)
In addition, using ARD type kernel has several advantages. As each input variable

has its own scaling parameter to be determined in ARD type kernels, they enable
interpretability of the underlying problem and act as an implicit sensitivity analysis.
For instance, after the training of predictive GP is completed, if σd of one parameter
is sufficiently higher compared to other parameters, it can be said that a change
in this parameter has lower sensitivity on the predictions. Another possible use of
σd parameters in Eq. (17.5) is transferring problem specific knowledge during the
training of GP. If, for example, a certain parameter is believed to have higher effect
on the output, the training process can be modified to force σd of that parameter to
be smaller compared to others. However, in high-dimensional problems encountered
in EDA, this can be very dangerous as predicting the importance of each parameter
before having any prior training data can result in suboptimal designs.

The traditional approach of BO is obtaining an acquisition function, u(x), based
on a pre-defined strategy and uses auxiliary optimization on this acquisition function
to find the new query point, xt+1. Note that optimizing u(x) does not require any
additional queries, but uses the knowledge of previous samples to get a prediction
at candidate points using:

17 Optimization and Uncertainty Quantification for Voltage Regulators 511

μ(x∗) = kT
(
K + σ 2

n I
)−1

f1:t (17.7)

σ 2(x∗) = k∗ − kT
(
K + σ 2

n I
)−1

k (17.8)

where k∗ = k(x∗, x∗) and k = k(x∗, x1:t) are as in (17.5); K is given by (17.4),
and σn is determined from the training. In the literature of BO, most prominent
acquisition functions are probability of improvement (PI), expected improvement
(EI), and upper confidence bound (UCB) given as [13]:

uPI = Φ
(
(μ(x)− f̃ ∗ − ζ)/σ (x)

)
(17.9)

uEI = (μ(x)− f̃ ∗ − ζ)Φ (Z)+ σ(x)φ(Z) (17.10)

uUCB = μ(x)+ Sσ(x), S =
√

2ln(2πM2/(12η)) (17.11)

where f̃ ∗ is the best point observed so far, ζ is a hyperparameter for uPI and uEI,
M is the number of calls made to UCB, (1− η) is the probability of zero regret for
GP-UCB [14], Z = (μ(x)− f̃ ∗ − ζ)/σ (x), Φ(.) and φ(.) are the CDF and PDF of
normal distribution, respectively.

A common situation encountered in the optimization of electronic systems
is handling of design constraints. For instance, in the IVR example discussed,
the range in the dimension of the physical parameters of the inductor could be
constrained due to the process while area and efficiency constraints need to be
satisfied in the final design. In the context of BO, there are several ways to introduce
such design constraints in the optimization framework. One method is to penalize
the objective function when the set of parameters lies in such unfeasible regions to
prevent that point from being labelled as optimal. Another method is to modify the
acquisition function so that the parameters in the unfeasible regions are less likely
to be the next simulation point [15]. We refer readers to [13] for a more detailed
theoretical background on Bayesian optimization and Gaussian processes.

17.4 Two-Stage Bayesian Optimization

In multi-armed bandit problems, the path to achieve optimal result goes through
a trade-off between exploration and exploitation. For the case of aforementioned
acquisition functions, uPI and uEI in Eqs. (17.9) and (17.10), the trade-off is made
with the introduction of the hyperparameter ζ . IMGPO handles the trade-off with
the assumption of existence of a tighter bound than UCB [12] and BamSOO takes
the approach of eliminating regions where with high probability, the region does not
contain global optima [16].

512 H. M. Torun et al.

Fig. 17.3 Flowchart of the proposed algorithm

In the new algorithm we present, two-stage Bayesian optimization (TSBO),
we approach this trade-off in two stages, namely fast exploration stage and
pure exploitation stage, which can also be interpreted as coarse and fine-tuning,
respectively. In order to address EDA related challenges, we present two additional
new techniques that increase convergence rate and extend the applicability of
the algorithm to a variety of electronics design problems. These consist of (1)
sub-learning process using acquisition functions and (2) a distinctive hierarchical
partitioning tree construction scheme. The flowchart of TSBO is given in Fig. 17.3.

17.4.1 Fast Exploration and Pure Exploitation Stages

The first stage of TSBO, fast exploration stage, can be considered as coarse tuning,
as the purpose of this stage is to rapidly find the region, Ad , in the sample
space where the global optimum, x∗ = arg maxx f (x), is contained. When the
optimization goal is minimization, f (x) can be negated without any changes to the
TSBO algorithm. For the purpose of finding a tightAd rapidly, we divide the sample
space X into 2d regions of hyper rectangles,Ht , and generate candidate points, ct,j ,
to determine the next sampling point, xt+1. These candidate points, as illustrated in
Fig. 17.4b, are chosen as the center of each region, given as:

ct,j = Ht,j,min +Ht,j,max

2
, j = 1, 2, . . . , t2d (17.12)

where ct,j is the jth candidate point of a total of t2d points at iteration t ; Ht,j is
the region that ct,j belongs to, and Ht,j,min and Ht,j,max are corresponding lower

17 Optimization and Uncertainty Quantification for Voltage Regulators 513

Fig. 17.4 Examples of hierarchical partitioning trees constructed by different algorithms. (a)
BamSOO. (b) TSBO

and upper boundaries of each d dimensional region. In order to avoid relying on
auxiliary optimization to select xt+1, u(x) is not optimized but evaluated at each
candidate point as follows:

c(t,j∗) = arg max
c∈C u

(i)(c) (17.13)

xt+1 = c(t,j∗) (17.14)

where j∗ denotes the selected candidate; C represents the finite set of candidate
points, and u(i)(x) is uUCB, uEI, or uPI, selected sequentially as explained later in
the subsection on learning acquisition functions. After querying the function at xt+1,
the new set of regions are generated using:

Hn =
2d⋃
i=1

hi, hi ⊂ H(t,j∗) (17.15)

Ht+1 = Hn ∪Ht (17.16)

where Hn is the union of new regions, hi , acquired by dividing Ht,j∗ into 2d hyper
rectangles.

The first stage remains until it explores a small enough region (x∗ ∈ Ad) such
that the Euclidean distance between previous best and current best input points is
negligible. This is illustrated in Fig. 17.3 as the switching criteria, given as:

n =
⎧⎨
⎩n+ 1, if ‖xmax − xpmax‖ < 10−3

0, otherwise
(17.17)

514 H. M. Torun et al.

where xmax and xpmax are the input vector of current and previous best observations,
respectively and switching occurs if n > N . The selection of Ad is illustrated by the
rectangle in Fig. 17.6c and given as:

Ad =

⎡
⎢⎢⎣
(1− α)xmax,1 (1+ α)xmax,1

...
...

(1− α)xmax,d (1+ α)xmax,d

⎤
⎥⎥⎦ (17.18)

where xmax,i is the Mourad: i-th dimension of xmax in Eq. (17.17) and α is a
hyperparameter of TSBO for choosing the tightness of the region provided to the
second stage.

The second stage of TSBO, namely pure exploitation stage, takes Ad and u∗(x)
from the first stage as inputs and performs fine-tuning for the optimization problem,
i.e., increases accuracy. At this stage, the tight region Ad is divided into three
new regions along its longest dimension at each iteration and candidate points are
generated at each region in the same fashion as the first stage, but using the learned
acquisition function of u∗(x).

17.4.2 Hierarchical Partitioning Scheme

TSBO uses a distinctive hierarchical partitioning scheme that differentiates it from
general purpose BO algorithms and makes it more EDA oriented. Typically, a
hierarchical partitioning tree is constructed by fully committing to and expanding
the selected branch, i.e., sampling each child node [17]. For example, BamSOO
uses a region shrinking technique and the tree is expanded only in non-discarded
regions [16]. However, the child node of the selected branch is fully expanded if
it belongs to a non-discarded region. In TSBO, the selected branch is expanded to
generate 2d candidate points, i.e., child nodes, but the sampling only occurs at the
most promising child node; hence, only one function query occurs per iteration.
This overcomes the limitation in the number of branches that can be generated as
in BamSOO and allows for rapid coverage of the sample space. In other words,
with the cost of a few seconds of algorithm run time due to storing t2d points
at each iteration, TSBO substantially reduces the number of required simulations
needed to find x∗. An example partitioning tree constructed using TSBO is shown
and compared to a tree generated by BamSOO in Fig. 17.4.

17.4.3 Learning Acquisition Functions

As the acquisition function is a pre-determined strategy, there is no guarantee that a
single acquisition function will outperform others for every problem. GP-Hedge is a
BO algorithm that uses popular acquisition functions defined in Eqs. (17.9)–(17.11)

17 Optimization and Uncertainty Quantification for Voltage Regulators 515

Fig. 17.5 Progression of learning acquisition function block in Fig. 17.3

and uses a probability-based gain strategy to determine which function best fits the
problem [18]. We adapt this idea proposed in [18], however, we alter it and call
it learning acquisition functions. Instead of choosing acquisition functions from
a distribution, TSBO observes how each function behaves using the gain strategy
given by:

G = μ1:(t+1)(x̂1:t) (17.19)

where G is the accumulated gain, (x̂1:t) is the point suggested by each acquisition
function after t observations, and (μ1:(t+1)) is the posterior mean of the GP model
after (t + 1) observations.

As summarized in Fig. 17.5, this sub-learning process of acquisition functions
uses PI, EI, and UCB criteria defined in Eqs. (17.9)–(17.11) sequentially during
training data collection and calculates gain of each strategy using Eq. (17.19). After
M observations have been made, the algorithm quits the sequential strategy and
starts to select u∗(x) that has the largest gain so far. The gain functions for each u(x)
are continued to be updated at each iteration so that u∗(x) is dynamically updated
as simulations are performed.

Compared to GP-Hedge, BamSOO, and GP-UCB, this makes the algorithm
deterministic along with the automatic initial point selection at the center of the
sample space. The deterministic nature of TSBO makes it more robust.

17.4.4 Experiments on Challenge Functions

The progression of the proposed algorithm is provided in Fig. 17.6 and the objective
is to maximize peaks function available in MATLAB, as an example. Here,

516 H. M. Torun et al.

Fig. 17.6 Progression of TSBO for finding global optima of two dimensional Peaks function. (a)
Starting point, t = 1. (b) t = 20. (c) End of first stage, t = 42. (d) End of first stage, t = 42

candidate points cover the entire sample space, but sampling is concentrated on only
promising regions. The region captured by the first stage (rectangle in Fig. 17.6c)
contains the global maximum, which is then used by the second stage to increase
the accuracy up to 10−6.

In order to test the performance of TSBO, we have considered four different
challenge functions with different dimensions, which are common benchmarking
problems in optimization [19]. Performance evaluation criteria in these experiments
shown in Fig. 17.7 is log distance to optima, i.e., log10(|f ∗ − f̃ ∗|) where f ∗ is true
optimum and f̃ ∗ is the best value found after optimization. Kawaguchi showed that
IMGPO outperforms BamSOO, GP-EI, and GP-PI on the same challenge functions
used in this work [12]; hence, we compare TSBO with IMGPO and GP-UCB using
MATLAB’s patternsearch for auxiliary optimization of GP-UCB. Since the initial
point is randomly selected in GP-UCB, we repeat the experiments 50 times and
report the mean and standard deviation. As shown in Fig. 17.7, TSBO outperforms
IMGPO and GP-UCB in these benchmark problems in terms of requiring less
function evaluations for converging to the global optimum.

17 Optimization and Uncertainty Quantification for Voltage Regulators 517

Fig. 17.7 Performance comparison for proposed algorithm, TSBO, on optimization challenge
functions used in the literature. Functions are available in [19]. (a) 2D Branin function. (b) 3D
Hartmann function. (c) 4D Shekel5 function. (d) 6D Hartmann function

Table 17.1 Algorithm progression times and accuracy within 100 iterations

GP-UCB IMGPO TSBO

Run time Run time Run time
(Var. memory) Accuracy (Var. memory) Accuracy (Var. memory) Accuracy

2D Branin
10.38 s

10−3.8 1.28 s
10−2.5 6.15 s

10−5.6

(0.99 Mb) (1.65 Mb) (2.85 Mb)

3D Hartmann
10.52 s

10−4 1.35 s
10−4.8 4.35 s

10−5.8

(0.10 Mb) (1.66 Mb) (2.01 Mb)

4D Shekel5
11.35 s

100.8 1.83 s
10−1.8 6.79 s

10−5.2

(0.10 Mb) (1.68 Mb) (3.17 Mb)

6D Hartmann
12.23 s

10−1.2 1.91 s
10−2.5 6.51 s

10−3.3

(0.11 Mb) (1.70 Mb) (2.19 Mb)

Furthermore, algorithm progression times (excluding function evaluation time)
and total variable memory stored for 100 iterations are measured and com-
pared in Table 17.1. Although TSBO achieves higher accuracy with less function

518 H. M. Torun et al.

Table 17.2 Run time statistics of learning acquisition functions of TSBO for challenge functions

PI EI UCB

Normalized Number Normalized Number Normalized Number
gain of calls gain of calls gain of calls

2D Branin 0.2669 17 0.3164 16 0.4167 67

3D Hartmann 0.3205 16 0.3475 68 0.3321 16

4D Shekel5 0.4074 22 0.4228 62 0.1698 16

6D Hartmann 0.3352 16 0.3461 68 0.3207 16

evaluations, it requires additional run time and memory to store and process
the aforementioned t2d candidate points at each iteration. As IMGPO uses a
partitioning scheme that has lighter weight on memory compared to TSBO, it
requires lesser processing at each iteration, which results in faster run times. GP-
UCB uses the least amount of memory among the algorithms considered as it does
not store additional variables at each iteration; however, its run time is the highest
due to the auxiliary optimization process.

In addition, run time statistics summarizing the effect of learning acquisition
functions block of TSBO are provided in Table 17.2. Here, number of calls refer to
number of times that particular u(x) has been used to select xt+1. It can be seen that
each u(x) contributes to the optimization process to find x∗; however, the amount
of information gained from each u(x) is different for each problem. As a result, the
acquisition function providing the highest gain is called more by TSBO. Although
the gains for each u(x) are being dynamically updated after M observations as
explained in Section 17.4.3, the choice of u∗(x) at Mourad: M-th observation is
only updated for the case of 4D-Shekel5 function as more observations are added.

The choice of hyperparameters can significantly affect the performance of black-
box optimization algorithms, including TSBO. Here, problem specific knowledge
can be leveraged to adjust these parameters. For instance, if the problem is believed
to have large number of local extrema, the algorithm can be adjusted to give more
importance to exploration than exploitation. For the case of BO-based algorithms,
the effect of hyperparameters is a well-studied subject, resulting in rule of thumb
values [13, 20, 21]. Counter-intuitively, these studies suggest dynamic modulation of
these parameters have little to no-effect on empirical performance of the algorithms.
Following these works, for these experiments, the hyperparameters of TSBO are
chosen as: α = 0.1 in Eq. (17.18); η = 0.1 in Eq. (17.11); ζ = 0 and ζ = 0.01
in Eqs. (17.9) and (17.10), respectively; M = 50 for learning acquisition functions
and N = 10 for switching criteria. TSBO specific parameters such as N , M , and
α can be modified accordingly to transfer domain expertise to the algorithm. For
instance, if the design under consideration is to be fabricated using a process that
cannot provide accuracy beyond micrometers, fine-tuning beyond this level using
second stage of TSBO may result in invalid designs. Hence, N can be increased to
force TSBO to spend more time in the first stage.

17 Optimization and Uncertainty Quantification for Voltage Regulators 519

17.5 Co-optimization of Embedded Inductor and Integrated
Voltage Regulator

The application chosen in this work is the multi-objective optimization of IVR
with the goal of maximizing power conversion efficiency while minimizing area
of embedded inductor. The architecture used is given in Fig. 17.8 and is a system in
package (SiP) solution consisting of two chips (buck converter and LDO/load) with
integrated inductor on an organic package [3]. The inductor structure is chosen as
a solenoid with magnetic core as in Fig. 17.9a, b. Due to high levels of integration,
maintaining high conversion efficiency while minimizing the area of inductor in the
package becomes a major challenge that requires the handling of multiple trade-offs
simultaneously.

In this section, we use TSBO to automate the design process. We briefly provide
previously developed buck converter efficiency model followed by the embedded
inductor characterization using two commercial EM solvers, namely Ansys HFSS
[22] and Ansys Maxwell [23] for full-wave simulations at high frequency and at
DC, respectively. Afterwards, we provide the optimization setup used and make
a comparison of the optimized IVR design with hand-tuned design [3] as well as
results generated using other non-ML and ML techniques such as non-linear solver,
GP-UCB, and IMGPO.

Fig. 17.8 Two-chip SiP IVR
architecture

Fig. 17.9 Geometry of solenoidal inductor with magnetic core along with its control parameters.
(a) Top view of inductor. (b) Side view of inductor

520 H. M. Torun et al.

17.5.1 Buck Converter Efficiency Model

The buck converter shown in Fig. 17.8 is designed with stacked topology, using
130 nm GF process and consists of four phases (one master and three slaves)
[3]. Efficiency calculations are based on the extensive model that accounts for
switching and conduction losses of power switches, DC and AC losses of inductor,
power delivery network (PDN), and output capacitance. Power switches used in the
buck converter introduce two types of losses, namely switching and conduction.
Conduction loss originates from the finite DC resistance of switches and can be
written as:

LPS(COND) = RSW(I
2
LOAD +ΔI 2

RMS) (17.20)

RSW = DCCMRPMOS + (1−DCCM)RNMOS (17.21)

where RNMOS and RPMOS are ON resistances of NMOS and PMOS, respectively,
and ΔIRMS is the RMS value of ripple current calculated as:

DCCM = VOUT/VIN (17.22)

ΔIpk−pk = (VIN − VOUT)DCCM

fSWL
(17.23)

ΔIRMS = ΔIpk−pk/2
√

3 (17.24)

where DCCM is duty cycle in continuous conduction mode, fSW is the switching
frequency, and L is the inductance.

The switching loss of power switches is given as:

LPS(SW) =fSW
[
(CGSN + CGSP)(VIN/2)

2 . . .

. . .+ 2(CGDN + CGDP)(VIN/2)
2] (17.25)

where CGSP, CGSN, CGDP, and CGDN are gate-to-source and gate-to-drain capaci-
tances of PMOS and NMOS, respectively. The contribution of the inductor in terms
of AC and DC resistances can be written as:

LIND,DC = I 2
LOADRL,DC (17.26)

LIND,AC =
∞∑

f=−∞
2
ΔI 2
pk−pk
4

[
0.4052RL(fSW) . . .

. . .+ 0.0452RL(3fSW)+ 0.0162RL(5fSW)
] (17.27)

17 Optimization and Uncertainty Quantification for Voltage Regulators 521

where RL,DC and RL are DC and frequency dependent effective series resistance
of inductor, respectively; 0.405, 0.045, and 0.016 are Fourier series coefficients of
fundamental frequency and its third and fifth order harmonics of a triangular current
waveform. Resistive losses due to output capacitor and PDN are given as:

LCAP = ΔI 2
pk−pkESRC (17.28)

LPDN = I 2
LOADRPDN (17.29)

where RPDN is effective DC resistance of PDN and ESRC is effective series
resistance of output capacitance. A more detailed description of the buck converter
topology along with the model verification can be found in [3].

17.5.2 Embedded Inductor Characterization

Although there are approximate closed form expressions for preliminary design of
embedded solenoidal inductors with magnetic core [24], a full-wave simulation is
required to accurately account for eddy currents, proximity, and skin effect as well
as demagnetization effect due to using magnetic cores.

Electrical characteristics of inductor have both direct and implied effects to the
efficiency of the buck converter. The inductance needs to be sufficiently high in
order to reduce the ripple current in Eq. (17.23), thereby reducing the conduction
loss in Eq. (17.21). The ripple current also affects the AC loss in inductor along
with ESR in Eq. (17.27). Although DC resistances of such inductors are in the
range of milliohms, operating at higher currents (∼10 A) introduces a substantial
DC loss as in Eq. (17.26). Therefore, the complexity of the problem includes
handling inductance, AC and DC resistance trade-offs and area constraints, while
considering the direct and implied effects on buck converter efficiency. Even if
the desired characteristics of the inductor is determined to handle these trade-offs,
determining the dimensions of the inductor that will satisfy these characteristics
requires substantial human intervention and CPU time due to the use of full-wave
EM solvers.

In order to characterize the inductor behavior, the full-wave EM simulation is
conducted to gather 2-port impedance matrix as a function of frequency. Using a
pi-equivalent circuit as in Fig. 17.10, the series inductance, Ls , and AC resistance,
Rs , are calculated from the Z-matrix as:

Fig. 17.10 π -equivalent
inductor model

522 H. M. Torun et al.

Ls = 2Im {Z11 − Z12}
w

, Rs = 2Re {Z11 − Z12} (17.30)

where w is the angular frequency. In Fig. 17.10, bothGp and Cp are quite small and
their effects are ignored. Finally, Ansys Maxwell [23] is used to accurately simulate
the DC resistance of inductor to be used in Eq. (17.26) of the efficiency model.

In this work, we consider two different magnetic materials, namely carbonyl
iron powder (CIP) and nickel–Zinc (NiZn). Between the two materials, NiZn has
higher permeability (μr = 8.11 + j2.27 at 100 MHz), which provides higher
inductance values at reduced sizes, which decreases ripple current and DC resistance
simultaneously and increases the efficiency. On the other hand, CIP has lower
magnetic loss tangent (μr = 5.64 + j0.57 at 100 MHz), which results in
increased efficiency by reducing AC loss in Eq. (17.27). To accurately account for
magnetic material effect on IVR efficiency, measured frequency dependent complex
permittivity and permeability of both CIP and NiZn from [25] are imported into the
EM solver for accuracy.

17.5.3 Optimization Setup

Among the components of the IVR, the focus in this work is on the optimization
of inductor to maximize IVR efficiency. Ten control parameters are defined for the
inductor as shown in Table 17.3 along with the range used for each parameter based
on process capabilities. The objective function used for optimization is:

f (x) =
2∑
i=1

wiyi (17.31)

where y1 and y2 are peak overall IVR efficiency calculated using the described
model and area of inductor, respectively; w1 = 5 and w2 = −2 are corresponding

Table 17.3 Control
parameters of solenoidal
inductor

Parameter Unit Min Max

Gap between windings g mil 2 20

Number of windings N 3 13

Size of via sv μm 50 103

Copper trace width wc mil 2 20

Copper thickness bottom tc,b μm 35 170

Copper thickness top tc,t μm 35 170

Dielectric thickness td μm 50 650

Dielectric width wd μm 50 350

Magnetic core thickness ratio tm 0.1 1

Magnetic core width offset Δwm mil 0 100

17 Optimization and Uncertainty Quantification for Voltage Regulators 523

Fig. 17.11 Automated optimization setup used in IVR application

weights of multi-objective optimization. Since IVR efficiency is the main goal of
the optimization process, it has higher weight compared to the inductor area. By
choosing such weights, the trade-off between efficiency and area is adjusted to
choose 2% of power efficiency over 5 mm2 of the inductor area.

To investigate opportunities for reducing fabrication costs, two types of inductors
are analyzed: one that uses only 1 oz thick copper (Type I) and the more costlier
option that uses copper thickness up to 170 μm (Type II). In the case of Type
II inductor, the optimization is done with 10 parameters and for Type I, only 8
parameters are used since tc,b and tc,t are fixed to 35 μm [26].

The automated optimization setup used is given in Fig. 17.11. Inductor dimen-
sions are determined using TSBO and fed into the full-wave solver to extract the
2-port Z-matrix, which is then used by the inductor and buck converter models for
calculating IVR efficiency. Calculated efficiency is combined with inductor area in
Eq. (17.31) and fed back into TSBO to proceed to the next iteration.

17.5.4 Results

To make a direct comparison with hand-tuned design in [3] (which took several
months to complete), power efficiencies are calculated assuming RPDN = 10 m�
and ESRC = 10 m� in Eqs. (17.29) and 17.28. Among four optimized IVRs, the one
using Type II inductor with CIP showed the best performance, providing efficiency
of 85.1%, 93.1%, and 94.1% for 5 V:1 V, 3 V:1 V, and 1.7 V:1.05 V conversions,
respectively, with an inductor area of 5.1 mm2. Compared to hand-tuned design
using NiZn in [3], the efficiency is increased by 5.7%, 4.5%, and 3% accompanied
with 55.3% reduction in inductor area.

524 H. M. Torun et al.

On the other hand, the cheaper option, IVRs with Type I inductors showed
comparable efficiency with hand-tuned design but with 48.2% reduced inductor
area. In this case, IVR using inductor with NiZn core outperformed the inductor
with CIP. This shows that when copper thickness is limited, using materials with
higher permeability as compared to lower magnetic loss tangent provides more
opportunities to increase IVR efficiency by decreasing number of windings and
hence, DC loss in Eq. (17.26).

Comparison for power efficiencies of each optimized IVR as a function of
switching frequency at ILOAD = 10 A (2.5 A per phase) and as a function of total
load current at fSW = 10 MHz is given in Fig. 17.12. In addition, Table 17.4 shows
the inductor characteristics of each optimized IVR as well as peak conversion
efficiencies and compares it to the hand-tuned design from [3].

Figure 17.13 compares the performance of TSBO to non-linear solver, GP-
UCB, and IMGPO for the objective of maximizing Eq. (17.31), along with the
corresponding value of hand-tuned design. Optimization using TSBO resulted in

Fig. 17.12 Efficiency comparison of four optimized IVRs as a function of switching frequency
and total load current. (a) 5 V:1 V conversion (ILOAD = 10 A). (b) 3 V:1 V conversion (ILOAD =
10 A). (c) 1.7 V:1.05 V conversion (ILOAD = 10 A). (d) Eff. vs load current (fSW = 10 MHz)

17 Optimization and Uncertainty Quantification for Voltage Regulators 525

Table 17.4 Comparison of optimized IVRs and inductors to hand-tuned design

Hand-tuned
[3]

Type I
NiZn

Type I
CIP

Type II
NiZn

Type II
CIP

L [nH] 24.8 13.32 15.4 29.4 23.47

RAC [�] 2.27 0.87 0.51 2.67 0.98

RDC [m�] 14.7 17.0 30.1 10.5 8.7

Area [mm2] 11.6 6.0 6.1 5.2 5.1

Peak eff. 5 V:1 V 79.4% 81.8% 80.9% 84.9% 85.1%

Peak eff. 3 V:1 V 88.5% 88.4% 90.1% 92.7% 93.0%

Peak eff. 1.7 V:1.05 V 91.1% 92.0% 89.7% 93.7% 94.1%

Fig. 17.13 Performance comparison of TSBO to non-linear solver, GP-UCB, and IMGPO on
maximizing objective function at Eq. (17.31)

85.1% peak efficiency for 5V:1V conversion with the inductor area of 5.16 mm2,
compared to 78.6%, 84.4%, and 84.9% with 25.2 mm2, 6.64 mm2, and 5.18 mm2

for non-linear solver, IMGPO, and GP-UCB, respectively. Though all algorithms
started from the same initial point, TSBO reached the pre-determined error tolerance
in Fig. 17.13 using 27 simulations (51.1 min), compared to 60 and 59 simulations
(115.6 and 117.3 min) for IMGPO and GP-UCB, corresponding to a reduction
of 56.7% and 57.4% in CPU time. Besides, optimization using non-linear solver
resulted in 78.6% peak efficiency with the inductor area of 25.2 mm2 and could not
reach the error tolerance within 100 simulations (185 min) and lead to a significantly
worse design compared to hand-tuned design.

Figure 17.14 shows the breakdown of objective function in Eq. (17.31) to its
two components of peak efficiency and inductor area. This breakdown shows that
the TSBO converges in around 30 simulations resulting in 84.5% efficiency with

526 H. M. Torun et al.

Fig. 17.14 Convergence comparison for the two components of objective function in Eq. (17.31).
(a) Peak 5 V:1 V efficiency at ILOAD=10 A. (b) Inductor area

Table 17.5 Optimization results for IVR using type II inductor with CIP

Non-linear solver GP-UCB IMGPO TSBO

Peak eff. 5V:1V
(fSW=10 MHz, ILoad=10 A) 78.6% 84.9% 84.4% 85.1%

Area
25.2 mm2 5.18 mm2 6.64 mm2

5.16 mm2

(+79.6%) (+0.4%) (+22.3%)

CPU time
>185 min 117.3 min 115.6 min

50.1 min
(>+72.9%) (+57.4%) (+56.7%)

5.78 mm2 area, whereas IMGPO and GP-UCB converge around 60 simulations.
This shows that the number of simulations required for each algorithm to cross the
tolerance level in Fig. 17.13 coincides with their convergence point, hence, validates
the CPU time comparison made in Table 17.5.

17.6 Uncertainty Quantification

17.6.1 Introduction

Starting from initial information on the input parameters (i.e., with a very large
range of values) of the system, the TSBO algorithm allows to identify the opti-
mum design point of the system. However, input parameters of the system (e.g.,
temperature variations, geometrical and electrical tolerances, etc.), may present
variability due to the manufacturing process. Therefore, the impact of these
uncertain parameters has to be evaluated.

In this framework, the brute force Monte Carlo (MC) technique cannot be applied
as it requires a large number of simulations to provide an accurate estimation of the

17 Optimization and Uncertainty Quantification for Voltage Regulators 527

output variability. To overcome this limitation, a surrogate model, which aims at
replacing the numerical model by an analytic function, has to be developed. Among
the solutions available, methods based on the polynomial chaos (PC) have been
successfully applied in many engineering fields [27–30]. However, when the number
of input random variables increases, the number of calls to the numerical model
blows up. For this reason, advanced techniques have to be introduced to address the
curse of dimensionality problem [9, 30–32].

In this work, we present a sparse PC approach based on the least angle regression
(LARS) algorithm [9] in order to quantify uncertainties in high-dimensional
problems. First, the method is introduced. Then, the approach is applied to the
analysis of IVR efficiency taking into account uncertainties in the vicinity of the
optimal design point identified by the TSBO technique. In addition, we provide a
hierarchization of the uncertainties effect on the variability of the output.

17.6.2 Polynomial Chaos Expansion

17.6.2.1 Introduction

Let us consider a random vector X of joint probability density function (PDF)
fX(x), whose M random variables (X1, . . . , XM) are assumed to be independent
and representing the input uncertainties of the problem. Suppose that Y =M (X) is
the random scalar response of a numerical model M describing the physical system.
Assuming that the random response Y has a finite variance, it may be written as [33]:

Y =
∑

λ∈NM
aλΦλ(X), (17.32)

where aλ are the unknown coefficients and Φλ represent a basis of multivariate
polynomials satisfying the orthonormality property regarding the joint PDF fX(x),
i.e., E

[
Φλ(X)Φβ(X)

] = δλβ , with δλβ = 1 if λ = β and 0 otherwise. In
practice, families of orthonormal polynomials are associated in terms of probability
distributions of input random variables (e.g., Legendre and Hermite polynomials are
chosen for Gaussian and uniform input random variables, respectively).

Let X = {x(1), . . . , x(n)} be an experimental design (ED) of X, and Y =
{M (x(1)), . . . ,M (x(n))} be the associated set of model response quantities. Rely-
ing on this set of model evaluations, the PC coefficients aλ may be estimated by
using non-intrusive approaches such as projection and regression methods [30].
In many applications, the regression techniques showed a quicker convergence in
terms of evaluation of the numerical model M [30]. Among them, the ordinary
least square regression provides good results [34].

528 H. M. Torun et al.

17.6.2.2 From Standard to Sparse PC Expansion

Since the coefficients of the PC expansion have to be computed, the infinite series
of (17.32) has to be truncated. The standard truncation scheme adapted in the PC
expansion retains the polynomial bases whose total degree is less than or equal
to l, i.e., the truncation set A M,l = {λ ∈ N

M : ‖λ‖1 = ∑M
i=1 λi ≤ l}. With

this truncation scheme, the cardinal of the set A M,l is then L = (M + l)!
M! l! . We

notice that number of coefficients in the set A M,l becomes excessively high for
large number of input random variables M and high degree l. For this reason, an
improved truncation strategy is needed.

A hyperbolic truncation scheme based on a parameter k (0 < k ≤ 1) is given by
[9]:

A M,l,k = {λ ∈ N
M : ‖λ‖k =

⎛
⎝ M∑
i=1

λki

⎞
⎠

1/k

≤ l}. (17.33)

This advanced truncation strategy favors the most relevant effects and low-
order interactions, which are known to have the largest impact on the variability
of the response according to the sparsity-of-effects principle [35]. It is important
to note that the low the value of k, the more high-rank interactions will be
neglected. Furthermore, when k = 1, this scheme is equivalent to the standard
PC approximation defined by the truncation set A M,l . When k < 1, the retained
terms of the polynomial basis can be significantly reduced compared to L [9]. This
advanced truncation scheme for two input random variables (M = 2) is illustrated
in Fig. 17.15a, b, with the squares representing all terms of the polynomial basis of
degree less than or equal to l = 5, included in the set (17.33) for k = 1 (squares)
and k = 0.5 (squares). Thus, Fig. 17.15b shows that when k = 0.5, this strategy
consists of selecting a number of polynomials (squares) much smaller than those
retained by the standard truncation set A M,l (squares) in Fig. 17.15a.

The hyperbolic truncation scheme, given by a truncation set A M,l,k of cardinal
K , allows to reduce the number of coefficients to be estimated in the PC expansion.
However, this may be still too costly in terms of calls to the numerical model when
dealing with high-dimensional problems. In order to overcome this situation, the
remaining number of terms of the polynomial basis may be further reduced by using
a variable selection algorithm, such as the LARS algorithm [36].

The principle of LARS is briefly presented in the following paragraph while
the reader may refer to [9] and [36] for additional details. From an iterative
process, LARS builds up a sparse representation including from 1 to K elements
of the polynomial basis (from one to all the squares in Fig. 17.15b), in accordance
with their decreasing influence. The algorithm begins by choosing the polynomial
basis Φλ1 , having the best correlation with the model response Y . In practice, the
correlation is evaluated from a set of realizations (i.e., an ED) of the response Y .
After the identification of the first polynomial Φλ1 , the associated coefficient is

17 Optimization and Uncertainty Quantification for Voltage Regulators 529

0
0 6

6

||λ||0.5 ≤ 5

0
0 6

6

||λ||1 ≤ 5

0
0 6

6

||λ||0.5 ≤ 5

Standard truncation Sparse truncationHyperbolic truncation

(a) (b) (c)

1 7
2

4

6

5

3

Fig. 17.15 Elements of the polynomial basis of degree up to l = 5 retained by the hyperbolic
truncation strategy when (a) k = 1 (squares) and (b) k = 0.5 (squares). (c) Numbered squares are
the polynomial basis elements identified by the LARS algorithm from the 1st to the 7th iteration
[9]

estimated so that the residual Y −a(1)λ1
Φλ1(X) becomes equi-correlated with another

polynomial basis, considered as beingΦλ2 . Then, the selection of a third polynomial
basis will be carried out by moving along the direction (Φλ1 + Φλ2), until the new
residual becomes equi-correlated with a third polynomial basis Φλ3 , and so on. A
representation of the selected polynomials by LARS after seven iterations is given
by squares in Fig. 17.15c.

Estimating suitable terms of the polynomial basis using LARS is performed for
each degree l = 1, 2, . . . , lmax. Finally, LARS produces a set of sparse expansions
including an increasing number of polynomial terms. The quality of each expansion
of degree l is then evaluated according to a leave-one-out cross-validation error εLOO
as follows:

εLOO =
∑N
i=1

(
M (x(i))−M PC−i (x(i))

)2

∑N
i=1

(
M (x(i))− 1

N

∑N
i=1 M (x(i))

)2 , (17.34)

where M PC−i (x(i)) areN surrogate models built up on the ED X \x(i) = {x(q), q =
1, . . . , N, q �= i}. The end result is that the retained degree l is the one minimizing
the leave-one-out error εLOO.

In the following, the quality of the surrogate model is computed via the Q2

coefficient defined by Q2 = 1 − εLOO, 0 ≤ Q2 ≤ 1. It is worth pointing out
that the largerQ2 is, the better is the prediction of the surrogate model.

530 H. M. Torun et al.

17.6.2.3 Post-Processing

The (sparse) PC surrogate model allows, at a negligible computational cost, to
estimate statistical quantities of the response. Indeed, the orthonormality property
of the polynomial basis enables one to derive the expectation and the variance of the
response Y as follows:

E
[
Y
] = a0 (17.35)

V
[
Y
] = ∑

λ∈A \{0}
a2
λ (17.36)

Besides, it is also possible to obtain a sensitivity analysis from the Sobol
indices [37], which aim at quantifying the impact of input uncertainties on the
response variability. Thereby, the PC-based Sobol indices of first-order Si allows
the estimation of the variance of the model response Y with respect to the main
effect of a single input random variable Xi as:

Si =
∑

λ∈Ai a
2
λ

V
[
Y
] (17.37)

where Ai = {λ ∈ A : λi > 0, λj = 0 ∀j �= i}. The total indices ST,i
of the response Y , which compute the influence of an input random variable Xi
considering all interactions with other input random variables Xj (j �= i), are
computed according to [38]:

ST,i =
∑

λ∈AT ,i a
2
λ

V
[
Y
] (17.38)

where AT ,i = {λ ∈ A : λi �= 0}, respectively.

17.7 Uncertainty Quantification of the IVR Efficiency

17.7.1 Surrogate Model of the Model Response

In this section, we aim at evaluating, around the optimum design point identified
by the TSBO algorithm (see Sect. 17.5.4), the effect of uncertainties on the IVR
efficiency Eff. For instance, we choose to analyze the inductor equipped with a
Type 2 NiZn solenoid for 5 V:1 V conversion at the frequency of 100 MHz. For this
structure, the TSBO algorithm provides an optimal efficiency of 68.7% as shown in
Fig. 17.12. From this optimal design point, the randomness of the IVR is introduced
through seven uniform random variables given in Table 17.6. Moreover, the number

17 Optimization and Uncertainty Quantification for Voltage Regulators 531

Table 17.6 Uncertain
parameters of solenoidal
inductor

Uniform random variables Unit U
[
Min; Max

]
Gap between windings g mil U

[
1.2; 3.5

]
Size of via sv μm U

[
122.2; 183.4

]
Copper trace width wv mil U

[
15.5; 18.0

]
Copper thickness bottom tc,b μm U

[
122.9; 184.3

]
Copper thickness top tc,t μm U

[
88.0; 132.0

]
Dielectric thickness td μm U

[
266.6; 325.8

]
Dielectric width wd mil U

[
54.3; 56.5

]

Fig. 17.16 Points represent the predictions obtained by the sparse PC surrogate model (Y -axis)
against the real values of the numerical model (X-axis) given by MC sampling. The straight line
highlights a perfect agreement between the two models

of windings, the magnetic core width offset, and the magnetic core thickness ratio
are set to their optimal values, i.e., N = 7, Δwm = 0 mil, and tr = 1, respectively.

We thus build up a sparse PC with 200 realizations from Latin hypercube
sampling (LHS) [39] and an adaptive degree h varying from 1 to 10 with [40]. The
k-quasi-norms (17.33) parameter is fixed to 0.75, in order to significantly reduce the
size of the polynomial basis and to properly approximate the model response [9].

The estimated quality of the sparse PC surrogate model obtained is Q2 = 0.70.
In order to illustrate it, we represent in Fig. 17.16, from 3000 MC realizations, the
predictions Y PC (Y -axis) of the sparse PC against the real values Y true (X-axis)
of the numerical model. We notice then that the general tendency of predictions
obtained by the sparse PC surrogate model is relatively good as the samples (points)
follow the straight line, which represents a perfect agreement between the surrogate
and numerical models. We also observe that few samples are not well estimated
in the area where Y true varies between 68.1% and 68.3%, emphasizing a lower

532 H. M. Torun et al.

quality of the approximation of the surrogate model in that region. As the variability
of the IVR efficiency is evaluated, we illustrate in Fig. 17.17, from 10,000 MC
realizations, the PDFs of the efficiency Eff obtained by the sparse PC (dashed line)
and by MC simulation (solid line). Figure 17.17 shows that the main trend of the
two curves is relatively close, in spite of differences at the level of the tails of
PDFs. Indeed, we see that the sparse PC surrogate model overestimates the low
values of the model response, which is illustrated by a shorter left tail of the PDF.
In turn, the right tail of the PDF estimated by the sparse PC is more accurate,
with a better estimation of the large values of the model response compared to the
numerical model. Regarding the first two statistical moments of the IVR efficiency,
the mean and the standard deviation of Eff computed by sparse PC and by MC
simulation are quite close, i.e., μPC = 68.68%, σ PC = 0.11% and μMC = 68.68%,
σMC = 0.13%, respectively. The optimal degree of the sparse PC is 3 with a sparsity
index S = 9

43 ≈ 21%. This indicates that few terms of the polynomial basis are
sufficient to approximate the IVR efficiency Eff. As regards to the computational
time, 10,000 MC realizations took about 7 days and 4 h, whereas the sparse PC
needed around 1 s, which highlights a speed-up of the surrogate model of about
619,200× compared to MC simulation. Note that this comparison does not include
the training time required by the sparse PC surrogate model, which has taken about
3 h 27 min for the 200 LHS simulations (the surrogate model has been built up in
less than 1 s).

Otherwise, the quantification of the output variability provided by the sparse PC
surrogate model is very interesting from the design aspect. Indeed, the sparse PC

Fig. 17.17 PDFs of the efficiency Eff obtained by sparse PC (dashed line) and by MC simulation
(solid line) at the frequency of 100 MHz

17 Optimization and Uncertainty Quantification for Voltage Regulators 533

allows to show that the design point identified by the TSBO algorithm, providing an
IVR efficiency of 68.7%, is quite robust as the uncertainties of the system generate
a relatively low variation of the IVR efficiency, i.e., from approximately 68.3% to
69% (see Fig. 17.17). Thus, the designer could be satisfied by its system as it will
maintain a high level of performance.

17.7.2 Sensitivity Analysis of the Model Response

Apart from the estimation of the variability of the model response, the sparse
PC surrogate model provides the sensitivity analysis of the output at a negligible
computational cost. A histogram illustrating the total Sobol indices of Eff at the
frequency of 100 MHz is given in Fig. 17.18. This sensitivity analysis shows that
the variability of Eff is mainly related to the copper thickness top tc,t (≈ 40%),
the size of via sv (≈ 22%), the copper thickness bottom tc,b (≈ 20%), and the
copper trace width wv (≈ 18%) of the inductors. The rest of the variables, such as
the dielectric thickness td , the dielectric width wd , and the gap between windings
g of the inductors, have a negligible effect on the variability of Eff. Moreover, at
100 MHz, total losses of the IVR system are dominated by switching and conduction
losses of power switches and the resistive loss due to the PDN [3]. Since the DC
resistance of the inductor directly contributes to the finite resistance of the PDN,
its AC losses become less significant. Therefore, the parameters of the inductor
directly affecting its DC resistance become more important and have more effect on

Fig. 17.18 Total Sobol indices of the efficiency Eff at the frequency of 100 MHz

534 H. M. Torun et al.

the IVR efficiency. For this reason, the sensitivity analysis illustrated in Fig. 17.18
is consistent as it identifies the more significant effect of the parameters that directly
impact the DC resistance than the other parameters related to the magnetic material.

17.8 Conclusions

In this chapter, we have presented an EDA oriented Bayesian optimization (BO)-
based global optimization algorithm, two-stage Bayesian optimization. Unlike
conventional BO algorithms, the presented method is not prone to initial point
selection and does not rely on other techniques for auxiliary optimization of the
acquisition function. Furthermore, we have proposed and used a new hierarchical
partitioning scheme that makes the algorithm EDA oriented in terms of substantially
reducing number of simulations required to reach the global optima. Empirical
analysis on a set of popular challenge functions with several local extrema and
dimensions shows TSBO to have a faster convergence trend over other widely used
methods.

For the IVR application considered in this chapter, we have shown that TSBO
optimized IVR has 56.1% reduced inductor area compared to hand-tuned design
and 5.7% increased peak efficiency for 5V:1V conversion at ILOAD = 10 A and
fSW=10 MHz. Additionally, TSBO showed 72.4%, 57.4%, and 56.7% reduction in
CPU time required to complete optimization compared to non-linear solver and the
state-of-the-art ML-based GP-UCB and IMGPO techniques.

After the optimization phase, the sparse PC surrogate model was applied to
estimate the IVR efficiency considering input uncertainties of the system. Based
on a limited number of calls to the numerical model, the technique provided an esti-
mation of the global variability of the output with a relative low computational cost
in comparison with MC simulation. Moreover, it provides information associated
with the model response such as the first two statistical moments and its sensitivity
analysis, which can be useful for designers. Using this information, the engineer
can quantify the variability of its output and identify the uncertain input variables
having the largest impact. The variability of the parameters with the largest impact
can then be tightened to ensure a robust design. For instance, our case study has
shown that four uncertain input variables out of seven impact the variability of the
inductor and IVR model response.

Although, the optimization and uncertainty quantification methods described in
this chapter have been applied to IVR, their use can be quite generic. In fact,
these methods can be applied to other black-box optimization and uncertainty
quantification problems arising in EDA.

Acknowledgements This work was supported in part by the National Science Foundation
under Grant No. CNS 16-24810—Center for Advanced Electronics through Machine Learning
(CAEML) and Power Delivery for Electronic Systems (PDES) Consortium, Georgia Tech, USA.
The authors would also like to acknowledge Dr. Mohamed L. F. Bellaredj, Dr. Anto K. Davis, and
Dr. Colin Pardue for their assistance in simulation and analysis of the IVR.

17 Optimization and Uncertainty Quantification for Voltage Regulators 535

References

1. N. Sturcken, E.J. O’Sullivan, N. Wang, P. Herget, B.C. Webb, L.T. Romankiw, M. Petracca, R.
Davies, R.E. Fontana, G.M. Decad, I. Kymissis, A.V. Peterchev, L.P. Carloni, W.J. Gallagher,
K.L. Shepard, A 2.5d integrated voltage regulator using coupled-magnetic-core inductors on
silicon interposer. IEEE J. Solid-State Circuits 48(1), 244–254 (2013)

2. N. Sturcken, M. Petracca, S. Warren, P. Mantovani, L.P. Carloni, A.V. Peterchev, K.L. Shepard,
A switched-inductor integrated voltage regulator with nonlinear feedback and network-on-chip
load in 45 nm SOI. IEEE J. Solid-State Circuits 47(8), 1935–1945 (2012)

3. S. Mueller, K.Z. Ahmed, A. Singh, A.K. Davis, S. Mukhopadyay, M. Swaminathan, Y. Mano,
Y. Wang, J. Wong, S. Bharathi, H.F. Moghadam, D. Draper, Design of high efficiency integrated
voltage regulators with embedded magnetic core inductors, in 2016 IEEE 66th Electronic
Components and Technology Conference (ECTC) (2016), pp. 566–573

4. H.M. Torun, M. Swaminathan, Black box optimization of 3D integrated systems, in Computa-
tional Modelling of Multi Uncertainty and Multi-Scale Problems (COMUS) (2017)

5. H.M. Torun, M. Swaminathan, A.K. Davis, M.L.F. Bellaredj, A global Bayesian optimization
algorithm and its application to integrated system design. IEEE Trans. Very Large Scale Integr.
VLSI Syst. 26(4), 792–802 (2018)

6. H.M. Torun, M. Swaminathan, Black box optimization of 3D integrated systems using machine
learning, in 2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging
and Systems, EPEPS (2017)

7. H.M. Torun, C.A. Pardue, M.L.F. Belladredj, A.K. Davis, M. Swaminathan, Machine learning
driven advanced packaging and system miniaturization of IoT for wireless power transfer
solutions, in IEEE 68th Electronic Components Technology Conference, ECTC (2018)

8. H.M. Torun, M. Larbi, M. Swaminathan, A bayesian framework for optimizing interconnects
in High-Speed channels, in 2018 IEEE MTT-S International Conference on Numerical Elec-
tromagnetic and Multiphysics Modeling and Optimization (NEMO2018), Reykjavik, Iceland
(2018)

9. G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle
regression. J. Comput. Phys. 230(6), 2345–2367 (2011)

10. M. Larbi, I.S. Stievano, F.G. Canavero, P. Besnier, Variability impact of many design
parameters: the case of a realistic electronic link. IEEE Trans. Electromagn. Compat. 60(1),
34–41 (2018). https://doi.org/10.1109/TEMC.2017.2727961

11. S.J. Park, B. Bae, J. Kim, M. Swaminathan, Application of machine learning for optimization
of 3-D integrated circuits and systems. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25(6),
1856–1865 (2017)

12. K. Kawaguchi, L.P. Kaelbling, T. Lozano-Pérez, Bayesian optimization with exponential
convergence. Adv. Neural Inf. Process. Syst. 2809–2817 (2015)

13. E. Brochu, V.M. Cora, N. de Freitas, A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv.org, arXiv:1012.2599 (2010)

14. N. Srinivas, A. Krause, S.M. Kakade, M. Seeger, Gaussian process optimization in the bandit
setting: no regret and experimental design. arXiv:0912.3995 (2009)

15. J.R. Gardner, M.J. Kusner, Z.E. Xu, K.Q. Weinberger, J.P. Cunningham, Bayesian optimization
with inequality constraints, in Proceedings of the 31st International Conference on Machine
Learning, ICML (2014), pp. 937–945

16. Z. Wang, B. Shakibi, L. Jin, N. Freitas, Bayesian multi-scale optimistic optimization, in
Artificial Intelligence and Statistics (2014), pp. 1005–1014

17. R. Munos, Optimistic optimization of a deterministic function without the knowledge of its
smoothness, in Advances in Neural Information Processing Systems (2011), pp. 783–791

18. M.D. Hoffman, E. Brochu, N. de Freitas, Portfolio allocation for Bayesian optimization. in
Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI
(2011), pp. 327–336

https://doi.org/10.1109/TEMC.2017.2727961

536 H. M. Torun et al.

19. S. Surjanovic, Virtual library of simulation experiments [Online]. https://www.sfu.ca/~
ssurjano/

20. D.J. Lizotte, Practical bayesian optimization. Ph.D Thesis, University of Alberta, 2008
21. D.R. Jones, A taxonomy of global optimization methods based on response surfaces. J. Glob.

Optim. 21(4), 345–383 (2001)
22. ANSYS, Ansys HFSS ver. 2015.2 [Online]. http://www.ansys.com
23. ANSYS, Ansys Maxwell ver. 2015.2 [Online]. http://www.ansys.com
24. D.S. Gardner, G. Schrom, F. Paillet, B. Jamieson, T. Karnik, S. Borkar, Review of on-chip

inductor structures with magnetic films. IEEE Trans. Magn. 45(10), 4760–4766 (2009)
25. M.L.F. Bellaredj, S. Mueller, A.K. Davis, P. Kohl, M. Swaminathan, Y. Mano, Fabrication,

characterization and comparison of fr4-compatible composite magnetic materials for high
efficiency integrated voltage regulators with embedded magnetic core micro-inductors, in 2017
IEEE 67th Electronic Components and Technology Conference (ECTC) (2017)

26. M. Swaminathan, Power delivery for electronic system consortium (PDES). Georgia Institute
of Technology (2017)

27. A. Rong, A.C. Cangellaris, Interconnect transient simulation in the presence of layout and
routing uncertainty, in 2011 IEEE 20th Conference on Electrical Performance of Electronic
Packaging and Systems (2011), pp. 157–160

28. A.K. Prasad, M. Ahadi, B.S. Thakur, S. Roy, Accurate polynomial chaos expansion for
variability analysis using optimal design of experiments, in 2015 IEEE MTT-S International
Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization
(NEMO) (2015), pp. 1–4

29. D.V. Ginste, D.D. Zutter, D. Deschrijver, T. Dhaene, P. Manfredi, F. Canavero, Stochastic
modeling-based variability analysis of on-chip interconnects. IEEE Trans. Compon. Packag.
Manuf. Technol. 2(7), 1182–1192 (2012)

30. B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models–
contributions to structural reliability and stochastic spectral methods. Habilitation à diriger
des recherches, Université Blaise Pascal, Clermont-Ferrand, 2007

31. Z. Zhang, T.W. Weng, L. Daniel, Big-data tensor recovery for high-dimensional uncertainty
quantification of process variations. IEEE Trans. Compon. Packag. Manuf. Technol. 7(5), 687–
697 (2017)

32. A.K. Prasad, S. Roy, Accurate reduced dimensional polynomial chaos for efficient uncertainty
quantification of microwave/RF networks. IEEE Trans. Microwave Theory Tech. (2017).
https://doi.org/10.1109/TMTT.2017.2689742

33. C. Soize, R. Ghanem, Physical systems with random uncertainties: chaos representations with
arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395–410 (2004)

34. M. Berveiller, B. Sudret, M. Lemaire, Stochastic finite element: a non intrusive approach by
regression. Eur. J. Comput. Mech. 15(1–3), 81–92 (2006)

35. D.C. Montgomery, Design and Analysis of Experiments (Wiley, New York, 2004)
36. B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression. Ann. Stat. 32(2), 407–

499 (2004)
37. I.M. Sobol, Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput.

Exp. 1(4), 407–414 (1993)
38. B. Sudret, Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst.

Saf. 93(7), 964–979 (2008)
39. M.D. McKay, R.J. Beckman, W.J. Conover, A comparison of three methods for selecting values

of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61
(2000)

40. S. Marelli, B. Sudret, UQLab: a framework for uncertainty quantification in matlab, in
Proceedings of 2nd International Conference on Vulnerability Risk Analysis and Management,
Liverpool (2014), pp. 2554–2563

https://www.sfu.ca/~ssurjano/
https://www.sfu.ca/~ssurjano/
http://www.ansys.com
http://www.ansys.com
https://doi.org/10.1109/TMTT.2017.2689742

Part V
Machine Learning for System Design

and Optimization

The contrivance and the construction of tools must there-
fore ever stand at the head of the industrial arts.

Charles Babbage

Chapter 18
SynTunSys: A Synthesis Parameter
Autotuning System for Optimizing
High-Performance Processors

Matthew M. Ziegler, Hung-Yi Liu, George Gristede, Bruce Owens,
Ricardo Nigaglioni, Jihye Kwon, and Luca P. Carloni

18.1 Introduction

Modern VLSI design is a quest to optimally tune and balance multiple objectives,
such as power, performance, and reliability. The complexity of VLSI chips also
continues to rise despite time-to-market pressures and the desire for cost savings
via smaller design teams. These challenges have caused an industry shift from
custom design techniques towards synthesis-centric methodologies for optimizing
design quality and boosting design productivity. The complexity of modern designs
coupled with multiple design objectives leads to the rise of difficult optimization
problems beyond what even experienced designers can manage manually. Auto-
mated design space exploration (DSE) approaches, however, are well suited to
handle many of these problems. In this chapter we present a new system called
SynTunSys (synthesis tuning system) that automates the DSE process for the logic

M. M. Ziegler (�) · G. Gristede
IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
e-mail: zieglerm@us.ibm.com; gristede@us.ibm.com

H.-Y. Liu
Intel Technology and Manufacturing Group, Hillsboro, OR, USA
e-mail: hung-yi.liu@intel.com

B. Owens
IBM Systems and Technology Group, Rochester, MN, USA
e-mail: browens@us.ibm.com

R. Nigaglioni
IBM Systems and Technology Group, Austin, TX, USA
e-mail: nricardo@us.ibm.com

J. Kwon · L. P. Carloni
Department of Computer Science, Columbia University, New York, NY, USA
e-mail: jihyekwon@cs.columbia.edu; luca@cs.columbia.edu

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_18

539

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_18&domain=pdf
mailto:zieglerm@us.ibm.com
mailto:gristede@us.ibm.com
mailto:hung-yi.liu@intel.com
mailto:browens@us.ibm.com
mailto:nricardo@us.ibm.com
mailto:jihyekwon@cs.columbia.edu
mailto:luca@cs.columbia.edu
https://doi.org/10.1007/978-3-030-04666-8_18

540 M. M. Ziegler et al.

and physical synthesis steps within an industrial VLSI design flow. SynTunSys was
crucial for achieving timing closure as well as meeting power targets during the
design of multiple high-performance server chips at IBM. In particular, we use
the IBM z13 processor chip as a case study to illustrate quality of results (QoR)
improvements that SynTunSys can achieve. This processor chip pushes the limits of
high-performance server design and was designed in a 22 nm SOI technology, has a
clock frequency of approximately 5 GHz, and is the heart of the IBM z13 mainframe
system [1].

Synthesis tools continue to become more sophisticated and provide numerous
parameters to improve design quality. As an example of the wide design space
available from modifying synthesis parameters, Fig. 18.1 shows the scatterplot of
achievable design points for a portion of a synthesized floating-point multiplier
macro from the z13 processor.1 Each point denotes the timing and power values
achieved simply by tuning the input parameters of the synthesis program. The
ultimate goal of this process is to reach timing closure at the lowest achievable
power. Quite often the default values for the parameters are not ideal for a specific
macro, which would benefit instead from parameter customization. Figure 18.1 also

Fig. 18.1 An example of the available design space by modifying synthesis parameters

1A macro, also referred to as a partition, is a separately synthesized component that is integrated
into a larger chip. Macros considered in this chapter may span in size from 1K to 1M gates.

18 SynTunSys: A Synthesis Parameter Autotuning System 541

highlights three scenarios (A, B, and C) along the Pareto frontier. These scenarios
show the available tradeoffs between timing closure and power reduction, e.g., point
A closes timing with a 9% power reduction, whereas point C improves timing by
55% with a 29% power reduction. These points along the Pareto set provide a
number of potential steps towards the ultimate goal, depending on the additional
techniques at the designer’s disposal beyond parameter tuning. This example of a
relatively simple macro underscores how significantly the parameters settings can
affect a design.

The high flexibility and sophistication of advanced synthesis tools increases their
complexity and makes navigating the design space difficult, and sometimes non-
intuitive for their users. Since the number of parameters for synthesis tools can be
in the thousands and synthesis runs may take several hours or even days, exhaustive
parameter tuning is typically infeasible. Furthermore, while Fig. 18.1 portrays the
design space of two metrics, designers often need to consider many more metrics,
sometimes dozens, when evaluating the quality of a synthesis scenario. In summary,
efficient DSE using advanced synthesis tools is increasingly challenging for even
experienced professional designers and daunting for novice designers.

To efficiently and fully utilize the optimization potential of advanced synthesis
tools, we present SynTunSys (STS), a new level of design automation abstraction
that allows the human designer to offload the synthesis parameter tuning process to
a learning-based system employing parallel computing. In summary, SynTunSys is
a closed loop system that encapsulates the design optimization process by running
multiple scenarios with unique CAD tool parameter settings through a design flow,
analyzing results, and iteratively improving the results by modifying parameters.
To navigate the vast parameter design space, SynTunSys employs parallel scenario
submission and custom machine-learning algorithms to reach high-quality solutions
in only a few iterations. This chapter provides an overview of the SynTunSys system
architecture in Sect. 18.2 (Ref. [2] provides details), followed by a detailed account
of custom decision algorithms in Sect. 18.3 (Ref. [3] provides details). Section 18.4
reports results from the usage of SynTunSys for optimizing industrial server chips.
In particular, the IBM z13 22 nm server processor is provided as a case study.
During the actual processor design cycle, a systematic study of∼200 macros shows
that SynTunSys provides, on average, 36% improvement in total negative slack
(TNS) and 7% power reduction. Further, macro internal negative slack improves by
60%, on average. Section 18.5 presents new SynTunSys enhancements and research
directions. Section 18.6 profiles related work and Sect. 18.7 provides concluding
remarks.

18.2 SynTunSys Architecture

In order to perform automatic tuning of synthesis parameters, SynTunSys constructs
synthesis scenarios (synthesis parameter settings), runs the synthesis jobs, analyzes
the results, and iteratively refines the solutions. This automated decision loop is

542 M. M. Ziegler et al.

Fig. 18.2 Design team, EDA team, and SynTunSys interaction

a key component of the design process that is typically performed by human
designers. The system employs parallel and iterative black-box search techniques
to explore the design space in a manner that can efficiently scale to use the available
resources in a compute cluster or cloud.

In addition to macro optimization, a secondary use model of SynTunSys provides
a vehicle for in-house CAD teams or EDA vendors to deploy and test new
synthesis optimizations on production macros, as Fig. 18.2 illustrates. SynTunSys
is inherently tolerant of failures of individual synthesis jobs with little risk of
degrading overall quality of results. This failure tolerance allows a small number
of experimental parameters (or beta versions of the synthesis tool) to be run as part
of DSE, enabling a DevOps deployment model. New experimental scenarios can
be either provided to designers by the EDA team or run directly by the EDA team.
SynTunSys collects synthesis run statistics and keeps a history of results for all
designs that can be monitored to determine a scenario’s effect on design quality as
well as trends across multiple scenarios and designs.

Figure 18.3 shows the SynTunSys architecture. Although the system architecture
is general and could be applied to earlier steps in a flow (e.g., HLS) or later
steps (e.g., routing), we focus on the logical and physical synthesis steps because
in our experience they offer a desired balance between (1) return on investment
(ROI) of the compute resources and (2) modeling accuracy of the final design
implementation. SynTunSys consists of a main tuning loop that, at each iteration,
involves running multiple synthesis scenarios in parallel, monitoring the jobs in
flight, analyzing the results of the jobs, and making a decision for the next set of
scenarios. A secondary tuning loop archives the results of all runs from all macros,
users, and projects. The SynTunSys Archive is a database that can be mined for
historical trends across multiple macros and to provide feedback in terms of the
performance of synthesis parameters.

The SynTunSys process begins at Step 1 in Fig. 18.3 where the initial synthesis
scenarios are generated based on the following input data: (a) standard input data
for circuit-level synthesis, which typically includes an RTL description, a physical
abstract view providing macro boundaries, pin locations, and timing assertions; (b) a
library of primitives that contains the detailed definitions of all potential exploration
options; and (c) a SynTunSys Rules file describing the primitives for the design
space exploration, a cost function describing the optimization goals, among other
options. More details on (b) and (c) are provided later in this section. At Step

18 SynTunSys: A Synthesis Parameter Autotuning System 543

Fig. 18.3 Architecture of the SynTunSys process. The program employs a parallel and iterative
tuning process to optimize macros

2 in the figure, multiple synthesis jobs are submitted in parallel to a compute
cluster by issuing batch calls to the underlying synthesis tool. Following submission,
SynTunSys starts a monitor process that tracks the synthesis jobs (Step 3). When
either all jobs complete, or a large enough fraction of jobs complete, or a time limit
is reached, the monitor process initiates the results collection and cost analysis of the
parallel synthesis jobs (Step 4). Based on the collected results, a decision algorithm
at Step 5 creates a new set of scenarios (synthesis parameter settings) to be run in
the next iteration. These new jobs begin with the initial input data and are again
run in parallel. The process iterates attempting to improve upon results until an exit
criteria is met, e.g., the maximum number of user specific iterations is reached or
the DSE algorithm experiences diminishing returns.

18.2.1 Human Design Time vs. Compute Time

In this work we make a key differentiation between compute time and human design
time. SynTunSys significantly reduces human design time by offloading human
designer effort to compute resources. Compute resources are scalable and more
abundant over time, whereas there is a premium on training and retaining skilled
designers.

The interaction between SynTunSys and a human designer can be viewed as a
collaboration between human and computer, each with unique skill sets, rather than
a conventional CAD point tool executing a fixed task. Freed from the parameter

544 M. M. Ziegler et al.

selection and tuning task, designers can pursue parallel and complementary design
techniques, e.g., design structuring [4]. SynTunSys results can also provide hints
about the macro design space for skilled human designers to pursue further. The
SynTunSys DSE results can also help educate novice designers. Furthermore,
SynTunSys often leads to non-intuitive design points that even a skilled designer
could not achieve alone.

The inherent SynTunSys runtime and disk-space overhead compared to a single
synthesis job motivates streamlining the DSE search process with intelligent deci-
sion algorithms. Our current decision algorithms reduce the number of SynTunSys
iterations to about three to five iterations, leading to a little over a 3–5× runtime
(latency) increase versus a single synthesis run. Over the three to five iterations,
approximately 100–200 scenarios are run. Although this overhead may seem high,
within the scope of a large design project it is quite tolerable and provides a desirable
ROI for the following reasons: (1) SynTunSys is a fully autonomous system that
does not require human designer effort once initiated. (2) A latency of around 3–
5× still allows the total runtime to be less than a week for the largest macros that
may require a day per iteration. A week may be the maximum allowable runtime
for projects that follow a weekly update schedule for synthesis inputs. (3) Running
SynTunSys is not necessary every time a macro is synthesized; SynTunSys needs
only to be run at certain points in the design cycle to locate customized parameters
for a specific macro; during subsequent synthesis runs, the SynTunSys scenarios can
be reused such that subsequent synthesis runs have no runtime overhead. We should
also note that research is underway to reduce the SynTunSys compute overhead, as
Sect. 18.5 describes.

The following subsections provide an overview of SynTunSys specific termi-
nology, beginning with the scenario composition that allows a reduction in the
parameter tuning design space. The later subsections introduce the key components
of the SynTunSys architecture.

18.2.2 Scenario Composition and Initial Design Space
Reduction

Parameters Advanced synthesis tools can have a vast number of tunable param-
eters making an exhaustive design space search infeasible. In our specific case,
the synthesis tool we employ has over 1000 parameters [5]. These parameters
span the logic and physical synthesis space and the control settings for modifying
the synthesis steps, such as logic decomposition, technology mapping, placement,
estimated wire optimization, power recovery, area recovery, and/or higher-effort
timing improvement. The parameters also vary in data type (Boolean, integer,
floating point, and string). Considering that an exhaustive search of only 20
Boolean-type parameters leads to over one million combinations, it is clear that
intelligent search strategies are required.

18 SynTunSys: A Synthesis Parameter Autotuning System 545

Primitives To reduce the ∼1000 multi-valued parameter space up front, we recast
this DSE problem to have a space on the order of 100 Boolean parameters. This
design space reduction involves an offline effort to create a library of primitives.
A primitive contains one or more synthesis parameters set to specific values.
Figure 18.4 shows an example of a small primitive library. The actual primitive
library in our case consists of ∼300 primitives. In general, a primitive targets
a singular action. Thus, a SynTunSys primitive is a binary decision, whereas
setting many parameters individually may require many more decisions. The precise
parameter settings within primitives are often products of expert knowledge from
experienced designers or EDA developers.

Scenarios SynTunSys creates scenarios consisting of one or more primitives that
contain parameters, as Fig. 18.5 shows. The construction of scenarios is not trivial,
motivating the need for intelligent decision algorithms. In particular, some prim-
itives are complementary, e.g., restruct_t and wireopt_t for timing optimization,
which however may require additional wireopt_c to compensate for routability.
Other primitives are non-complementary, such as restruct_t and area_he; the
former may upsize standard cells for larger driving strength or duplicate downstream
cells for smaller capacitance load, while the latter may do the opposite changes
for maximal area reduction. In practice, the optimal scenarios are macro-specific
with respect to a set of weighted design objectives, while default settings require
balancing QoR across multiple macros (see Fig. 18.1).

Fig. 18.4 An example of
primitive names and primitive
descriptions

Fig. 18.5 Illustration of the
interaction of parameters,
primitives, and scenarios.
Primitives consist of one or
more parameters. Scenarios
consist of one or more
primitives

546 M. M. Ziegler et al.

Remarks The primitive library was chosen to speed up and focus the design
space search task, yet discretization of the design space via primitives may lead
to unsearchable points. An alternative approach would be tuning individual param-
eters; however, this fine-grained approach would have high computation overhead
and most likely would not yield strong results for quite some time. An attractive
compromise may to first perform a coarse-grain search using SynTunSys primitives
to quickly locate promising design points, followed by a finer-grain search of
parameter settings to further refine the scenarios.

In practice, to further reduce the design space to a reasonable size, independent of
the size of the primitive library, a subset of primitives are selected from the primitive
library for a specific SynTunSys run based on the optimization goals for the specific
tuning run. This process of selecting a subset of primitives per SynTunSys run
allows scaling the specific tuning run for the available compute resources. Within a
large design project with multiple designers sharing a compute cluster, the allowable
compute quota per user and macro compute requirements often set a ceiling for the
number of parallel compute jobs, which in turn provides guidance for the number
of primitives to select.

18.2.3 SynTunSys Components

Rules File The SynTunSys Rules file contains configuration settings for a specific
tuning run. Figure 18.6 shows examples of the key sections of the Rules file: (a)
the initial primitives to be explored during the design space search; (b) the cost
function guiding the DSE; (c) the overall search algorithm as well as the parameters
to configure the search algorithm. These parameters can adjust the effort level of
the search as well as the exit criteria, and are often modified depending on the
available compute resources and/or the size of the macro. In practice, a set of default
Rules files targeting various cost functions are provided to designers. Experienced
designers may then further customize a Rules file for each macro.

Fig. 18.6 Components of the Rules file: (a) the primitives to be explored during DSE; (b) the cost
function guiding the DSE; (c) search algorithm, selection criteria, and configuration parameters

18 SynTunSys: A Synthesis Parameter Autotuning System 547

Cost Function The setting of the SynTunSys cost function conveys the opti-
mization goals. It converts multiple design metrics into a single cost number,
allowing cost ranking of scenarios. Examples of available metrics include: multiple
timing metrics,2 power consumption, congestion metrics, utilized area, electrical
violations, runtime, etc. The selected metrics are assigned weights to signify their
relative importance. The overall cost function is then a “normalized weighted
sum” of the m selected metrics, expressed by Eq. (18.1) where Norm(Mi) is the
normalizedMi across all the scenario results in a SynTunSys run.

Cost =
m∑
i=1

Wi ·Norm(Mi) (18.1)

Main Tuning Loop The main tuning loop of SynTunSys begins when the monitor
triggers completion, i.e., Step 3 in Fig. 18.3. This process includes a step that
eliminates scenarios with erroneous or missing results data and also scenarios that
fail to meet minimum design criteria, as specified by the designer. The resulting
scenarios are all valid for cost analysis. After cost ranking, an optional routine may
be applied to ensure there is diversity among the parameters driving the DSE, e.g.,
primitives having higher cost than competitors across a dimension of the primitive
space may be removed. The decision engine is the final step of the main tuning loop.
Overall, the main tuning loop is an “online” process that uses information learned
about a specific macro, within the tuning run in flight, for decisions.

Secondary Tuning Loop The collected results of all runs are stored in the
SynTunSys Archive database, i.e., Step 5b in Fig. 18.3. The archived data provides
a history of all previous runs that SynTunSys uses for multiple purposes. One
use of the archived data is to generate DSE scenarios from historical primitive
performance, represented by Arc 6b in Fig. 18.3. The default Rules files are also
periodically updated based on the analysis of historical primitive performance (Arc
7b). The historical performance is also a useful feedback to the synthesis tool
development team (Arc 8b). The secondary tuning loop is currently an “offline”
process that allows learning across multiple or all macros, although integrating this
capability into the online framework is currently being investigated. Section 18.5.1
also discusses SynTunSys enhancements that employ historical data.

18.2.4 Decision Engine Algorithms

The SynTunSys decision engine algorithms are key components of the system that
determine which scenarios should be run at each iteration. The decision engine
is also a component that can be upgraded independently and we constantly look

2The typical timing metrics of interest are: (1) internal slack or latch-to-latch slack (L2L), (2) worst
negative slack (WNS), and (3) total negative slack (TNS).

548 M. M. Ziegler et al.

to improve these algorithms in terms of QoR prediction accuracy and compute
efficiency. The general problem the decision engine addresses can be described as
black-box tuning or search, i.e., we treat the underlying synthesis tool as black-
box software during the parameter tuning process. The black-box tuning problem
appears in numerous applications and has also been approached using a number of
techniques. Section 18.6 towards the end of this chapter will review related work.
The following section details the evolution of the current production SynTunSys
decision algorithm, which is a custom learning algorithm based on parallel and
iterative exploration, and targets near-optimal results in only a few iterations.

18.3 The SynTunSys Decision Engine

The decision engine and tuning algorithms are key SynTunSys components that
determine the total number of iterations and scenarios to be run during each
iteration. It should be emphasized that for large-scale industrial processor chips it is
crucial to reach near-optimal solutions in a few tuning iterations. This is particularly
important for chips with new architectures and/or having frequent logic changes.
Timing critical designs consisting of multiple macros also have frequent timing
assertion feedback updates. Design schedules based on weekly or bi-weekly logic
releases, timing assertion feedback, and macro rebuilds are common, thus a total
tuning runtime of less than a week is a goal. This low-latency requirement drives the
need to develop custom SynTunSys decision algorithms that can reach high-quality
solutions in a few iterations.

One key property of any decision algorithm is the ability to adapt to a specific
macro, i.e., “learn” the primitives that minimize the cost function. In practice, the
optimal scenarios are macro-specific for these reasons: (1) the heuristic nature of
the underlying synthesis algorithms requires different settings based on a macro’s
logic and (2) the objectives in a specific cost function will call for unique parameter
settings. To date, the decision engine algorithms are “online” in nature, in that
decisions are made based on feedback from the current run in flight. Although as
discussed later in the chapter, there are opportunities to include knowledge from
historical data from the SynTunSys Archive for decision making.

The decision engine is also a modular component that can be upgraded inde-
pendently, allowing incremental refinement. The general objective of the decision
engine is given a set of primitives, a decision algorithm returns a list of lowest-
cost scenarios with respect to the designer-defined cost function (Eq. (18.1)) and
generates a set of new scenarios for the next iteration. To avoid major SynTunSys
architecture changes, we have designed the various decision engine algorithms to
map to a common compute footprint as Fig. 18.7 illustrates. This common compute
footprint allows reuse of job submission, job monitoring, results collection, and
cost analysis components, requiring only recoding of the decision engine itself. The
system was structured as such to meet the need dates of various industrial project
schedules, i.e., it was a higher priority to first have a fully functional system that

18 SynTunSys: A Synthesis Parameter Autotuning System 549

Fig. 18.7 A common compute footprint utilized by SynTunSys decision engines

Fig. 18.8 The Base decision algorithm, where each colored bubble represents a primitive, a
horizontal sequence of adjacent bubbles represents a scenario, and i denotes the iteration number

designers can use, even if results are less than optimal, rather than non-functional
theoretically optimal system concept. The following subsections describe an initial
version of the decision algorithm used for 22 nm projects, followed by an upgraded
version for 14 nm projects and beyond.

18.3.1 The Base Decision Algorithm

The initial SynTunSys decision algorithm, which we call the Base algorithm, is
illustrated in Fig. 18.8. This approach is a pseudo-genetic algorithm involving a
survival of the fittest comparison (sensitivity test), followed by a dense search using
the top primitives (pseudo-code is provided in Fig. 18.9, Algorithm 1).

550 M. M. Ziegler et al.

Fig. 18.9 Pseudo-code for the Base and Learning algorithms

The Base algorithm begins with SynTunSys launching an initial iteration (i = 0)
consisting of one scenario for each given primitive, i.e., a 1-hot sensitivity test. Then,
following cost analysis the algorithm selects the best N (lowest-cost N) scenarios as
a “survivor set” and proceeds to iteration 1 (i = 1). Iteration 1 generates a stream
S1 of more complex scenarios, consisting of combinations of primitives from the
survivor set (e.g., b, j, d, f in Fig. 18.8). The most common configuration is to
generate all possible combinations of i + 1 primitives for each iteration i. The
algorithm works on the premise that all primitives are complementary; therefore,
combining the survivors would yield optimal or near-optimal scenarios. In the
example of Fig. 18.8, the number of primitives is 10 and the size N of the survivor
set is set to 4.

Although the Base algorithm fully searches the design space of the survivor set,
its practical size is often constrained by compute resources and runtime latency, i.e.,
a large survivor set may lead to too many parallel scenarios in one iteration. To
mitigate this problem and expand the survivor set, an S2 stream of scenarios can
also be added to the i = 1 iteration. The S2 scenarios are rule-based guesses such
as combining the M lowest-cost primitives, where (M ≥ N), e.g.,M = 4, 5, and 6 in
Fig. 18.8. These S2 scenarios were a late addition to the Base algorithm to cover the
known deficiency and provide a bridge until a more sophisticated algorithm could
be implemented.

18 SynTunSys: A Synthesis Parameter Autotuning System 551

18.3.2 The Learning Algorithm

Within the compute footprint of the Base algorithm (i.e., a sensitivity test fol-
lowed by iterative combination of scenarios), an enhanced decision algorithm was
developed (see Fig. 18.9, Algorithm 2), which we call the Learning algorithm, to
better address the deficiencies described in the previous subsection. The Learning
algorithm selects a given number k of scenarios in each iteration as parallel synthesis
jobs (i.e., maximized utilization of compute resource), and dynamically adapts to the
k scenarios that are more likely to return lower costs (i.e., adaptive exploration).

Figure 18.10 illustrates the main idea of the Learning algorithm. Following
the sensitivity test (i = 0) on the given primitives, the Learning algorithm
estimates the cost of an unevaluated composite scenario by taking the average
cost of its contributing scenarios as a cost predictor. For instance, to estimate
the cost of a scenario that comprises three primitives (b, j, d in Fig. 18.10), the
Learning algorithm calculates the average cost of the three contributing scenarios
that respectively comprise the three primitives. Furthermore, the Learning algorithm
can “look ahead” by a combination order O > 1, which allows combining up to O
prior scenarios for cost estimation (O = 3 in Fig. 18.10). This look-ahead predictor
allows complementary scenarios such as restruct_t + wireopt_t + wireopt_c (see
description in Fig. 18.4) to be discovered for a cost function favoring timing and
routability, earlier in tuning iteration i = 1 in the Leaning algorithm, as opposed to
iteration i = 2 in the Base algorithm (compare Line 10 in Algorithm 1 and Lines
4–5 in Algorithm 2). The Learning algorithm uses the look-ahead predictor to learn
the inter-scenario interaction (Algorithm 2, Lines 8–9).

After the cost estimation, the Learning algorithm selects the top-k composite
scenarios with the lowest estimated costs to form a potential set and then submits k
parallel synthesis jobs with the selected scenarios. Since the size k of the potential
set is constrained, with a combination order greater than 1, the Learning algorithm
can filter out non-promising scenarios early in the tuning loop and allocate instead

Fig. 18.10 Illustration of the Learning decision algorithm

552 M. M. Ziegler et al.

the synthesis budget to the more promising scenarios. This estimation-selection-
submission process repeats for every tuning iteration until an exit criterion is met
(e.g., max iteration i is reached).

Furthermore, the Learning algorithm leverages the iterative process to contin-
uously refine its cost-estimation accuracy on non-complementary combinations.
Specifically, at any iteration i, whenever a composite scenario, say restruct_t +
area_he, was predicted good (i.e., low timing and area costs) and selected for
synthesis, but the synthesis result turns out to be not good (mediocre weighted cost
because of conflicting underlying optimization mechanisms), then the algorithm
can learn the actual effectiveness of combining scenarios restruct_t and area_he.
Therefore, at any future iterations, it will demote any composite scenario that
involves restruct_t + area_he. In summary, the Learning algorithm uses cost
estimation to avoid non-promising scenarios and refines its estimation after learning
actual synthesis results.

Moreover, to better estimate the cost based on non-trivial contributing scenarios
(i.e., scenarios comprising more than one primitive), the Learning algorithm
includes a fine-grained cost estimation (see Fig. 18.11). For instance, given two
scenarios, s1 = (b + d) and s2 = (b + j + f), the algorithm not only regards the average
cost of s1 and s2 as the coarse-cost, but also considers a fine-cost. The fine-cost aims
to learn the inter-primitive interaction (such as d + j), in contrast to the coarse-cost
that targets the inter-scenario interaction (such as s1 + s2). To this end, we calculate
the fine-cost of s1 and s2 using the average cost of their reference scenarios, which
are the scenarios that have been run in the previous iterations and each include a
pair of primitives, such that one primitive (e.g., d) comes from s1 and the other
(e.g., j or f) from s2. See pair-1 and pair-2 in Fig. 18.11 for illustration, where
the scenarios listed to the left of pair-1 and pair-2 are the reference scenarios for
s1 and s2. Hence, the fine-cost of s1 and s2 is the average cost of these reference

Fig. 18.11 Cost-estimation process for the Learning algorithm

18 SynTunSys: A Synthesis Parameter Autotuning System 553

scenarios. Thus, the previous example of non-complementary restruct_t + area_he
combination can also be considered when estimating the cost of s1 + s2, if primitive
d is restruct_t and primitive j (or f) is area_he. The learning of inter-primitive
interaction is specified at Lines 10–11 in Fig. 18.9, Algorithm 2.

Overall, the Learning algorithm’s cost-estimation function (Line 12 in Fig. 18.9,
Algorithm 2) is a dynamic weighted sum of the coarse- and fine-cost with a changing
weighting factor α for the coarse-cost and a factor (1 − α) for the fine-cost, where
0 ≤ α ≤ 1. For determining α we used the formula α = β(i−1) where 0 < β < 1
and i is the current iteration number. That is, we favor the fine-cost more in the later
tuning iterations as there are more reference scenarios available.

18.4 SynTunSys Results

Synthesis parameter tuning was used during the design of the last three generations
of IBM server chips, across multiple product lines, spanning 32, 22, and 14 nm
technologies. An early, semi-automated version of SynTunSys was to design the
IBM POWER7+ 32 nm processor [6]. This initial deployment primarily targeted
power optimization during the second chip tapeout.3 The first fully automated use
of SynTunSys was for the IBM POWER8 22 nm processor [7] where a few timing
critical macros were optimized during the first tapeout and multiple macros were
optimized for timing and power during the second tapeout. The IBM z13 22 nm
processor [1] was the first widespread usage of SynTunSys across nearly all macros
for timing, power, and congestion during both tapeouts. In particular, a systematic
study on SynTunSys QoR was performed on ∼200 macros during the first z13
tapeout, the results of which are detailed in the next subsection. At the 22 nm node
SynTunSys employed the Base decision algorithm, as described in Sect. 18.3.1.

More recently, SynTunSys was used to design the IBM POWER9 [8] and IBM
z14 [9] processors, both designed in 14 nm finFET technology. For these chips
SynTunSys was widely used on nearly all macros by both designers and a new
automated scheduling system described in Sect. 18.5. In addition, SynTunSys was
upgraded to the Learning algorithm for the 14 nm node. The following subsections
present results from the systematic z13 study (Sect. 18.4.1), 14 nm results sampled
from the SynTunSys Archive (Sect. 18.4.2), and a QoR comparison of the Base and
Learning algorithms (Sect. 18.4.3).

3The server chips described in this chapter often go through two chip releases, a.k.a. tapeouts.
The first tapeout is less optimized early version of the chip, whereas the second tapeout targets an
optimized production quality chip.

554 M. M. Ziegler et al.

18.4.1 z13 Case Study Results

SynTunSys was widely adopting early in the design flow for the design of the IBM
z13 22 nm server processor. The processor underwent two chip releases (tapeouts)
over a multi-year design cycle, during which SynTunSys was applied to macros
over both releases. The chip consists of a few hundred macros that average around
30K gates in size, with larger macros in the 300K gate range. Although SynTunSys
was used for earlier IBM chip designs, z13 was for the first to use the flow during
the entire design cycle for timing closure, power reduction, and improving macro
routability.

During the first chip release, a dedicated SynTunSys team performed tuning for
hundreds of macros across the chip. In parallel, a number of designers further tuned
the macros they owned, as needed. Based on the efforts of the dedicated tuning
team we were able to track SynTunSys results on approximately 200 macros from
the processor core. The “pass 1” rows of Fig. 18.12 show the average improvements
achieved by SynTunSys over the best solution previously achieved by the macro
owners for the first chip release. Note that these results are based on the routed macro
timing and power analysis; in most cases the best known prior solutions included
manual parameter tuning by the macro owner. The first pass of SynTunSys resulted
in a 36% improvement in total negative slack, a 60% improvement in worst latch-
to-latch slack (macro internal slack), and a 7% power reduction. The actual values
of the metrics, summed across all the macros, underscore that the changes in the
absolute numbers were significant, e.g., for pass 1, ∼780,000 ps of total negative
slack was saved across ∼200 macros.

A second SynTunSys tuning run by the macro owners to further improve timing
and power was performed during the second chip release. These second pass tuning
runs build off the prior tuning run results to further search the design space. In

Fig. 18.12 Average SynTunSys improvement over best known prior solution based on post-route
timing and power analysis

18 SynTunSys: A Synthesis Parameter Autotuning System 555

some cases the macro logic was also quite different in the second chip release,
leading to a different design space. For the second tapeout we had a less controlled
study, but wider usage by macro owners. Based on data from 25 macros (Fig. 18.12,
“pass 2”) we still see considerable improvements on macros after the second pass
of SynTunSys.

18.4.2 14 nm Data Mining Results

In this subsection we describe SynTunSys improvements for macros from 14 nm
server chips, i.e., POWER9 [8] and z14 [9] processors. The goal is to not only
show the effectiveness of SynTunSys at a more advanced technology node, but also
highlight the multiple design point options made available by SynTunSys.

SynTunSys ranks scenarios by a single cost value computed from multiple
metrics and weights from a user’s cost function. But the choice of scenario(s) to
continue through the later stages of the design flow, e.g., routing steps, is ultimately
in the hands of the designer. Thus, SynTunSys not only provides a suggested best
scenario by cost, but also a number of other scenarios that may be more attractive
with respect to specific metrics while having a higher overall cost. Figure 18.13
shows the average SynTunSys improvement percentages for over 150 macros from
a 14 nm server chip. The results were mined from the SynTunSys Archive that stores
data from all SynTunSys runs and are thus results from an actual processor design
cycle. With SynTunSys more integrated into the design flow, we did not perform an
explicit systematic study like was done for z13 in the previous section, but we can
periodically mine the SynTunSys Archive for QoR statistics.

The first row of the table shows the average improvement percentages for the
top scenario in terms of cost. The second through last rows of Fig. 18.13 provide
average SynTunSys improvements for the top scenarios with respect to a specific
metric. Although these scenarios often are not as well rounded as the scenario with
the lowest cost, they provide a variety of design point options that may solve the
challenges of a specific macro.

Fig. 18.13 Average SynTunSys improvements for a 14 nm processor (150 macros)

556 M. M. Ziegler et al.

18.4.3 Decision Algorithm Comparisons

In this subsection we compare the Base and Learning algorithms. We begin by
configuring settings for the Learning algorithm using a small test suite of macros.
We then perform a thorough benchmarking of the Base and Learning algorithms
using production macros from the IBM 22 nm z13 processor from [1].

The Learning algorithm provides a number of configuration settings that can be
tuned to improve performance. To determine appropriate settings of the Learning
algorithm we use a small test suite of four macros varying in logic functionality
and create three Learning algorithm configurations shown in Fig. 18.14.4 We use
a balanced cost function considering timing, power, and congestion, and run the
Base and three Learning algorithm variants for three iterations, in addition to the
sensitivity test, on the four test macros. We compare these algorithms in terms of
the average cost of their final top-N results, with N in {1, 5, 10}. Figure 18.15
shows the result of the comparison where the costs of all configurations of the
Learning algorithms are relative to the Base algorithm costs. Overall, the winner is
Learning3+, which consistently outperforms Learning3, which in turn outperforms

Fig. 18.14 Algorithm
configurations

Fig. 18.15 Configuration comparison results for Base vs. Learning algorithms

4While many more configurations are possible, this experiment illustrates our initial attempt to
configure the Learning algorithm parameters. Over time we have performed additional configura-
tion experiments and designers running SynTunSys can also reconfigure the Learning algorithm as
needed via the Rules file.

18 SynTunSys: A Synthesis Parameter Autotuning System 557

Learning2. We hypothesize that the Learning3+ performs the best for the following
reasons: (1) the higher combination order allows exploring scenarios that combine
more primitives during earlier iterations and (2) the addition of the fine-cost
component in the cost estimation does indeed improve prediction accuracy. Thus,
the winning algorithm, Learning3+, whose size of the potential set, max number of
tuning iterations, combination order, and weight-changing parameter β are 20, 5, 3,
and 0.9, respectively, was chosen for the production benchmark comparison.

For a more thorough Base and Learning algorithm comparison we selected a
test suite of 12 macros from the z13 22 nm processor, ranging in size from 1K
to 110K gates, with an average size of 31K gates (the same average macro size
as the processor). The same cost function is used for both algorithms, which is
balanced across timing, power, and congestion metrics. We use a large number of
initial primitives (50) to emulate a realistic design scenario. For both algorithms, the
maximum scenario count per iteration is 20 (after the sensitivity test, i.e., i > 0) and
the total iteration count is 5, plus the sensitivity test.

The exploration results are summarized in Fig. 18.16. For this study we did not
route the macros and, therefore, we report only post-physical synthesis statistics. In
lieu of routing, we include a routability metric called route-score, in which a lower
value denotes less congestion (i.e., a more routable macro). Overall, the results
of Fig. 18.16 are in the same average improvement range for the Base algorithm
as with the z13 processor tuning from [2]. However, the Learning3+ algorithm
achieves an additional 20% total negative slack improvement over the Base results
as well as significant improvements across all timing metrics. Figure 18.17 provides
the macro-by-macro percentages of change for each metric category in the cost
function. Only one macro sees degradation on one metric (routability of macro H)
for the Learning3+ algorithm, while three macros see degradation for Base.

Figure 18.18 provides a visual representation of the explored design spaces for
the two largest macros in the test suite. These plots show total power (top row)
and a route-score (bottom row) vs. total negative slack (all values normalized). The

Fig. 18.16 Comparison of Learning and Base algorithms across a 12 macro test suite that is the
representative of IBM 22 nm z13 processor

558 M. M. Ziegler et al.

Fig. 18.17 Macro-by-macro breakdown of Learning vs. Base

Fig. 18.18 Power and routability results for the largest test suite macro

18 SynTunSys: A Synthesis Parameter Autotuning System 559

less the power/route-score/negative slack, the better the quality of result (i.e., the
optimization goal is the lower-right corner of the plots). We can see that Learning3+
effectively optimizes all the three metrics for macro K. The results also illustrate
that Learning3+ indeed adapts to the more promising design space: the i = 5 dots
are more focused on the lower-right region of the spaces than the i = 3 dots. On
macro L, Learning3+ adapts to optimizing the timing and power, whereas the Base
algorithm finds solutions with better route-score. If we compare the single best
scenario (lowest-cost scenario) for macro L based on the balanced cost function
(Fig. 18.18), Learning3+ actually outperforms Base in each metric, including route-
score.

18.5 SynTunSys Enhancements and Future Work

There are many ongoing threads of research beyond the current production version
SynTunSys. These efforts aim to improve QoR, compute efficiency, and allow the
tuning process to efficiently scale to multiple macros. This section will preview
a few of the promising SynTunSys enhancements that may soon be added to the
production release.

18.5.1 Opportunities for History-Based Enhancements

The data within the SynTunSys Archive provides many promising opportunities
for improving the SynTunSys flow. Saving SynTunSys run data was built into
the initial production release of the system, although the precise usage of the
data at that time was unclear. The first usage was an offline evaluation of relative
primitive performance across multiple macros. This analysis was used to update
the default Rules files and provide feedback to the EDA team, i.e., Arc 7b and Arc
8b in Fig. 18.3, respectively. These two usages, however, were based on average
primitive performance across multiple macros and were not macro-specific, nor was
the SynTunSys run in flight directly affected. More recently, work has begun to
exploit the SynTunSys Archive data in a macro-specific manner. The following two
subsections provide examples of how this data may be used.

18.5.1.1 The Jump-Start Algorithm

One enhancement to the SynTunSys decision algorithms targets the reduction of the
overhead of the sensitivity test, i.e., iteration i = 0. The enhancement employs the
archived data from prior SynTunSys runs on previously tuned macros.

In practice, our default sensitivity tests provide three levels of tuning effort: low,
medium, and high, featuring 20, 35, and 50 initial primitives, respectively. In order

560 M. M. Ziegler et al.

to increase the efficiency of the sensitivity test (i.e., to approach the higher-effort
exploration result based on a lower-effort sensitivity test), we present the Jump-
Start test. The idea is to run a low-effort sensitivity test for the current macro as
a pseudo test TL, and to take TL’s ranking of the initial primitives as a signature.
Then, the Jump-Start test retrieves the high-effort test TH from the archive having
the most similar primitive ranking to TL’s signature. The Jump-Start test adopts
TH ’s sensitivity test primitive ranking and proceeds to the search iterations (i > 0).
The final exploration result should improve if the number of primitives in TH is
greater than that in TL.

We measure the similarity between two signatures using “the Length of Longest
Common Subsequence (LLCS).” Each signature is represented by a sequence in the
order according to the primitive ranking. For example, given primitives in [a . . . z],
the longest common subsequence of two signatures 〈a, b, c, d〉 and 〈a, f, d〉 is
〈a, d〉 with LLCS equal to two. Figure 18.19 illustrates a low-effort sensitivity test
with six primitives, while in the archive, the high-effort sensitivity tests with more
than six primitives are identified and sorted according to their LLCS with respect to
TL’s signature. Among these high-effort tests, TH #1 has the maximum LLCS (five).
Thus, the complete sensitivity-test result of TH #1 is taken to kick off the first search
iteration (i = 1). As a tie-breaker for selecting among TH ’s with equal LLCS, we
favor the TH that includes more high-ranking primitives, e.g., TH #3 is considered
more similar to TL than TH #2 in Fig. 18.19.

Next, to explore the effectiveness of the Jump-Start sensitivity test, we used
the smaller test suite of macros that were employed for fine-tuning the Learning
algorithm parameters and compare the Jump-Start results against the standard low-
effort sensitivity test. The Jump-Start test is based on searching an archive of
thousands of high-effort sensitivity tests. By default, the low-effort and high-effort
sensitivity-test scenario counts are 20 and 50 initial primitives. Figure 18.20 shows
the cost comparison between the default low-effort SynTunSys run (whose cost is
normalized as 1.0) and a low-effort run employing the Jump-Start sensitivity test.
The plot shows the average normalized cost of the top 1, 5, and 10 scenarios for the
four macros. Although the same scenario count was used for both the standard low-
effort run and low-effort run with Jump-Start, the Jump-Start algorithm achieved

Fig. 18.19 Illustration of the
Jump-Start sensitivity test

18 SynTunSys: A Synthesis Parameter Autotuning System 561

Fig. 18.20 Average cost
comparison of the Jump-Start
test vs. the standard
low-effort SynTunSys run,
which has a normalized cost
of 1.0

lower cost (better QoR) for all four macros, thanks to the high-effort primitives
retrieved from the archive.

18.5.1.2 The Recommender System

Another history-based enhancement to SynTunSys aims at automatically recom-
mending near-optimal macro-specific scenarios at an earlier stage of the decision
algorithm. In Sect. 18.4.3, 3 or 5 tuning iterations plus a sensitivity test were
performed for each macro, submitting about 20–30 synthesis jobs per iteration.
Additionally, the resulting search spaces were constrained by the list of initial prim-
itives used in and survived from the sensitivity test. By exploiting the SynTunSys
Archive and constructing a new macro-specific cost predictor, we can recommend
scenarios at iteration i = 0 or i = 1, greatly reducing the number of synthesis jobs
that are currently necessary to adapt to each macro. Furthermore, the recommended
scenarios may include some primitives from the history that are not considered in
the sensitivity test of a specific macro and thus omitted from the search space.

In many application areas outside synthesis parameter tuning, recommendation
systems based on collaborative filtering have been actively suggested and imple-
mented. For instance, in a movie recommender system, while each user reviewed
only a small number of movies from the entire list, the system predicts the user’s
review scores for other movies by analyzing the collection of existing movie
reviews by all users [10]. In this system, each user’s preferences and each movie’s
characteristics are hidden, but revealed via collaborative filtering with techniques,
such as matrix factorization. Similarly, in our SynTunSys scenario recommender
system, we attempt to extract the hidden properties of macros and primitives from
the history and use them in the cost prediction.

Figure 18.21 illustrates an overview of the proposed recommender system,
composed of two engines: offline training and online recommendation. The training
engine takes in normalized costs for (macro, scenario) combinations stored in the
SynTunSys Archive, and outputs the trained cost predictor. The cost prediction
model includes the hidden features of the macros and primitives from the Archive,
and a combination generator. In [10], the movie review matrix is factorized into

562 M. M. Ziegler et al.

Fig. 18.21 An overview of the proposed recommender system

the user matrix and the movie matrix, containing hidden features of the users and
movies, respectively. Similarly, the tensor of SynTunSys results can be decomposed
into structures containing hidden features of macros and primitives. This part of the
model can be used to predict the results for a (macro, primitive) combination. Then,
the combination generator predicts the results for a (macro, scenario = (primitive 1,
. . ., primitive n)), given the predicted results for (macro, primitive 1), . . ., (macro,
primitive n). Given a trained cost predictor, the recommendation engine reads
in the information about a target macro (the macro name or the sensitivity-test
results) and the design objective function (from the Rules file), and outputs a list of
recommended scenarios. These recommendations are made to maximize the target
macro’s design objective value estimated using the cost predictor.

18.5.2 Improving Compute Footprint Efficiency

Minimizing compute resources and disk space while maintaining quality of results is
one area of continual research for SynTunSys. Streamlining the SynTunSys compute
footprint (Fig. 18.7) is one thread of effort that would improve the compute resource
usage, independent of the underlying decision algorithm.

One method to reduce SynTunSys resource requirements is to reuse the compute
effort of scenarios that “overlap,” i.e., share the same parameter settings over a
subset of steps during execution of the synthesis program. Each synthesis scenario
run by SynTunSys has been described thus far as a separate synthesis run. However,
quite often many of the scenarios execute the same synthesis code up to a
certain point and then diverge, e.g., when parameters are set to different values
causing execution of different synthesis code branches. Figure 18.22 illustrates two
overlapping operations that can be applied to realize this concept. The first technique
is to “checkpoint” runs after each executing steps that are expected to run rerun
in scenarios during future iterations. Figure 18.22-b1.1 illustrates that during the
first iteration (i = 0) certain scenarios are checkpointed by writing the partially
completed synthesis runs as well as information to resume to the run to disk.
During the next iteration (i = 1), new scenarios can resume the partially completed

18 SynTunSys: A Synthesis Parameter Autotuning System 563

Fig. 18.22 Proposed SynTunSys compute efficiency enhancements: (a) the present system runs
scenarios in parallel, through all steps of the flow. (b) The proposed enhancements would allow
overlapping scenarios to reuse compute effort and non-promising scenarios to be pruned

checkpointed runs, i.e., Fig. 18.22-b1.2. Checkpointed runs can also be “forked”
into multiple unique scenarios by resuming prior to the divergence of parameters as
Fig. 18.22-b2 illustrates.

Pruning non-promising scenarios in flight is a third mechanism that can improve
compute efficiency [11]. This technique relies on QoR statistics from partially
completed synthesis runs to predict whether allowing a scenario to continue to
the next step in the flow will lead to a competitive result. There are a number
of potential policies for choosing whether to prune a scenario. Figure 18.22-b3
illustrates how a reference run can be used as a QoR comparison for scenarios
in future iterations. Alternate policies such as only allowing a subset of the top
scenarios to survive after certain steps or requiring a minimum QoR for survival are
also possible. Another approach would be to train a model using historical data from
the SynTunSys Archive to predict whether a scenario should be pruned. In terms
of the expected improvements from pruning, an initial investigation into pruning
techniques suggests that a 20% reduction in compute resources is achievable [11].

While these proposed mechanisms would allow improving compute efficiency,
there are some potential drawbacks that we should discuss. First, for all the
techniques, a more complex common compute footprint is needed, requiring
additional bookkeeping, disk space, and inter-process communication, although
these are technical challenges that would most likely be overcome with coding
and testing effort. One other issue is the existence of run-to-run QoR variation
in the synthesis tools. Although, it is generally expected that advanced synthesis
tools will not provide exactly the same solution when running the same scenario
multiple times, checkpointing may amplify issues with run-to-run variability if
a run having a large deviation from the mean is checkpointed and reused for
many future scenarios. In terms of scenario pruning, this approach would reduce
the non-attractive scenarios logged in the SynTunSys Archive that may result in

564 M. M. Ziegler et al.

training data that has fewer occurrences of scenarios to avoid. Overall though, these
compute efficiency improvement techniques should lead to more effective versions
SynTunSys, if implemented wisely.

18.5.3 A Scheduling System for Multi-Macro Tuning

While the optimization approaches described in the previous sections are effective
for achieving QoR improvements for a single macro, large design projects often
consist of many macros that are concurrently designed by multiple human designers.
Furthermore, limited compute resources, even in an industrial setting, require ROI
considerations when investing effort into tuning the parameters of macros. For
example, during the processor tuning described in [2] there were many times when
the compute cluster was heavily loaded with parameter tuning jobs and other times
when the cluster was relatively idle. This unpredictable pull on compute resources
inherently arises when designers work independently without global project ROI
considerations and/or without tightly coupled communication of compute needs.
These challenges motivate a solution for enhancing the cumulative parameter tuning
QoR for an entire design project that consists of multiple macros.

Our novel solution is the SynTunSys Scheduler, a.k.a., STSS, a system that
manages multiple SynTunSys runs for multiple macros [3]. This system works at
a higher level of abstraction that considers the ROI of SynTunSys runs at the project
level. Figure 18.23 shows a diagram of the components and processes of STSS.

Fig. 18.23 Architecture of the SynTunSys Scheduler (STSS)

18 SynTunSys: A Synthesis Parameter Autotuning System 565

The general goal of STSS is to take a list of SynTunSys run requests and optimally
determine the order in which to submit them to the queue manager, given resource
limits. For our work we use the Platform LSF workload management system, which
is the commercial software based on the Utopia project [12]. The more general
problem STSS addresses is CAD-tool scheduling, which recently is receiving more
attention, e.g., for scheduling architectural simulations for a single design [13].

The process begins at Step (1) in Fig. 18.23 where the following inputs are
provided to STSS: (A) a list of SynTunSys run requests and a reference set of
synthesis QoR stats for the multiple macros (note that if the reference QoR stats are
not available, STSS will first schedule one synthesis run on all macros in the list to
generate the reference stats), (B) a priority ranking policy and global cost function,
which will be described below, and (C) compute resource limits. Given these input
data, STSS creates a priority ordered list of the SynTunSys requests. There are
multiple policies that can be employed for the priority ranking, as we describe
later. Next, at Step (2), the queue interfacing component of STSS submits one or
more SynTunSys runs to the queue manager (existing software, e.g., Platform LSF),
which ultimately starts the synthesis jobs on the compute cluster. After submission,
an STSS monitor process starts to interact with the queue manager to monitor
progress of the SynTunSys jobs and to sample the compute cluster load. Step (3) in
Fig. 18.23 is triggered whenever a SynTunSys run completes and involves a result
collection process that adds the new SynTunSys tuning results to the list of the
current best synthesis results for all macros. The feedback process is then initiated
as Step (4) where the updated list of synthesis results for all macros, compute cluster
load information, and compute resource limits are passed to the priority ranking
algorithm. After updating the priority ranking, the queue interface determines if
more SynTunSys runs should be submitted.

18.5.3.1 STSS Priority Ranking

The key component of STSS is the priority ranking that predicts which macros will
provide the highest ROI from tuning. There are multiple policies for this prediction.
Due to space limitations we describe only two possible ranking policies.

Policy 1 This policy ranks macros based on a cost analysis of existing synthesis
run stats for each macro. The cost analysis can use the same “normalized weighted
sum” cost function and metrics from Eq. (18.1). However, in this case the goal
is to compare a single set of synthesis metrics for multiple macros, rather than
compare multiple scenarios from a single macro. This policy effectively works
on the worst macros based on the current QoR. One possible shortcoming is that
this policy assumes that tuning macros with worse QoR will provide strong tuning
improvements. In general, this policy is a depth-first approach to the multi-macro
problem.

Policy 2 Alternatively, Policy 2 approaches the multiple macros in a breadth-first
manner. The policy first performs a sensitivity test on all macros and then ranks

566 M. M. Ziegler et al.

macros based on QoR improvements from the sensitivity test. The sensitivity test
could in fact be the first iteration of a SynTunSys run or a simplified test that is
used to only rank macros. A low-effort Jump-Start test sensitivity as described in
Sect. 18.5.1.1 would also work well in this context. The advantage of this policy
is that it samples the actual tuning QoR potential before investing in a complete
SynTunSys run. The downside is that the up-front effort invested in the sensitivity
test could be used to directly tune macros.

18.5.3.2 Second Pass SynTunSys Runs

Another tradeoff to consider is that multiple SynTunSys runs can be applied to
a macro to further explore the design space. These second pass runs build off
the results of the first SynTunSys run by keeping top performing primitives and
removing poor performing primitives from the search space. New unexplored
primitives are then added to the second pass SynTunSys run. Thus, choosing
whether to perform a second pass tuning run on a previously tuned macro or tune
a new macro is a decision for the priority ranking algorithm. Although these multi-
pass (second pass and beyond) SynTunSys runs can lead to diminishing returns, the
next subsection will show the advantages.

18.5.3.3 STSS Results

To demonstrate the effectiveness of STSS we apply the system to the 12 macros
from Sect. 18.4.3 and use the Learning3+ algorithm for all SynTunSys runs. For
this example we use Policy 1 and the same balanced cost function is used for the
tuning results from Sect. 18.4.3. Also for brevity, we assume that tuning runs are
executed sequentially, i.e., one at a time. First, we consider tuning the 12 macros
without allowing second pass tuning runs. Figure 18.24a shows results comparing
cumulative improvement of three key metrics using the STSS Policy 1 ordering
vs. a random macro ordering. We compare against random macro ordering because
during an actual design project, without a centralized higher level system like STSS,
designers effectively submit SynTunSys runs at will without considering macro
priority, thus a random ordering reflects a realistic industrial setting. To simulate
this, we generate 1000 random orderings of the 12 macros and then average the
QoR improvements across them. The results show the distinct advantage of STSS
in terms of total negative slack (TNS), power, and routability. We highlight one
sample point in the plot where half the macros are tuned. At this point STSS has a
24% TNS advantage and a 6% power advantage over random tuning. Furthermore
after tuning only half the macros, STSS has achieved 58% out of the total 62% TNS
savings and 9% out of 10% power savings available from tuning all 12 macros.
Thus, the STSS priority ordering allows us to evaluate ROI options and determine
whether continuing to tune macros is beneficial or has diminishing returns.

18 SynTunSys: A Synthesis Parameter Autotuning System 567

Fig. 18.24 Results of tuning 12 macros based on STSS priority ordering vs. random ordering. (a)
Priority ranked tuning vs. random tuning. (b) Priority ranked tuning vs. random tuning, allowing
second pass tuning runs

Next, we consider the same case study of the 12 macros but allow the option of
second pass SynTunSys runs. Figure 18.24b shows the results of this experiment.
We perform 12 total tuning runs, where the random ordering results are the same
as in Fig. 18.24a. For the STSS case we perform 12 total tuning runs where with
the second pass SynTunSys option not all macros are necessarily tuned. In this
experiment, the priority ranking algorithm chooses to tune six macros twice, one
macro once, and does not tune five macros. The ability to choose second pass
SynTunSys runs leads to a 19% TNS improvement compared to random ordering
after all 12 SynTunSys runs and a 43% TNS advantage after only 6 SynTunSys runs.

568 M. M. Ziegler et al.

18.6 Related Work

The synthesis parameter tuning problem we address can be classified as a black-box
optimization problem, i.e., we treat the synthesis program as black-box software by
supplying input conditions (input data and parameter settings) and measuring the
output response in terms of synthesis quality of results (QoR). Black-box problems
are often approached using techniques from the field of simulation optimization
[14], which is an umbrella term for optimization techniques that operate in the
absence of an algebraic model of the system. Since each macro exhibits a unique
input–output response to the synthesis parameter settings and digital logic can take
on an intractable number of functionalities, the synthesis tool-flow of our focus is
far too complex to be modeled algebraically. Black-box optimization techniques can
also be employed for DSE purposes. However, unlike conventional DSE, the goal of
black-box optimization is often to find one or more optimal or near-optimal design
points without necessarily requiring a complete exploration of the design space to
determine the whole Pareto frontier of tradeoff points.

Black-box parameter optimization is a common problem seen across a number of
fields, e.g., compiler tuning [15] and software engineering [16, 17]. Hyperparameter
tuning of neural networks is also a very active area of research [18]. With respect
to VLSI design, DSE is becoming a more attractive solution for complex problems
across various levels of abstraction. At the architectural level, many DSE studies
based on models or simulators have been used to explore multi-objective design
spaces, e.g., [19]. Architectural-level studies, however, typically do not result in
implemented designs. DSE approaches have been used for high-level synthesis
by leveraging machine-learning methods [20] and for FPGA synthesis by tuning
parameters with genetic algorithms [21], Bayesian optimization [22], and ensemble
approaches [23].

In comparison to the works mentioned above, SynTunSys is unique in that it
operates on a general-purpose synthesis tool-flow targeting VLSI chip design. Also,
SynTunSys has been proven in an industrial setting, being used for multiple high-
performance processors, currently in production in advanced technology nodes.

Furthermore, when compared with recent works on FPGA parameter tuning,
SynTunSys does not require the human designer hints that have been used for
genetic algorithms in [21] and our in-house learning algorithm has advantages over
the Bayes approaches in [22]. In particular, our Learning algorithm from Sect. 18.3.2
performs cost ranking after each iteration, as opposed to the classification that
standard machine-learning algorithms, such as Bayes or SVM, would perform. The
ranking allows predicting the top-k most promising scenarios for the next iteration,
as opposed to random sampling followed by classification. Thus, we believe the
Learning algorithm may converge faster than the classification approaches and is
more appropriate for low-latency optimization. In fact, we often see high-quality
scenarios emerge after only two iterations.

18 SynTunSys: A Synthesis Parameter Autotuning System 569

18.7 Conclusions

To the best of our knowledge, SynTunSys is the first self-evolving and autonomous
system for tuning the input parameters of logic and physical synthesis tools. By
taking over the process of tuning the input parameters and by learning automatically
from the information of previous synthesis runs, SynTunSys realizes a new level of
abstraction between designers and tool developers. SynTunSys has been applied
to IBM server processors across three technology nodes (32, 22, and 14 nm). A
systematic study of SynTunSys during the design of the IBM z13 22 nm server
processor revealed SynTunSys provided, on average, a 36% improvement in total
negative slack and a 7% power reduction. We have also presented enhancements
to the SynTunSys system across various fronts, including a novel parameter tuning
algorithm employing adaptive online learning that improves quality of results over
our original algorithm. Results using this new algorithm were presented based
on 22 and 14 nm high-performance industrial server components. Furthermore,
we presented a number of additional threads of research in progress, covering
topics such as history-based recommender systems, enhancements for computing
efficiency, and a novel higher-level system that manages parameter tuning of
multiple designs. Overall, we feel SynTunSys may be the first production example
of a new breed of automation tools that targets not only design automation, but also
automation of designer decisions that are conventionally performed by humans.

References

1. J.D. Warnock et al., 22nm next-generation IBM system z microprocessor, in ISSCC, 2015
2. M.M. Ziegler et al., A synthesis-parameter tuning system for autonomous design-space

exploration, in DATE, 2016
3. M.M. Ziegler, H.-Y. Liu, L.P. Carloni, Scalable auto-tuning of synthesis parameters for

optimizing high-performance processors, in ISLPED, 2016
4. M.M. Ziegler et al., POWER8 design methodology innovations for improving productivity and

reducing power, in CICC, 2014
5. L. Trevillyan et al., An integrated environment for technology closure of deep-submicron IC

designs. IEEE Des. Test Comput. 21(1), 14–22 (2004)
6. M.M. Ziegler, G.D. Gristede, V.V. Zyuban, Power reduction by aggressive synthesis design

space exploration, in ISLPED, 2013
7. E.J. Fluhr et al., POWER8: a 12-core server-class processor in 22nm SOI with 7.6Tb/s off-chip

bandwidth, in ISSCC, 2014
8. C. Gonzalez et al., POWER9: a processor family optimized for cognitive computing with

25Gb/s accelerator links and 16Gb/s PCIe Gen4, in ISSCC, 2017
9. C. Berry et al., IBM z14: 14nm microprocessor for the next-generation mainframe, in ISSCC,

2018
10. Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems.

Computer 42, 30–37 (2009)
11. M. Anwar, S. Saha, M.M. Ziegler, L. Reddy, Early scenario pruning for efficient design space

exploration in physical synthesis, in International Conference on VLSI Design (VLSID), 2016

570 M. M. Ziegler et al.

12. S. Zhou et al., Utopia: A Load Sharing Facility for Large, Heterogeneous Distributed Computer
Systems (Wiley, New York, 1993)

13. G.P. Mariani et al., DeSpErate++: an enhanced design space exploration framework using
predictive simulation scheduling. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(2),
293–306 (2015)

14. S. Amaran et al., Simulation optimization: a review of algorithms and applications. 4OR: Q. J.
Oper. Res. 12, 301–333 (2014)

15. G. Fursin et al., Milepost GCC: machine learning enabled self-tuning compiler. Int. J. Parallel
Prog. 39, 296–327 (2011)

16. A. Arcuri, G. Fraser, Parameter tuning or default values? An empirical investigation in search-
based software engineering. Empir. Softw. Eng. 18(3), 594–623 (2013)

17. H.H. Hoos, Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
18. G.I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, H. Samulowitz, An effective algorithm for

hyperparameter optimization of neural networks. IBM J. Res. Dev. 61(4), 9:1–9:11 (2017)
19. O. Azizi et al., An integrated framework for joint design space exploration of microarchitecture

and circuits, in DATE, 2010
20. H.-Y. Liu, L.P. Carloni, On learning-based methods for design-space exploration with high-

level synthesis, in DAC, 2013
21. M.K. Papamichael, P. Milder, J.C. Hoe, Nautilus: fast automated IP design space search using

guided genetic algorithms, in DAC, 2015
22. N. Kapre et al., Driving timing convergence of FPGA designs through machine learning and

cloud computing, in FCCM, 2015
23. C. Xu et al., A parallel bandit-based approach for autotuning FPGA compilation, in FPGA,

2017

Chapter 19
Multicore Power and Thermal Proxies
Using Least-Angle Regression

Rupesh Raj Karn and Ibrahim (Abe) M. Elfadel

19.1 Introduction

Power and thermal modeling of multicore processors using performance counters
(PCs) has been widely researched in both academia and industry [1]. Most of these
models are based on various forms of linear regression using an extensive set of
architectural performance counters or micro-architectural activity monitors [2] as
the regression variables. The industry has given the name of power proxies to these
regression-based formulas because they are used to estimate or predict core power in
the absence of per-core power measurements. The weights of the proxy’s regression
formula are typically computed off-line using workloads from industry-standard
benchmarks such as SPEC CPU 2006, PARSEC, SPECPower, and SYSmark. The
number of regression variables can be as high as 50 for multicore processors [2, 3].
In per-core proxies based on micro-architectural monitors, there could be as many as
30 activity monitors per core [3]. An activity-based power model is created in [4] for
GPUs. Activity factors are identified to calculate power for micro-architectures on
GPUs. The real-time power consumption is estimated using NVIDIA’s Management
Library. A 2-layer model of power consumption is generated in [5] for a hybrid
supercomputer that combines CPU, GPU, and MIC technologies. The model takes
the number and location of resources used by the programs and calculates the
resulting system-level power consumption. Workload configurations are evaluated

R. R. Karn
Department of Electrical and Computer Engineering, Khalifa University of Science and
Technology, Abu Dhabi, United Arab Emirates
e-mail: rupesh.karn@ku.ac.ae

I. M. Elfadel (�)
Department of Electrical and Computer Engineering and Center for Cyber Physical Systems,
Khalifa University, Abu Dhabi, UAE
e-mail: ibrahim.elfadel@ku.ac.ae

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_19

571

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_19&domain=pdf
mailto:rupesh.karn@ku.ac.ae
mailto:ibrahim.elfadel@ku.ac.ae
https://doi.org/10.1007/978-3-030-04666-8_19

572 R. R. Karn and I. M. Elfadel

from a power perspective and more the efficient ones are selected. The model is also
used for power-aware scheduling and anomalous behavior prediction. Often times,
the same set of proxy variables is used across the full set of benchmarks and the
same set of weights is used for power prediction and estimation.

In runtime power and thermal management, these proxies have shortcomings that
can be summarized as follows:

1. The high number of regression variables, architectural or micro-architectural,
severely limits the scalability of these proxies to a high number of cores.

2. Although they are optimized for a full database of workloads, there is no
guarantee they will adequately predict power for new workloads.

3. They provide no guidance as to the regression variable most relevant or most
correlated with the power consumed by the workload. Such guidance is crucial
for selecting the control policy most appropriate to mitigate the most important
sources of power dissipation as may be the case under power capping constraints.

Attempts have already been made to address the scalability issue by introducing
ultracompact power proxies that are able to predict power with less than 3% error
[6]. Unlike the traditional power proxies, these ultracompact ones are nonlinear and
have the distinct benefit of predicting consumed power across idle and active states
using regression variables modulated by active-state residency.

For workload adaptation, one possible approach is to use signal processing
methods such as wavelet analysis [7] to detect workload phases and workload
transitions and then select the regression weights that minimize the power estimation
error for the newly detected workload. Another approach is to use a statistical
metric model (SMM) that can pro-actively tune hardware or software to expected
application characteristics [8]. For instance, an SMM can predict the memory
access rate of different applications and thus guide the selection of power reduction
techniques such as power gating and dynamic voltage and frequency scaling
(DVFS). As for the selection of the control variable, one well-known ad-hoc method
is to use principal component analysis (PCA) to find the linear combination of
regression variables most correlated with the consumed power. This benefit of PCA
is also its main disadvantage as it requires that several regression variables be
linearly combined before taking any control action.

In this chapter, we propose the use of the least-angle regression (LAR) algorithm
that first appeared in the statistical learning literature [9], to address the issues of
workload adaptation and control variable selection. The main advantages of using
LAR are correlation awareness, incremental model building, and the automatic
selection of the regression subset.

We make use of the LAR advantages to develop an incremental proxy building
algorithm for both power and temperature. The algorithm enables the progressive
selection of a subset of regression variables from the full set of PC measurements.
This subset can be interpreted as the workload signature in the PC space. Each
workload will have a power signature and a thermal signature. Such signatures can
be used to categorize, cluster, or differentiate workloads in real-time applications.
In our work, we find that these correlations are essential to classify whether a set
of given threads have similar workload signatures which, in turn, helps in mapping

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 573

threads to cores to increase overall performance and reduce power consumption.
They can also be used to refine any power or temperature management policies by
making them adapt to the workload once its signature is ascertained.

The number of regression variables is determined by the desirable level of
accuracy for the power or temperature proxy. The LAR algorithm constructs
a nested set of regression models and orders the selected regression variables
according to the correlation of the PC data vectors with the residual vector obtained
from the predecessor regression model.

This chapter is a synthesis of our earlier work on multicore power and thermal
proxies [10–12].

19.2 Preliminaries

In this section, we give the mathematical and algorithmic background needed to
appreciate the role that least-angle regression plays as a regression subset selector
in linear regression analysis. The generic situation is as follows. We are given a set
of p input variables XT = (X1, X2, . . . , Xp) and an output variable Y , then the
linear regression model of Y given all the input variables is given by

Y = β0 +
p∑
i=0

βiXi (19.1)

The scalars βi, 0 ≤ i ≤ p, are the regression coefficients that need to be estimated
based on observations of the inputs and output. Very often, the input variables
are centered around 0, and in this case, the bias regression coefficient β0 = 0.
Throughout this section, we will make the assumption that the input variables are
centered around zero. To estimate the regression coefficients, we assume that N
observations are taken of each input xi = (x1i , x2i , . . . , xNi)

T , 0 ≤ i ≤ p, and the
output y = (y1, y2, . . . , yN)

T . With these N observations, it is well known that the
least-squares estimate of the regression coefficients is given by

β̂ = (XTX)−1XT y (19.2)

where the N × p matrix X is formed by the row stacking of all the N input
observations. The estimated output will then be

ŷ = Xβ̂ = β̂(XTX)−1XT y (19.3)

It is well known that the estimated value ŷ is the orthogonal projection of the output
measurements y on the subspace of �N that is spanned by the p columns of the
input measurement matrix X and that β̂ is the optimal solution of the least-squares
minimization problem

β̂ = argmin
β

[
(y −Xβ)T (y −Xβ)

]
(19.4)

574 R. R. Karn and I. M. Elfadel

The estimation error y − ŷ is called the residual and is denoted r . One important
question in regression analysis is whether a subset of the input variables is sufficient
for providing acceptable estimates of the output. Brute-force subset selection
consists of picking up the subset size k ∈ {1, . . . , p}, evaluating for each such
subset, the residual rk and selecting the subset that results in the smallest residual
Euclidean norm. It is clear that such an approach has combinatorial complexity
as the number of subsets that should be tried in the worst case is 2p. The brute-
force method of subset selection is therefore practical only for a small number of
regression variables.

Another approach for controlling the number of regression variables entering
the regression formula is indirectly by imposing constraints on the vector norm of
the regression coefficients β. This class of methods is known under the name of
“shrinkage” methods because they are based on “shrinking” a vector norm of β

below some given value. Ridge regression uses the Euclidean norm and results in
the optimal solution of the constrained least-squares problem

β̂ridge = argmin
‖β‖2

2≤t

[
(y −Xβ)T (y −Xβ)

]
(19.5)

where

‖β‖2
2 =

p∑
i=1

β2
i

When the L1 norm is used, we obtain the so-called lasso1 regression estimate

β̂ lasso = argmin
‖β‖1≤t

[
(y −Xβ)T (y −Xβ)

]
(19.6)

where

‖β‖1 =
p∑
i=1

|βi |

It is well known that for a given shrinkage factor t , the lasso regression results in
a sparser set of regression coefficients than ridge regression, that is, a set where
several of the regression coefficients are zero. The reader is referred to Chapter 3 in
[13] for more details about the subset selection and shrinkage methods for regression
modeling.

Least-angle regression (LAR) is closely related to lasso, and in one of its
variations, provides a computationally efficient algorithm for computing β̂ lasso.

1LASSO stands for least absolute shrinkage and selection operator.

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 575

For the description of LAR, we will make the additional assumption that the
measured input vectors X are not only centered but also normalized so that the
‖X‖2 = 1. LAR starts by initializing βi = 0, 1 ≤ i ≤ p so that ŷ0 = 0, and setting
the initial residual vector r0 = y. LAR is an iterative algorithm in which at each
step, a new regression variable enters the subset of active regression variables. At
step k, we denote such subset by Ak . Initially, A0 = φ, the empty set. At Step 1,
the regression variable that enters the active set is the one with the largest absolute
correlation with the residual r0. The first-step correlations are computed as

c1 = XT r0 = XT y (19.7)

To simplify the algebra, we assume all the correlations non-negative, and let xi be
the input vector having the largest correlation with the output. Then based on this
one regression vector, the output estimate is updated according to the rule

ŷ1 = ŷ0 + γ̂1xi (19.8)

In LAR, the choice of γ1 is such that the current residual, namely

r(γ1) = y − γ1xi (19.9)

has equal correlation with xi and its next competing variable xj . From the
correlation equality

xTi r(γ1) = xTj r(γ1) (19.10)

we get

γ1 = yT (xi − xj)

1− xTi xj
(19.11)

The feature of least angle is due to the fact that the equality of the correlations in
Eq. (19.10) amounts to the equality of the angles made between the vector r(γ1) and
each of the unit vectors xi and xj . In other words, γ1 is chosen so that r(γ1) is a
bisector of the angle between xi and xj

To present the general case, we follow the treatment in Section 2 of Efron’s
seminal work [9] but with the simplification that all the correlations between the
current residuals and the active regressors are non-negative. We also follow [9]
and assume that the input measurements are linearly independent. Now let A
be the subset of indices within 1, . . . , p of the current LAR iteration. The input
measurements corresponding to this subset are

XA = {xj }j∈A

576 R. R. Karn and I. M. Elfadel

The LAR algorithm takes the following steps:

1. Solve the least-squares problem with respect to the inputs XA and output Y , and
form the current estimate ŷA .

2. Compute the unit equiangular vector uA of the subset A . This vector makes the
same angle with each vector xj , j ∈ A .

3. Update the output estimate ŷA along uA by selecting the scalar γA so that

ŷA+ = ŷA + γA uA (19.12)

and that the current residual r(γA) has equal correlations with xj , j ∈ A and
an additional input vector of index ĵ ∈ A c, the complement of A .

The least-squares regression estimate based on the subset A is given by

ŷA = XA βA = XA G−1
A XTA y (19.13)

where

GA = XTA XA

To derive the equiangular vector, we proceed as follows. We denote by eA a vector
of 1’s whose size is equal to the size of A and use it to define the normalization
scalar

αA =
(
eTA G−1

A eA

)−1/2

With the above definitions, the equiangular vector is given by

uA = αA XA G−1
A eA (19.14)

Clearly, ‖uA ‖2 = 1, and furthermore,

XTA uA = αA eA

which shows that uA is indeed equiangular. The third step is to update the least-
squares estimate as in Eq. (19.12). The update is based on the selection of γA so
that the current residual has identical correlations with XA and an additional input
vector of index ĵ ∈ A c, the complement of A . The current residual is given by

r(γA) = y − yA+ = y − yA − γA uA (19.15)

The correlation of the current residual with the variables of the active set A is
given by

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 577

XTA r(γA) = XTA
(
y − yA

)− γA XTA uA

= ĈA eA − γA αA eA =
(
ĈA − γA αA

)
eA (19.16)

where the first term in Eq. (19.16) results from the LAR assumption at its A subset
iteration that all the variables of the active set have the same correlation with the
residual y − yA . The second term results from the definition of the equiangular
vector uA . This expression of the correlation with the variables of the active set is
at the core of the numerical behavior of the LAR algorithm, namely that once the
regression variables are members of the active set, they remain so until the algorithm
stops, with all their correlations with the current residual tied up, and decreasing
with each update of the active set. This will be further clarified with the numerical
examples that will be provided later in this chapter.

Let us now select an index j ∈ A c, the complement of the active set, and let us
find the correlation of xj with the current residual r(γA). It is given by

xTj r(γA) = xTj
(
y − yA

)− γA xTj uA

*= ĉj − γA aj (19.17)

where ĉj is the correlation with the active-set residual. Note that we have ĉj <
ĈA , j ∈ A c. Equating the right-hand side of Eq. (19.17) with the common value of
Eq. (19.16), we see that for each j ∈ A c, there is a candidate value of γA > 0 at
which the j -th variable enters the active set. The value is given by

γ
(j)

A = ĈA − ĉj
αA − aj (19.18)

Of course, the index ĵ that needs to be selected for the update of the active set
corresponds to the very first index j ∈ A c whose regression variable satisfies the
correlation equality condition. This index ĵ corresponds to the minimum value of
γ
(j)

A .We therefore have

γA = min
j∈A c

γ
(j)

A = min
j∈A c

{
ĈA − ĉj
αA − aj

}
(19.19)

ĵ = argmin
j∈A c

γ
(j)

A (19.20)

It is instructive to compare the expressions of γ (j)A and γA with the expression
of γ1 in Eq. (19.10). In particular, in the case of just two regression variables, γA
reduces to γ1 with the following identification:

578 R. R. Karn and I. M. Elfadel

uA = xi , ĈA = yT xi , ĉj = yT xj , αA = 1, aj = xTi xj (19.21)

The LAR algorithm stops after all the regression variables enter the active set.
The theoretical properties of LAR are all verified with the numerical results of
Fig. 19.1. These results are based on our own data sets for system-level power and
thermal modeling of multicore processors.

Typically, each data has six input variables and one output variable. The left-hand
side plot in Fig. 19.1 shows the correlation profile in which the regression variable
having the highest correlation with the output is selected, and a new variable enters
into the LAR active set whenever its correlation with the current residual error is the
same as the correlation between the latter and the variables of the LAR active set.
This is also shown numerically in Table 19.1. The right-hand side plot of Fig. 19.1
shows that every time a new variable enters the LAR active set, the regression
coefficients are updated. The final regression coefficients are calculated when all
the variables enter the active set. This is also shown numerically in Table 19.2.

1 2 3 4 5 6

−2

0

2

4

6

8

R
eg

re
ss

io
n

C
oe

ffi
ci

en
t

1 2 3 4 5 6
−4

−2

0

2

4

6

8

10

12

14

16

Lo
ga

rit
hm

ic
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t

C0RES
FFREQ
IPC
EXEC
L2MISS
Beta0

C0RES
FFREQ
IPC
EXEC
L2MISS
Beta0

C0RES FFREQ IPC EXEC L2MISS Beta0C0RES FFREQ IPC EXEC L2MISS Beta0

Fig. 19.1 Coefficient and correlation profile

Table 19.1 LAR logarithmic correlation coefficients

C0RES IPC EXEC L2MISS FFREQ β0

14.8017 10.7795 9.6648 9.4089 12.4028 10.1969

8.5144 7.0718 2.6317 5.5878 8.5144 3.8989

6.6464 6.6464 2.6867 5.3351 6.6464 2.0224

0.5864 0.5864 0.5864 0.2486 0.5864 −3.0391

−0.3394 −0.3394 −0.3394 −0.3394 −0.3394 −3.1924

−3.3571 −3.3571 −3.3571 −3.3571 −3.3571 −3.3571

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 579

Table 19.2 LAR regression coefficients

C0RES FFREQ IPC EXEC L2MISS β0

0 0 0 0 0 0

0.0930 0 0 0 0 0

0.0455 2.6252 0 0 0 0

0.0388 2.2626 1.067 0 0 0

0.0304 2.2236 1.1710 0.8448 0 0

0.0133 2.1390 1.3968 2.4581 0.0112 0

−0.0105 1.6538 −2.5136 4.2268 0.0933 38.5934

One advantage of LAR is that it constructs an incremental series of nested subsets
of regression variables, each subset differing from its predecessor by one non-
zero regression coefficient. The particular subset to choose is determined by model
accuracy and complexity requirements.

19.3 Data Collection Platform

Before delving into the details of applying LAR to power and thermal modeling in
multicore processors, we would like to briefly describe our data collection platform.

The hardware used is a Dell’s Power Edge T620 server equipped with two
sockets, each socket containing six cores. The 12 cores are arranged as follows:
Socket0 contains the even-numbered cores k = 0, 2, 4, 6, 8, 10 and Socket1
contains the odd-numbered cores k = 1, 3, 5, 7, 9, 11. The server runs the Red
Hat Linux Enterprise (RHLE) operating system. All the cores of a particular
socket run on the same clock frequency. The frequency is selected by writing
to mode specific registers (MSRs) or alternatively by using kernel modules such
as CPUfreq. The voltage is selected internally by the voltage regulation module
(VRM), which is internal to the processor. A summary of hardware specifications is
shown in Table 19.3. Dell’s Power Edge server uses Intel’s Sandy Bridge processors

Table 19.3 System
specification

Attribute Specification

Processor 2X Intel Xenon E5-2630

Cores number 6 per socket. Total 2 socket

Available frequency (GHz) 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,

1.8, 1.9, 2.0, 2.1, 2.2, 2.3

L1 I-cache 32 KB/core

L1 D-cache 32 KB/core

L2 cache 256 KB/core

L3 cache 15 MB

Main memory 16 GB DDR3-1333

Bus speed 1333 MHz

580 R. R. Karn and I. M. Elfadel

with digital energy metering and power limiting capabilities through the Running
Average Power Limit (RAPL) interface, which is designed to access the MSRs used
for socket energy measurement [14]. With a sampling time of 1 s, the difference
between two consecutive MSR sample values gives power consumption. Intel’s
Performance Counter Monitor (PCM) is used to collect processor event data and
other on-chip measurements, including temperature [15]. The PCM has an API and
utilities to measure core and system-level internal resources.

The modeling work of this chapter uses performance counters that are common
to all cores. They include EXEC (instruction per nominal CPU cycle), FREQ
(clock rate normalized to maximum clock rate), AFREQ (clock rate normalized to
maximum clock rate while the processor is in active state), IPC (instruction per CPU
cycle), L2HIT and L3HIT (cache hit rates for the L2 and L3 caches, respectively),
L2MISS and L3MISS (cache miss rates for the L2 and L3 caches, respectively),
L2CLK (ratio of CPU cycles lost due to missing L2 cache but hitting L3 cache),
L3CLK (ratio of CPU cycles lost due to L3 cache miss), FFREQ (processor clock
frequency in GHz), and C0RES (residency in C0 state, i.e., the percentage of
time during which the core is active). EXEC is not used in modeling because
similar information can be obtained from IPC. Also the FREQ and AFREQ are
not considered for modeling because they are simply related to CPU frequency and
does not specify any core or system-level resource utilization. The remaining nine
PCs are used for per-core power and thermal modeling in Sects. 19.4 and 19.5. As
for PCs such as C3RES, C6RES, and C7RES that represent processor sleep states,
they are always zero when the processor is running with sleep states disabled. These
sleep-state PCs are used in Sect. 19.6 to take sleep-state residency into account in
the power and thermal models.

The very first step in our modeling methodology is to consider the dependence
of steady-state processor power and temperature on a variety of workloads. Various
workloads from the PARSEC benchmarks have been run one at a time on a single
core, and core frequency has been increased stepwise from 1.2 to 2.3 GHz, with
every step lasting for 30 min. The power and temperature samples have been
recorded, and samples of the last 15 min have been averaged for each frequency
to get the steady-state values. Figure 19.2 shows the power and temperature profiles
versus frequency for various workloads.

The first five workloads are from PARSEC and the remaining five are from the
SPEC CPU benchmark. The plots show that temperature has stronger dependence
on workloads than power at any given core frequency. Predicting core temperature
therefore requires a model incorporating workload-dependent parameters that act as
a thermal workload signature in the PC space. It is also intuitively clear that at a
given level of accuracy, more PCs may be needed for a temperature proxy than for
a power proxy. For both temperature and power, we use LAR to develop accurate,
workload-adapted proxies based on power and thermal workload signatures in the
PC space. For both cases, we first start with a single-core proxy and then extend it
and validate it for a multicore processor.

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 581

1.2 1.4 1.6 1.8 2 2.2

49

49.5

50

50.5

51

51.5

52

52.5

53

53.5

54

Frequency(GHz)

T
em

pe
ra

tu
re

(D
eg

 C
el

)

1.2 1.4 1.6 1.8 2 2.2

19

20

21

22

23

24

25

26

27

28

29

Frequency(GHz)

P
ow

er
(W

at
t)

Bodytrack
Canneal
Ferret
Swaptions
X264
Bwaves
Gobmk
Hmmer
Libquantum
Zeusmp

Bodytrack
Canneal
Ferret
Swaptions
X264
Bwaves
Gobmk
Hmmer
Libquantum
Zeusmp

Fig. 19.2 Temperature and power profile vs. frequency and workload

19.4 Power Proxies

The total power consumed by a processor is the sum of dynamic and static power.
The static power is due to leakage currents and is a function of temperature. In
CMOS, the leakage current equation is

Ilkg = is
(

exp

(
qV

kT

)
− 1

)
(19.22)

where is is reverse saturation current, V the supply voltage, T the temperature,
k Boltzmann’s constant (1.38 × 10−23 m2 kg s−2 K−1), and q the electron charge
(1.6× 10−19 C). The static power, Ps , is given as the product of leakage current and
supply voltage

Ps =
∑
IlkgV (19.23)

Higher temperature leads to higher leakage current and therefore higher static
power. While the temperature can be predicted through a mathematical model, the
leakage current depends on the processor physical design and layout and therefore
is more challenging to model.

582 R. R. Karn and I. M. Elfadel

The dynamic power is a function of clock frequency, the supply voltage, and
the switching activity of the logic gates. The processor dynamic power is the
sum of the power consumed by processor core and non-core components such
as memory controllers, I/O circuits, and bus interfaces. Direct measurement of
per-core power in a multicore processor is quite complex, especially that all the
cores share the same power grid. The use of hardware power meters can ease per-
core power measurement when the number of cores is small. When the number
of cores increases, the data volume of the hardware power sensors will, in fact,
become a bottleneck for efficient per-core power management and core-to-core
coordination. In multicore platforms, it is often the case that power is measured
on a per-socket basis rather than per-core basis. Dell’s Power Edge T 620 server
is a case in point. A scalable approach to per-core power modeling is to use power
proxies and performance counters that have been subselected according to LAR. We
first describe the single-core modeling approach and then generalize it to multicore
processors.

19.4.1 The Single-Core Case

For a processor with k cores, workloads from the PARSEC and SPEC CPU
2006 benchmarks have been run on core k = 0 while all other cores have been
disabled. For collecting training data, workloads have been selected randomly from
PARSEC = {bodytrack, blackscholes, f luidanimate, streamcluster} and from
SPEC CPU = {milc, gamess, zeusmp, perlbench}. The DVFS frequency has been
stepped several times from 1.2 to 2.3 GHz. Data of all the experiments have been
concatenated and fed into LAR. When only core k = 0 is active, the socket power
given by the RAPL interface is the sum of the power consumed by core k = 0 and
other non-core components in the processor package. Using the nine PCs described
in Sect. 19.3, the power model is

P0 = β0 +
9∑
k=1

βkXk (19.24)

where the Xk, 1 ≤ k ≤ 9 are the PCs, β0 is a bias term, and βk, 1 ≤ k ≤ 9 are the
regression coefficients. The collected data is fed to LAR to obtain the correlation
order. The results are given in Fig. 19.3.

The correlation profiles indicate that L3HIT, L2HIT, L3CLK, and L2CLK are
less correlated with power than the offset term β0. They can, therefore, be removed
from the model. The reduced power proxy is then given by Eq. (19.25).

P = β0 + βC0RESXC0RES + βFFREQXFFREQ (19.25)

+βL2MISSXL2MISS + βIPCXIPC + βL3MISSXL3MISS

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 583

1 2 3 4 5 6 7 8 9 10
−5

0

5

10

15

20

Steps

Lo
ga

rit
hm

ic
 C

or
re

la
tio

n
C

oe
ffi

ci
en

ts

C0RES
FFREQ
L2MISS
IPC
L3MISS
beta0
L3HIT
L2HIT
L3CLK
L2CLK

Fig. 19.3 Correlation coefficients of PCs with power

Table 19.4 Coefficients for single-core power model

IPC L3MISS L2MISS C0RES% FFREQ β0

−0.0555 −0.0020 0.0333 0.0232 7.2896 7.8141

The final regression coefficients are shown in Table 19.4.
The accuracy of (19.25) is tested using workloads from the PARSEC and SPEC

CPU benchmarks outside the training set. The Mean Absolute Percentage Error
(MAPE) over N samples

MAPE = 100

N

N∑
i=1

∣∣∣∣PMeasured − PCalculated

PMeasured

∣∣∣∣ (19.26)

ranges from 0.9% to 2.5%, as shown in Fig. 19.5. For the workload “gamess” of
SPEC CPU, the comparison between measured and predicted power is shown in
Fig. 19.4. The two plots in red and green show the difference in accuracy when a
subset of PCs having high correlation with power is selected. The blue power curve
is calculated using Eq. (19.24) while the green curve is calculated using Eq. (19.25).

19.4.2 The Multicore Case

For the multicore case, there is no measurement setup to measure per-core power
consumption. One option is to estimate the total power consumption of one socket

584 R. R. Karn and I. M. Elfadel

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

12

14

16

18

20

22

24

26

Time(sec)

Measured Power
Calculated Power with 5 Variables
Calculated Power with 9 Variables
Freq

Freq(GHZ)

1.2
1.3

1.4
1.5

1.6
1.7

1.8
1.9

2.0
2.1

2.2
2.3

Power(Watt)

Fig. 19.4 Measured vs. predicted power comparison

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

P
er

ce
nt

ag
e

E
rr

or

1 2 3 4 5 6

0.5

1

1.5

2

2.5

P
er

ce
nt

ag
e

E
rr

or

Single Core Multi Core

1. Cannel(PARSEC)
2. Ferret(PARSEC)
3. Freqmine(PARSEC)
4. Swaptions(PARSEC)
5. X264(PARSEC)
6. Bwaves(SPEC CPU)
7. Gobmk(SPEC CPU)
8. Gromacs(SPEC CPU)
9. Hmmer(SPEC CPU)
10. Idle

1. 2 Cores ON (core0-X264,core1-swaption)
2. 4 Cores ON (core0,3-idle; core1,2-milc)
3. 6 Cores ON (core0-bwaves;core1-idle

core2,3-gobmk;core4,5-hmmer)
4. 8 Cores ON (core0,1,2-canneal;core3,4-

swaption;core5,6,7-bwaves)

5. 10 Cores ON (core0,1,2,3,4-idle;core5,6,7-
X264;core8,9-milc)

6. 12 Cores ON (core0,1,2-bwaves,core3,4,5-
ferret;core6,7,8-hmmer;core9,10,11-zeusmp)

Fig. 19.5 Power model accuracy

using PCs and logically divide this power over the number of active cores based on
the type of workload and the intervals of idleness (C0RES represents the percentage
of idleness). Using PCs of the highest ranking in correlation order, the power of the
k-th core is modeled as

Pk = βC0RESkXC0RESk + βFFREQkXFFREQk + βL2MISSk (19.27)

XL2MISSk + βIPXkXIPXk + βL3MISSkXL3MISSk

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 585

The sum of the power consumed by all the cores along with the power consumed by
the non-core components gives the total power consumption of the processor. Let L
be the subset of active cores, then the total power is given by

P = β0 +
∑
k∈L
Pk (19.28)

To verify the multicore proxy, the randomly selected training workloads: bodytrack,
freqmine, streamcluster, and fluidanimate from PARSEC and gamess, gromacs,
bzip2, and soplex from SPEC CPU have been run and power consumption and PC
data have been collected for different number of active cores ranging from 1 to 12.
Data obtained from each experiment are concatenated and fed into LAR. To find the
accuracy of the proxy, workloads from outside the training set have been randomly
selected and run on one or several cores using linux command taskset. The results
are shown in Fig. 19.5. As an example, one of our experiments has six active cores
with the other cores turned off. Workloads from the PARSEC suite are run: canneal
on core k = 2 and X264 on core k = 5. MAPE for the system power consumption
is found to be 2.78%. The plot is shown in Fig. 19.6. It is quite logical that the
active cores should consume more power than the idle ones. This is clear for cores
k = 2, 5.

It is worth noting that the global proxy of Eq. (19.28) remains acceptable when
the LAR regression coefficients of a given core are used for all active cores. The
global model for total power consumption is given by Eq. (19.29).

Ptotal = β0 + βC0RES

∑
k∈L
XC0RESk + βFFREQ

∑
k∈L
XFFREQk + βL2MISS (19.29)

Fig. 19.6 Per-core power and total power comparison

586 R. R. Karn and I. M. Elfadel

Table 19.5 Coefficients for reduced power model

IPC L3MISS L2MISS C0RES% FFREQ β0

−2.579 −0.612 0.32 0.032 2.208 18.113

∑
k∈L
XL2MISSk + βIPC

∑
k∈L
XIPXk + βL3MISS

∑
k∈L
XL3MISSk

In Table 19.5, a set of core-based coefficients are shown for which the MAPE of
the global model is in the range 5–7%.

19.5 Temperature Proxies

For thermal modeling, the core temperature is measured through Intel’s PCM
interface [15] which reads the maximum temperature across all thermal sensors
located in each core. The LAR temperature proxy is compared with this measured
temperature to evaluate its accuracy.

19.5.1 The Single-Core Case

For the single-core temperature proxy, Core0 was active while all other cores were
off. Note that Core0 cannot be turned off because it runs the operating system. In
analogy with the single-core power proxy, one possible thermal proxy for predicting
the Core0 temperature is given by

T0 = β0 +
9∑
k=1

βkXk (19.30)

where Xk, 1 ≤ k ≤ 9, are the PCs as discussed in Sect. 19.3, page 579, β0 is a
bias term, and βk, 1 ≤ k ≤ 9, are the LAR coefficients. Workloads have been
divided randomly into two parts. The first part is used for collecting training data
that is fed to LAR for computing the nested set of regression models and the second
part for testing the accuracy of the model. Feeding training data to LAR gives the
correlation coefficients along with the correlation ranking of the regression variables
with temperature. The correlation coefficient profile is shown on a logarithmic scale
in Fig. 19.7.

One experimental observation is that we can drop from the regression proxy
those variables whose correlation ranking is below that of the offset term β0 (labeled
X0 in Fig. 19.7, where X0 = 1 for all samples). Examples of such parameters are
L2HIT, L2CLK, L3HIT, and L3CLK. Another observation from Fig. 19.7 is the

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 587

1 2 3 4 5 6 7 8 9 10 11
−5

0

5

10

15

20

Steps

Lo
ga

rit
hm

ic
 C

or
re

la
tio

n
C

oe
ffi

ci
en

ts

C0RES%
T(n−1)
FFREQ
IPC
L2MISS
L3MISS
beta0
L3HIT
L3CLK
L2CLK
L2HIT

Fig. 19.7 Correlations between performance counters and temperature

correlation ranking of all the PCs with temperature throughout the nested regression
process. The least-angle aspect is evident from the equality of certain correlations as
the number of regression variables increases (e.g., the transition from three to four
variables). A third observation is that the correlation between the temperature T (n)
at time instant n and the temperature T (n−1) at time instant n−1 is systematically
higher than that of the β0 term. In the descending order of correlation ranking, the
regression variables are C0RES, T (n − 1), FFREQ, IPC, L2MISS, and L3MISS.
This suggests that the initial thermal proxy of Eq. (19.30) should be modified from
a static proxy to a dynamic one so as to capture the thermal transients

T (n) = β0 + βC0RESXC0RES + βFFREQXFFREQ (19.31)

+βIPCXIPC + βT (n−1)T (n− 1)+ βL2MISSXL2MISS

+βL3MISSXL3MISS

The coefficients calculated from LAR are shown in Table 19.6. To validate
Eq. (19.31), the LAR coefficients have been used in inference runs using testing
workloads with the mean absolute percentage error (MAPE) over N samples as

MAPE = 100

N

N∑
i=1

∣∣∣∣TMeasured − TCalculated

TMeasured

∣∣∣∣ (19.32)

588 R. R. Karn and I. M. Elfadel

Table 19.6 Coefficients for single-core temperature model

C0RES% T (n− 1) FFREQ IPC L2MISS L3MISS β0

0.0190 0.5231 1.4268 0.6042 -0.0363 0.0962 18.4192

0.00%

1.00%

2.00%

3.00%

gromacs(SPEC CPU) hmmer(SPEC CPU) bwaves(SPEC CPU) milc(SPEC CPU)

swap�on(PARSEC) X264(PARSEC) freqmine(PARSEC) idle(no workload)

Fig. 19.8 Single-core temperature proxy accuracy

1.5 1.6 1.7 1.8 1.9

x 10
4

48

49

50

51

52

53

54

55

Time(sec)

T
em

pe
ra

tu
re

(D
eg

 c
el

)

1.4 1.5 1.6 1.7 1.8

x 10
4

47

48

49

50

51

52

53

T
em

pe
ra

tu
re

(D
eg

 c
el

)

Predicted Temperature Measured Temperature

ferret(PARSEC) milc(SPEC CPU)

Fig. 19.9 Temperature transient response comparison

For the single-core case, MAPE is between 1.5% and 3%. Figure 19.8 shows the
accuracy of the model on workloads from the PARSEC and SPEC CPU benchmark.

To verify the dynamic property of the thermal proxy, frequency has been changed
several times between 1.2 and 2.3 GHz. The comparison of the transient response
between the LAR predicted temperature and the measured temperature for two
workloads is shown in Fig. 19.9.

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 589

19.5.2 The Multicore Case

The major objective of a multicore temperature proxy is to capture the spatial
dependence of core temperature on core location in the chip floorplan, especially
in the context of thermal exchanges with neighboring cores. For a processor with K
cores, the temperature of the k-th core at instant, n, is given by

Tk(n) = β0 + βC0RESXC0RES + βFFREQXFFREQ (19.33)

+βIPCXIPC + βL2MISSXL2MISS + βL3MISSXL3MISS

+βTk(n−1)Tk(n− 1)+
∑

i∈L,i �=k
βTi(n−1)Ti(n− 1)

where L is the subset of active cores. This set is strictly a function of time, and
so it should be denoted L(n − 1) to signify that it is the subset of active cores
at time instant (n − 1). In our model, we assume that the subset of active cores
doesn’t change throughout the workload run. This thermal proxy should work well
for any number of cores. However, it is not easily scalable to a large number of
cores that are all active. On the other hand, the temperature of a given core will
mainly depend on temperatures of the active cores that are adjacent to it. To make
Eq. (19.33) scalable, the subset L has to be intersected with the set Ak of cores
adjacent to k. This assumes that the processor physical design is known at the system
level, which is almost never the case. Interestingly, the core floorplan can be inferred
using LAR by looking at the correlation ranking between Tk and each of the Ti, i �=
k. For Dell’s 12-core Power Edge T620 platform, the correlation ranking is as shown
in Fig. 19.10.

This figure shows that the temperature of Core k = 0 is correlated with almost
all the other core temperatures. The temperatures of Cores k = 4, 7, 9 are next in
the correlation ranking with the temperature of Core k = 0, while Core k = 11 is
the least correlated. This correlation order can also be verified from the temperature
profiles of the individual cores without running any workload. For Dell’s 12-core
Power Edge T 620 platform, the temperature profile of each core at various DVFS
frequencies is shown in Fig. 19.11. The temperature plot shows that Core k = 0
is at the highest temperature because even though no workload is running on it,
the operating system is. Core k = 11 is at the lowest temperature, so it must be
physically farthest from Core k = 0. Cores k = 4, 7, 9 have temperatures that are
lower than that of k = 0 but higher than those of all the other cores. It follows that
Cores k = 4, 7, 9 are closer to Core k = 0 than all others.

These temperature correlation rankings allow us to replace the set L in
Eq. (19.33) with a much smaller subset that is core-specific and layout-dependent.
For instance, for Cores k = 4, 7, 9, we have L ∩ Ak = {0, 4, 7, 9}. Similarly, given
that Core k = 0 is always running the OS and that the other cores almost never
experience full utilization, its subset L ∩ A0 = {0}. Such considerations help make
the model described in Eq. (19.33) scalable to a very large number of cores. For
illustration, the temperature due to workload execution on Core k = 4 is given by

590 R. R. Karn and I. M. Elfadel

Fig. 19.10 Correlation rank matrix of 12 cores (Dell’s Power Edge T 620 server)

1000 2000 3000 4000 5000 6000 7000

20

25

30

35

40

45

50

Time(sec)

Core0

Core1

Core2

Core3

Core4

Core5

Core6

Core7

Core8

Core9

Core10

Core11

Freq

Temperature(Cel.)

Freq(GHZ)

1.2
1.3

1.4 1.5
1.6 1.7

1.8 1.9
2.0 2.1

2.2 2.3

Fig. 19.11 Per-core temperature vs. frequency and time plot for 12 cores

T4(n) = β0 + βC0RESXC0RES + βFFREQXFFREQ (19.34)

+βIPCXIPC + βL2MISSXL2MISS + βL3MISSXL3MISS

+βT4(n−1)T4(n− 1)+ βT0(n−1)T0(n− 1)

+βT7(n−1)T7(n− 1)+ βT9(n−1)T9(n− 1)

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 591

0.00%

1.00%

2.00%

3.00%

Core0:bodytrack(PARSEC) Core1:ferret(PARSEC)

Core2:hmmer(SPEC CPU) Core3:milc(SPEC CPU)

0.00%

1.00%

2.00%

3.00%

Core0:canneal(PARSEC) Core1:freqmine(PARSEC)
Core2:swap�on(PARSEC) Core3:idle(no workload)
Core3:idle(no workload) Core5:gobmk(SPEC CPU)

Experiment-1 Experiment-2

Fig. 19.12 Multicore temperature model accuracy

For the validation of this model, two experiments have been performed, one
with four cores active and another with six cores active. The accuracy is shown in
Fig. 19.12. This is the general proxy for predicting core temperatures. A workload-
specific thermal proxy validation is presented in Sect. 19.6.

19.6 Proxies Incorporating Sleep States

In Sects. 19.4 and 19.5, the thermal and power proxies have been derived under
the assumption that the cores never enter into sleep states. This assumption is quite
reasonable for multi-threaded, high-performance computing applications but is not
satisfied under productivity, media, and web workloads where power and thermal
management benefits tremendously from the presence of sleep states. Sleep states
are also important in the management of dark silicon [16–19]. There are several
categories of sleep states that can be summarized as follows:

1. C0: This is a fully operational state. The CPU is fully turned on.
2. C1: This is the first idle state. The CPU stops its main internal clocks through

software while the bus interface and the advanced programmable interrupt
controller (APIC) remain functional at full frequency.

3. CE1 : This state is similar to C1 with the additional feature of the CPU lowering
the frequency and supply voltage.

4. C2: In this state, the CPU stops the main internal clock through hardware control.
5. C3: In this state, the CPU stops all internal clocks. Data in the cache are not

coherent.
6. C6: This state starts as soon as the core saves the architectural state into an on-

chip SRAM. The supply voltage to the core is reduced to zero.
7. C7: This is the deep-sleep state. The content of the shared cache is written back

to main memory. Once the CPU enters C7, it takes higher latency to go back into
C0 state.

The Dell’s Power Edge server has three levels of sleep states: C3, C6, and C7.
When they are disabled, the corresponding CnRES PCs for state residency are all

592 R. R. Karn and I. M. Elfadel

zeros. When they are enabled, LAR again allows the derivation of the correlation
ranking in the presence of sleep states as shown in Figs. 19.13 and 19.14.

These rankings are C6RES, C0RES, IPC, L2HIT, L3MISS, FFREQ for power;
and C6RES, C0RES, T (n − 1), FFREQ, IPC, L3HIT for temperature. C7RES is
always zero, so it is removed from the regression. The per-core power and thermal
proxies in the presence of sleep states are given as

P = β0 + βC6RESXC6RES + βC0RESXC0RES + βIPCXIPC

+ βL2HITXL2HIT + βL3MISSXL3MISS + βFFREQXFFREQ
(19.35)

T (n) = β0 + βC6RESXC6RES + βT (n−1)T (n− 1)+ βC0RESXC0RES

+ βIPCXIPC + βFFREQXFFREQ + βL3HITXL3HIT
(19.36)

At testing, these equations have resulted in a MAPE of 5%.
For a highly accurate proxy, all the variables shown in Figs. 19.13 and 19.14 need

to be included in the regressions. Note that the correlation of C6RES is smaller than
that of the offset term, β0, and as can be experimentally verified, it can therefore be
removed from both the power and thermal proxies. The final proxies are given by

2 4 6 8 10 12

−6

−4

−2

0

2

4

6

8

10

12

14

Steps

Lo
ga

rit
hm

ic
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t f
or

 T
em

pe
ra

tu
re

C6RES

C0RES

T(n−1)

Freq

IPC

L3HIT

L2HIT

L3MISS

L3CLK

L2CLK

L2MISS

beta0

C3RES

Fig. 19.13 Enabled sleep states: correlation coefficients between temperature and PCs

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 593

2 4 6 8 10 12

−6

−4

−2

0

2

4

6

8

10

12

Steps

Lo
ga

rit
hm

ic
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t f
or

 P
ow

er
C6RES
C0RES
IPC
L2HIT
L3MISS
Freq
L3CLK
L3HIT
L2MISS
L2CLK
beta0
C3RES

Fig. 19.14 Enabled sleep states: correlation coefficients between power and PCs

T (n) = β0 + βC6RESXC6RES

+ βC0RESXC0RES + βIPCXIPC + βL2CLKXL2CLK

+ βL3CLKXL3CLK + βT (n−1)T (n− 1)

+ βL3HITXL3HIT + βL2HITXL2HIT

+ βL3MISSXL3MISS + βFFREQXFFREQ + βL2MISSXL2MISS (19.37)

P = β0 + βC6RESXC6RES + βC0RESXC0RES + βIPCXIPC + βL2CLKXL2CLK

+ βL3CLKXL3CLK + βL3HITXL3HIT

+ βL2HITXL2HIT + βL3MISSXL3MISS

+ βFFREQXFFREQ + βL2MISSXL2MISS (19.38)

The LAR coefficients are shown in Tables 19.7 and 19.8. Their proxies result in a
modeling accuracy of more than 97%.

As expected, the proxies with enabled sleep states have more regression variables
than the proxies with the sleep states disabled. This is because the sleep-state

594 R. R. Karn and I. M. Elfadel

Table 19.7 LAR coefficients of the temperature proxy with sleep states enabled

IPC L3MISS L2MISS L3HIT L2HIT L3CLK

−0.8632 2.0046 −0.8575 −2.2401 1.3279 −1.0283

L2CLK C0RES C6RES T (n− 1) FFREQ β0

−3.0772 0.5601 0.5586 0.2148 −0.7546 −16.8668

Table 19.8 LAR coefficients of the power proxy with the sleep states enabled

IPC L3MISS L2MISS L3HIT L2HIT L3CLK L2CLK C0RES C6RES FFREQ β0

−1.1203 5.8039 −2.6608 −1.0318 1.8579 −1.0111 −3.6273 0.2435 0.1705 −0.1531 −5.4146

residency of the running thread needs to be accurately predicted along with its
workload characteristics. The affinity between a given hardware platform and the
sleep states is dependent on the micro-architecture, and in our own experimental
platform, the CPU has higher affinity with the C6 state than the C3 state.

The LAR proxies are flexible enough to accommodate any type of workload and
run environment, as well as the activity levels of the various cores. An alternative
approach to accounting for sleep states is given in [6] where the sleep-state residency
is used to modulate the other PCs of the workload in the power proxy. A similar
idea can be applied in the LAR context although in this chapter, we have adopted
the view of using the sleep-state residencies as regression variables in the power and
thermal proxies. Another advantage of the LAR approach is that unlike [20], it uses
one proxy, rather than several separate ones, to predict power for any number of
active cores.

19.7 Workload Signature

One of the major benefits of using LAR is that it can be used to characterize the
workload using the correlation ranking of the regression variables. Indeed, the
top variables in the correlation ranking can be used as a workload signature in
the PC space. Experiments have been conducted on four PARSEC workloads and
two SPEC CPU workloads. The top five PCs in correlation ranking for each of
these workloads are listed in Tables 19.9 and 19.10 for power and temperature,
respectively.

The major conclusion is of course that these rankings vary from one workload
to another. In Table 19.9, for memory-intensive workloads (Canneal and X264), the
cache miss rate (L2MISS) is the one most correlated with power. On the other hand,
for CPU-intensive workloads (e.g., Ferret), it is the IPC that is most correlated
with power. These three-dimensional workload signatures are valid for active cores
as is evident from the presence of C0RES in the signature. The latter PC is highly
correlated with power for all workloads as it only depends on the proportion of time
the core is active. Similar rankings can be observed for temperature in Table 19.10.

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 595

Table 19.9 Workload signature for power

PCs correlation ranking

Workload 1st 2nd 3rd 4th 5th

Bodytrack C0RES FFREQ L2MISS IPC L3MISS

Canneal C0RES L2MISS FFREQ L3CLK L2HIT

Ferret C0RES IPC L2MISS FFREQ L2HIT

X264 C0RES L2MISS FFREQ IPC L3MISS

Gamess C0RES FFREQ IPC L3HIT L2MISS

Libquantum C0RES L2MISS IPC FFREQ L3CLK

Gobmk C0RES FFREQ IPC L3HIT L2MISS

Table 19.10 Workload signature for temperature

PCs correlation ranking

Workload 1st 2nd 3rd 4th 5th

Bodytrack C0RES T (n− 1) FFREQ L2MISS IPC

Canneal C0RES T (n− 1) L2MISS FFREQ IPC

Ferret C0RES IPC T (n− 1) FFREQ L2HIT

X264 C0RES T (n− 1) L2MISS FFREQ IPC

Gamess C0RES T (n− 1) FFREQ IPC L3HIT

Libquantum C0RES T (n− 1) L2MISS L3MISS IPC

Gobmk C0RES T (n− 1) FFREQ IPC L2MISS

Such workload signatures provide power and thermal management policies with
a new capability, namely the ability to adapt the controlled variable in power or
thermal management policies to the workload at hand.

Similar experiments can be performed across all workloads to get their PC
signatures. As an application, one can use the workload signature as a pointer
indexing into subsets of regression coefficients with one of these subsets being
selected for each workload signature. Such indexing can help in reducing thermal
management response to either changes in workloads or to transitions from one
phase to another in a given workload.

One way of verifying the results that we have obtained for workload signatures
with hardware event counters is to compare them with signatures obtained from
software performance profiling tools such as the LINUX’s perf command [21]. The
command

perf stat − p < PID of workload >

lists all the events on the given process ID, PID. We have run this command on few
workloads with the results shown in Table 19.11.

This table shows that for workload canneal, more time is spent on fetching
cache data with a cache miss rate of 6.717 M/s and IPC of 0.626. On the other
hand, for the workload ferret, the IPC is 3.636 with much less time spent fetching

596 R. R. Karn and I. M. Elfadel

Table 19.11 Performance profiling comparison of workloads
Ferret (PARSEC) Canneal (PARSEC)
957,759,076 cache-misses # 1.604 M/sec
2,067,584,087 cache-references # 3.462 M/sec
7,206,062,783 branch-misses # 4.461 %
161,536,850,662 branches # 270.481 M/sec
889,732,533,585 instructions # 3.636 IPC
244,690,563,224 cycles # 409.715 M/sec
169,405 page-faults # 0.000 M/sec
1 CPU-migrations # 0.000 M/sec
127,846 context-switches # 0.000 M/sec
597220.940384 task-clock-msecs # 542 CPUs

1102.096362113 seconds time elapsed

3,063,851,228 cache-misses # 6.717 M/sec
4,156,217,347 cache-references # 9.112 M/sec
490,077,756 branch-misses # 1.265 %
38,734,624,196 branches # 84.919 M/sec
342,447,868,569 instructions # 0.626 IPC
547,027,701,197 cycles # 1199.259 M/sec
120,590 page-faults # 0.000 M/sec
1 CPU-migrations # 0.000 M/sec
68,217 context-switches # 0.000 M/sec
456137.911099 task-clock-msecs # 0.432 CPUs

1056.383648515 seconds time elapsed
Gamess (SPEC CPU) Libquantum (SPEC CPU)
530,853 cache-misses # 0.002 M/sec
249,446,361 cache-references # 1.172 M/sec
1,118,536,958 branch-misses # 1.087 %
102,945,618,684 branches # 483.555 M/sec
1,047,934,544,412 instructions # 2.140 IPC
489,743,153,165 cycles # 2300.418 M/sec
94 page-faults # 0.000 M/sec
21 CPU-migrations # 0.000 M/sec
250 context-switches # 0.000 M/sec
212893.086471 task-clock-msecs # 0.549 CPUs

387.800184874 seconds time elapsed

6,656,391,448 cache-misses # 19.424 M/sec
20,301,608,325 cache-references # 59.242 M/sec
436,068,369 branch-misses # 0.216 %
201,614,775,384 branches # 588.328 M/sec
1,153,471,633,587 instructions # 1.763 IPC
654,397,954,984 cycles # 1909.585 M/sec
0 page-faults # 0.000 M/sec
32 CPU-migrations # 0.000 M/sec
427 context-switches # 0.000 M/sec
342691.270723 task-clock-msecs # 0.999 CPUs

1056.383648515 seconds time elapsed

cache information with a miss rate of 1.604 M/s. In other words, hardware PCs and
software profiling tools are in agreement on workload signature characterization,
with the PCs having the distinct advantage of being much more efficient to generate
as they depend on direct access to hardware registers rather than on running
operating system commands. This agreement confirms that canneal can be
categorized as a memory-intensive workload and that ferret can be categorized as
a CPU-intensive workload. Other workloads conform to this agreement as may be
verified by comparing the workload signatures from Tables 19.9 and 19.10 with the
perf profiling data from Table 19.11.

An important application of workload signature is in the area of control variable
selection. In the context of thermal management and control, PCs that are most
correlated with temperature are the most natural candidate to use as control
knobs. As an example, for the bodytrack, ferret, and X264 workloads, the PCs
most correlated with temperature (after C0RES) are FFREQ, IPC, and L2MISS,
respectively, as given in Table 19.10. So to control the temperature for ferret and
X264, the controller should use IPC and memory access rate rather than core
frequency. In other words, restricting thermal management to the use of DVFS may
not be the most appropriate control action for these two workloads. As explained
in Sect. 19.3 in page 579, Dell’s Power Edge T620 server has two sockets, each
containing six cores, and the clock frequency is global to the socket. The scaling
of clock frequency in a particular core forces the same scaling on the other cores
in the same socket. As a result having DVFS as a socket-based control variable
greatly limits the per-core management policies. Consider now a multicore design
that provides DVFS on a per-core basis. In such a design, assume we have two
different threads: T h1 for a low-performance, energy hungry process, and T h2 for

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 597

Fig. 19.15 Controller based on workload signature

a high-performance, low-energy process, executing on the same core. Core thermal
management via DVFS will prioritize T h1 over T h2, thus resulting in an overall
loss of performance. A finer-grain policy would look at the workload signatures of
the threads and adopt the control variable of T h1 that most impacts temperature
while being absent in the workload signature in T h2.

A controller based on memory access rate is described in [22] where a feedback
controller is built using the L2 hit rate as a setpoint with the controller providing,
dynamically, the sizes of L2 and L3 caches needed to satisfy a performance target
across a variety of workloads. The implementation of such controllers typically
requires modifications to the Linux kernel or, as in the case of the IPC, access to
the micro-architecture hardware. The generic block diagram of such a controller is
given in Fig. 19.15.

In conclusion, rather than always using DVFS settings as is the case in the most
common thermal and power management policies, other control strategies may be
considered such as miss-rate reduction in cache-intensive workloads and pipeline
management in CPU-intensive workloads. In the next sections, we give further
applications of workload signatures to fine-grained thermal and power management
in multicore processors.

598 R. R. Karn and I. M. Elfadel

19.8 Core Scaling and Thread Assignment

For high-performance or parallel computing, the execution of complex workloads
requires multiple cores. In multicore scenarios, the execution speed depends
additionally on shared resources such as high-level cache memory, data and address
buses, and communication between cores. Dark silicon management and switching
cores between sleep and active states increase dynamic power consumption and
raise multiprocessor temperature. To ease managing the trade-offs between power,
temperature, and performance, fine-grained core scaling policies are required [16–
19].

Traditionally, performance metrics such as CPU utilization and workload
throughput are used to make scaling decisions. For instance, in [23], dynamic
core scaling is implemented to minimize leakage power. A model linking power
consumption to the number of active cores and the utilization of each core is used
to manage core scaling. One disadvantage of such model is that it does not take
into account memory throughput and memory power consumption for core scaling
decisions. Another disadvantage is that the core scaling policy does not account
for workload characteristics. These characteristics are important, especially when
the workload has many threads and each thread demands large processor resources
for high performance. Attempts have been made to address the scalability of
large workloads such as the Enterprise Java application [24]. A “Thread Reinforce”
framework is used in [25] for finding the number of threads at runtime and assigning
individual thread to each core. However, these thread-allocation methods are
limited to specific workload types and may not be appropriate for a workload with
dependencies among its threads. Furthermore, these methods do not consider the
inherent correlations among multiple threads of a given workload. Such correlations
may open up opportunities to minimize the overall runtime and power consumption.

To address the shortcomings of the aforementioned core scaling techniques, we
propose a real-time autoscaling methodology that can provide superior performance
with comparatively lower power consumption and temperature. Our methodology
accounts for metrics that have so far been neglected such as the cache access rate and
sleep states. The proposed methodology is based on the following components:

1. Generation of workload signatures PCs that are highly correlated with power and
temperature.

2. Optimization of the allocation of workloads and threads among cores to achieve
high performance under given power and thermal budgets.

3. Implementation of autoscaling where the scaling decision is made autonomously
or independently based on the type of workload, user-specified performance, and
the temperature or power/energy setpoints.

Workloads of the PARSEC [26] and SPEC CPU 2006 [27] benchmarks are
used in the experiments. PARSEC provides various load levels labeled as test,
small, medium, large, and native. These differ in the size of working set and thread

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 599

Fig. 19.16 Experiment flow diagram

parallelism. The block diagram shown in Fig. 19.16 represents the experimental
methodology.

19.8.1 The Relation of PCs with Power Consumption

A first step towards improved autoscaling is to check the power state (P-state) of the
processor and estimate the DRAM power. To calculate the correlation of different
PCs with power, the workload ferret from the PARSEC suite [26] has been run on a
single core (with other cores turned off). PC samples are collected every second.

The dependence of different PCs on processor power is shown in Fig. 19.17. The
plots show that low P-states are prevalent for the processor while for the DRAM,
high P-states are more prevalent. Also, the PC values remain for longer times at
low P-states for the processor but at high P-states for the DRAM. It is clear that
both memory power consumption and memory throughput must be considered when
allocating workloads via autoscaling.

The correlation of PCs with core power consumption and their correlation
rankings have already been shown in Tables 19.9 and 19.10, page 595. Recall that in
Table 19.10, T (n−1) represents the sampled temperature at instant (n−1). The main
observation there was that PC rankings and workload signatures vary notably from
one workload to another. As already observed, for memory-intensive workloads,
such as canneal and x264, the cache miss rate (L2MISS) is the one most correlated
with power and temperature. On the other hand, for CPU-intensive workloads, such
as ferret, it is the IPC that is most correlated. The difference in workload signatures
for ferret and canneal is shown in Fig. 19.18. Ferret being CPU-intensive exhibits a
greater IPC while canneal being memory-intensive results in higher DRAM power.

600 R. R. Karn and I. M. Elfadel

19 19.1 19.2 19.3
0

0.5

1

1.5

IPC vs Processor Power

2.4 2.6 2.8
0

0.5
1

1.5

IPC vs DRAM Power

19 19.1 19.2 19.3
0

2

4

L3MISS vs Processor Power

2.4 2.6 2.8
0
1
2
3

L3MISS vs DRAM Power

19 19.1 19.2 19.3

Power (watt) Power (watt)

0

2

4

L2MISS vs Processor Power

2.4 2.6 2.8
0

2

4

6

L2MISS vs DRAM Power

Details for Workload Ferret at Freq=1.2GHz

Fig. 19.17 Performance counter vs. power

Fig. 19.18 Workload
signatures of ferret and
canneal

0 100
0

0.5

1

1.5

50

Sample n (sec)

IP
C

IPC and DRAM Power for Ferret and Canneal

0 100

2.5

2.6

2.7

2.8

50

Sample n (sec)

D
R

A
M

 P
ow

er
(W

at
t)

ferret canneal

19.8.2 Energy-Aware Workload Execution

Multicore processors make heavy use of multi-threading and hyper-threading to
execute multiple instructions concurrently. In case a workload requires shared
resources such as the I/O bus or L3 cache, the scheduler manages the order of thread
execution. As will be described next, we have conducted dedicated experiments
on our RHLE platform to reveal the scheduler in action and, more importantly, to
understand the impact of resource sharing on runtime performance.

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 601

Fig. 19.19 IPC and L2MISS
comparison for ferret and
canneal

0 200 400 600 800

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sample n (sec)

IP
C

0 0 200 400 600 800

1

2

3

4

5

6

7

8

Sample n (sec)

L2
M

IS
S

0

canneal & x264:core1 canneal:core1 x264:core3

Workloads from the PARSEC benchmark suite have been run with load level set
to native. In general, Cores k = 0, 1, 2, 3 are active while all the remaining cores
are off. In one experiment, two workloads canneal and x264 are run on Core k = 1
with all the other cores are set to idle. In another experiment, canneal is run on Core
k = 1 while x264 is run on Core k = 3.

The resulting plots for IPC and L2MISS are shown in Fig. 19.19. The red curve
represents the intermediate value of IPC and L2MISS for the case when both
workloads run on the same core. When the workloads are executed on different
cores, one core exhibits a higher IPC while the other exhibits a higher L2MISS. It
is clear that the availability of shared resources does impact the performance. The
level of this impact can be extracted from the difference in workload runtimes. To
quantify the impact, two cores, one from each socket, are run at the same frequency
of 1.2 GHz and workloads are selected at random and executed on the two selected
cores. The processor total power consumption and workload runtime are shown in
Table 19.12.

Comparing ROWs 1 and 2, the completion time approximately doubles in case
both workloads are run on the same core as compared with the case where both
workloads run on two separate cores. An increment of power consumption is
observed in case workloads are assigned to separate cores, but this increment is
relatively small. Note that similar characteristics are observed for other experiments
described in Table 19.12. Even though power consumption in ROW 2 (resp.
ROW 4) is slightly larger than in ROW 1 (resp. ROW 3) the total energy
consumption (Power ∗Completion Time) is much smaller. For example, in ROW 1,
Energy = 36 W ∗ 843 s = 30.348 kJ while in ROW 2, Energy = 36.8 W ∗ 497 s =
18.289 kJ. It is therefore economical to run different workloads on separate cores
as it allows us to trade-off a large gain in completion time with a small increase in
power consumption.

602 R. R. Karn and I. M. Elfadel

Table 19.12 Execution time comparison for workloads

S.N Workload Execution time (s) *t Power consumption (W)

1. Canneal and X264 on core1. Canneal: 843 36

Other cores idle X264: 708

2. Canneal on core1 and X264 on core3. Canneal: 497 36.8

Other cores idle X264: 362

3. Bodytrack and ferret on core1. Bodytrack: 896 36.4

Other cores idle Ferret: 1419

4. Bodytrack on core1 and ferret on core3. Bodytrack: 407 37.2

Other cores idle Ferret: 1015

5. Bodytrack, canneal, and ferret on core1. Bodytrack: 1291 37.5

Other cores idle Canneal: 1498

Ferret: 1907

6. Bodytrack on core1, canneal on core2, Bodytrack: 408 39.9

and ferret on core3. Canneal: 494

Other cores idle Ferret:1013

*t = time of workload final output− time of workload run request

19.8.3 Autoscaling for Separate Workloads

Another application of workload signature is to assess performance gains when
separate workloads are run in multiple threads on a multicore processor. To
investigate this scenario, workloads are first run on a single core with a clock
frequency of 1.2 GHz and load level set to large. At runtime, the number of
instantiated threads for a given workload can be obtained using the Linux commands

%cat /proc/ < PIDofworkload > /stat

%cat /proc/ < PIDofworkload > /status

All threads are continuously monitored and transferred to idle cores using the Linux
command

taskset − c < corenumber >< threadID >

The overall workload completion time is measured. The results are shown in
Fig. 19.20.

For the workload ferret, there is a notable reduction in completion time when
increasing the number of cores from one to two. However, no significant reduction
is observed when increasing from four to six cores. For the workloads bodytrack and
canneal, the completion time varies only slightly for the different numbers of used
cores. Recall from Tables 19.9 and 19.10 in page 595 that bodytrack and canneal
are memory-intensive. This implies that the performance achieved for bodytrack and

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 603

0

10

20

30

ON CoresC
om

pl
et

io
n

T
im

e(
se

c) Ferret

0

5

10

15

C
om

pl
et

io
n

T
im

e(
se

c) Bodytrack

10

20

30

C
om

pl
et

io
n

T
im

e(
se

c) Canneal

0
6 4

ON Cores
4 1 2 6 1 2 4 61 2

ON Cores

Fig. 19.20 Runtime comparison of workloads

canneal depends mainly on shared memory throughput, even in cases when multiple
threads are executed on separate cores. On the contrary, ferret is a CPU-intensive
workload, and its performance depends mainly on instruction throughput. Since the
instruction pipeline is private to each core, ferret can fully utilize the core resources
and runs its threads in parallel with high performance. In summary, when scaling
up the number of cores, achievable performance is higher for CPU-intensive than
for memory-intensive workloads. This should also be the case for all symmetric
multiprocessors with shared memory.

Another important observation is that achieved performance typically saturates
even for CPU-intensive workloads. For instance, the completion time is almost the
same whether ferret is run on four or six cores. We note that it is important to
determine the saturation point for each workload of interest. In many cases, scaling
up the number of cores only increases power and temperature without significantly
improving performance.

19.8.4 Autoscaling for Multiple Workloads

19.8.4.1 Scaling Down

For multiple workloads running on the same core, the overall performance can be
improved by merging the workloads based on their signatures to run on particular
cores. To illustrate this, we have conducted experiments with two different groups
of workloads (whose signatures are stated in Tables 19.9 and 19.10 in page 595,
core frequency set to 1.2 GHz, and load level set to native for PARSEC). Two
CPU-intensive workloads, namely ferret and gamess, and two memory-intensive
workloads, canneal and X264, have been selected for the experiments. The number
of active cores has been scaled down, and two workloads have been executed in
parallel on the same core. With four workloads in total, there are four possible
combinations of workload assignments as shown in Fig. 19.21. The green bars show
the combined completion time while the blue bars show the completion time for
separate workloads run on different cores. The shortest completion time is observed

604 R. R. Karn and I. M. Elfadel

0

200

400

600

800

1000

1200

1400

1600
C

om
pl

et
io

n
T

im
e

(S
ec

)

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

0

200

400

600

800

1000

Two workload run on a core One workload run on a core

canneal ferret gamess x264 ferret gamess canneal x264

[x,y,z] = [Processor Power(Watt), DRAM Power(Watt), Core Temp(Deg Cel)]

[19,2.7,
 50]

[19.23,
 2.78,
 50]

[19.15,
 2.62,
 50]

[19.15,2.78,50]

Fig. 19.21 Runtime comparison for multi-workload execution on single-core processor

in the third and fourth bar graphs of the top row. In the third bar graph, both
workloads, ferret and gamess, are CPU-intensive and run on the same core. A
similar case is the fourth bar graph, where the two memory-intensive workloads,
canneal and X264, run on one core. These results demonstrate that two workloads
running on the same core can provide relatively high performance as long as they
share the same signature.

Similar experiments have been conducted for a multicore configuration. Two
cores, k = 0, 1 have been used for executing the same four workloads. The work-
load completion times are shown in Fig. 19.22. The core temperature and power
consumption are approximately the same for each run, but there are significant
differences in completion time. The shortest completion time is observed in the
third bar graph of the bottom row where the CPU-intensive workloads, ferret and
gamess, are run on Core k = 0 and the memory-intensive workloads, canneal and
X264, are run on Core k = 1. Under similar power budgets and thermal constraints,
performance may be significantly increased by assigning workloads with the similar
signatures to the same cores.

19.8.4.2 Scaling Up

In a multi-thread context, performance may be improved more effectively by
arranging the threads of the various workloads based on thread rather than workload
signature. This is because complex, large-scale workloads are typically comprised
of many different computational phases. For example, the workload ferret mimics
applications tailored for content-based similarity search in feature-rich data such
as audio, video, and 3D visualization [26]. During the initial execution phase, data

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 605

500

1000

1500

2000

2500

E
xe

cu
tio

n
T

im
e

(s
ec

)

500

1000

1500

2000

2500

500

1000

1500

2000

2500

Two workload run on a core One workload run on a core

core1
core1

[19.23,2.73,49.5]

core0

[18.52,2.82,45.5]
[18.6,2.75,45]

core0

[19.19,2.74,49]

[x,y,z] = [Processor Power(Watt), DRAM Power(Watt), Processor Temp(Deg Cel)]
Core0 Core0 Core1 Core0 Core1

x264

canneal

gamess

[18.6,2.78,45]

[19.15,2.77,49]

core0

core1
ferret

gamess

canneal

x264

ferret

ferret

x264

gamess

Core1

canneal

Fig. 19.22 Runtime comparison for multi-workload execution on a multicore processor

is requested from the user, at which time the threads are CPU intensive. During
subsequent phases, ferret searches for pattern matches in its database and provides
outputs. During these search phases, the threads become memory intensive. Similar
behavior over time applies for most workloads.

Given the dynamic behavior of workloads, it may be advantageous for overall
performance to run same-signature threads of different workloads on the same cores.
To illustrate this advantage, the workloads, ferret, gamess, canneal and X264, have
been run on Core k = 0, and the process IDs of all threads have been collected.
The signature of each thread is determined in real-time based on the Linux profiling
command

perf stat − p < threadID >

Sample signatures via perf have been shown in Table 19.11 in page 596. We assign
threads with similar cache miss rates to Core k = 1 and threads with similar IPCs
to Core k = 0. Threads are transferred using the Linux command

taskset − pc < corenumber > < threadID >

606 R. R. Karn and I. M. Elfadel

200 400 600 800 1000

10

11

12

13

14

15

16

17

18

19
P

ow
er

 (
W

at
t)

200 400 600 800 1000

10

11

12

13

14

15

16

17

18

19

P
ow

er
 (

W
at

t)

canneal ferret

Complete.
Core at Sleep

Execution
Complete.

 Core at Sleep

Execution

Workload Execution
Workload Execution

core0−canneal
core1−ferret Threads of

ferret &
canneal
shared
among core0
and core1

Sample n (sec) Sample n (sec)

Fig. 19.23 Power and runtime comparison for thread swapping across workload

This simple but effective technique enables shorter completion times under the same
power budget. This is illustrated graphically in Fig. 19.23 for workloads canneal and
X264.

19.9 Conclusions

In this chapter, power and thermal proxies for multicore processors have been
generated and validated using least-angle regression (LAR), a well-known modeling
technique in statistical machine learning. In the thermal proxy, we have shown how
LAR can be exploited to improve the scalability of the model while incorporating
layout-dependent effects. The power and thermal proxies are validated for both
active and idle cores with the idle cores residing at various sleep levels. Workload
signatures defined using LAR performance counters have also been proposed to
predict workload characteristics. More specifically, these signatures have been used
to dynamically scale the number of cores and then arrange the workloads and their
threads to run on specific cores to improve overall performance under the same
power budgets and thermal constraints. An important outcome of our work is that
aggregating workloads and their threads according to their signatures often results
in significant savings in runtime and energy. We are currently investigating the use
of similar techniques to develop workload-driven autoscaling policies of virtual
machines on cloud servers.

19 Multicore Power and Thermal Proxies Using Least-Angle Regression 607

Acknowledgements The authors would like to acknowledge very helpful discussions with
Andrew Henroid from Intel, and with Pradip Bose, Alper Buyuktosunoglu, Canturk Isci, Prabhakar
Kudva, and Charles Lefurgy from IBM. This work was supported by SRC under Contract 2011-TJ-
2192 with customized funding from Mubadala, Abu Dhabi, UAE.

References

1. J.S. Lee, K. Skadron, S.W. Chung, Predictive temperature-aware DVFs. IEEE Trans. Comput.
59(1), 127–133 (2010)

2. R. Kalla, B. Sinharoy, W.J. Starke, M. Floyd, Power7: IBM’s next-generation server processor.
IEEE Micro 30(2), 7–15 (2010)

3. M. Floyd, M. Allen-Ware, K. Rajamani, B. Brock, C. Lefurgy, A.J. Drake, L. Pesantez,
T. Gloekler, J.A. Tierno, P. Bose et al., Introducing the adaptive energy management features
of the power7 chip. IEEE Micro 31(2), 60–75 (2011)

4. K. Kasichayanula, D. Terpstra, P. Luszczek, S. Tomov, S. Moore, G.D. Peterson, Power aware
computing on GPUs, in 2012 Symposium on Application Accelerators in High Performance
Computing (SAAHPC) (IEEE, Piscataway, 2012), pp. 64–73

5. A. Sîrbu, O. Babaoglu, Predicting system-level power for a hybrid supercomputer (2016).
Preprint. arXiv:1605.09530

6. M. Yasin, A. Shahrour, I.M. Elfadel, Unified, ultra compact, quadratic power proxies for multi-
core processors, in Design, Automation and Test in Europe Conference and Exhibition (DATE),
2014 (IEEE, Piscataway, 2014), pp. 1–4

7. C.-B. Cho, T. Li, Using wavelet domain workload execution characteristics to improve accu-
racy, scalability and robustness in program phase analysis, in IEEE International Symposium
on Performance Analysis of Systems & Software, 2007. ISPASS 2007 (IEEE, Piscataway, 2007),
pp. 136–145

8. R. Sarikaya, C. Isci, A. Buyuktosunoglu, Runtime application behavior prediction using a
statistical metric model. IEEE Trans. Comput. 62(3), 575–588 (2013)

9. B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al., Least angle regression. Ann. Stat. 32(2),
407–499 (2004)

10. R.R. Karn, I.M. Elfadel, Extraction of thermal workload signatures in multicore processors
using least angle regression, in 2015 International Conference on Communications, Signal
Processing, and Their Applications (ICCSPA’15), Feb 2015, pp. 1–5

11. R.R. Karn, I.M. Elfadel, Multicore power proxies using least-angle regression, in 2015 IEEE
International Symposium on Circuits and Systems (ISCAS), May 2015, pp. 2872–2875

12. R.R. Karn, I.M. Elfadel, Autoscaling of cores in multicore processors using power and thermal
workload signatures, in IEEE 59th International Midwest Symposium on Circuits and Systems
(MWSCAS 2016), Oct 2016, pp. 1–4

13. T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, R. Tibshirani, The Elements of
Statistical Learning, vol. 2, no. 1 (Springer, Berlin, 2009)

14. J. Demmel, A. Gearhart, Instrumenting linear algebra energy consumption via on-chip energy
counters. UC at Berkeley, Tech. Rep. UCB/EECS-2012-168 (2012)

15. Intel PCM performance counter monitor description, https://software.intel.com/en-us/articles/
intel-performance-counter-monitor. Accessed 30 March 2015

16. M. Shafique, S. Garg, J. Henkel, D. Marculescu, The EDA challenges in the dark silicon era:
temperature, reliability, and variability perspectives, in Proceedings of the 51st Annual Design
Automation Conference (ACM, New York, 2014), pp. 1–6

17. J. Henkel, H. Khdr, S. Pagani, M. Shafique, New trends in dark silicon, in Design Automation
Conference (DAC), 2015 52nd ACM/EDAC/IEEE (IEEE, Piscataway, 2015), pp. 1–6

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

608 R. R. Karn and I. M. Elfadel

18. M. Shafique, D. Gnad, S. Garg, J. Henkel, Variability-aware dark silicon management in on-
chip many-core systems, in Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition. EDA Consortium (2015), pp. 387–392

19. H. Khdr, S. Pagani, M. Shafique, J. Henkel, Thermal constrained resource management for
mixed ILP-TLP workloads in dark silicon chips, in Proceedings of the 52nd Annual Design
Automation Conference (ACM, New York, 2015), p. 179

20. I. Takouna, W. Dawoud, C. Meinel, Accurate multicore processor power models for power-
aware resource management, in 2011 IEEE Ninth International Conference on Dependable,
Autonomic and Secure Computing (DASC) (IEEE, Piscataway, 2011), pp. 419–426

21. V.M. Weaver, Linux perf event features and overhead, in The 2nd International Workshop on
Performance Analysis of Workload Optimized Systems, FastPath, 2013, p. 80

22. H. Zhao, A. Sharifi, S. Srikantaiah, M. Kandemir, Feedback control based cache reliability
enhancement for emerging multicores, in 2011 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) (IEEE, Piscataway, 2011), pp. 56–62

23. E. Seo, J. Jeong, S. Park, J. Lee, Energy efficient scheduling of real-time tasks on multicore
processors. IEEE Trans. Parallel Distrib. Syst. 19(11), 1540–1552 (2008)

24. X. Guerin, W. Tan, Y. Liu, S. Seelam, P. Dube, Evaluation of multi-core scalability bottlenecks
in enterprise java workloads, in 2012 IEEE 20th International Symposium on Modeling,
Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS) (IEEE,
Piscataway, 2012), pp. 308–317

25. K.K. Pusukuri, R. Gupta, L.N. Bhuyan, Thread reinforcer: dynamically determining number
of threads via OS level monitoring, in IEEE International Symposium on Workload Character-
ization (IISWC), November 2011, pp. 116–125

26. C. Bienia, S. Kumar, J.P. Singh, K. Li, The parsec benchmark suite: characterization and
architectural implications, in Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques (ACM, New York, 2008), pp. 72–81

27. J.L. Henning, Spec cpu2006 benchmark descriptions. ACM SIGARCH Comput. Archit. News
34(4), 1–17 (2006)

Chapter 20
A Comparative Study of Assertion
Mining Algorithms in GoldMine

Shobha Vasudevan, Lingyi Liu, and Samuel Hertz

20.1 Introduction

Design verification constitutes the major bottlenecks in the hardware design cycle,
often requiring majority of the time and resources needed to design the chip.
With the increase in complexity and heterogeneity of general purpose hardware
and integration of hardware components in system-on-a-chip, the verification task
remains a daunting challenge for the foreseeable future. Simulation-based verifica-
tion, although ad-hoc and incomplete, is the most prevalent verification approach.
Formal verification, despite its scaling limitations, is valued for its complete and
exhaustive exploration of the design state space. In both cases, the purpose of design
verification is to check if the design implementation satisfies the specification.

Assertions are logical statements expressed in a propositional or temporal
logic that describe design intent. Assertions describe invariant properties of the
design. These properties can be used for expressing combinational as well as
sequential behavior of the design. Assertions can be used during simulation for
monitoring behavior. They can also be used as properties that are checked against
the design during formal verification. Due to their versatility and capacity to express
more behavior than tests, assertions have become critical to most state-of-the-art
verification environments.

Assertions have transitioned from complicated high level model specifications
written by few experts to widely used artifacts in hardware designs and verification
IP in system-on-a-chip (SoC) designs [23]. This is due to the burgeoning of
assertion specification languages that presented a familiar interface to designers
and verification engineers, as well as the support provided by commercial tools

S. Vasudevan (�) · L. Liu · S. Hertz
Electrical and Computer Engineering Department, University of Illinois at Urbana-Champaign,
Champaign, IL, USA
e-mail: shobhav@illinois.edu

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_20

609

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_20&domain=pdf
mailto:shobhav@illinois.edu
https://doi.org/10.1007/978-3-030-04666-8_20

610 S. Vasudevan et al.

for assertion-based verification. A survey [59] reported that assertion usage in the
hardware design industry has increased from 37% to 69% between 2007 and 2010.

The singular aspect limiting assertion-based verification is in writing these
assertions. Assertion generation is a typically manual task, with designers attempt-
ing to write assertions. Writing effective assertions that express relevant temporal
behavior, inter-modular interactions, and have high behavioral coverage is a chal-
lenging task [23]. This ends up being a time and resource sink in most verification
environments.

Recently, multiple solutions have emerged for automatically generating asser-
tions [5, 12, 21, 29, 54]. Many of these techniques use dynamic simulation data to
infer the design’s behavior [29, 54, 66]. These mechanically generated assertions
suffer from some issues as compared to human generated assertions. They typically
are of non-uniform quality, with some assertions being more trivial than others.
They are frequently redundant and not as succinct as human generated assertions.
They are also numerous, making it a daunting task for a designer to parse through
a long list of assertions to select from. They may also be incomprehensible from a
human readability perspective.

GoldMine [32, 66] is an automatic assertion generation tool that uses data mining
along with static source code analysis and formal verification. The principle in
GoldMine is that the static analysis can be used to focus on the statistical, dynamic
inferencing, i.e., data mining. It is observed in GoldMine that iterative, structured
guidance from static source code analysis [32, 37, 39] and formal verification [40]
can significantly enhance the results of data mining.

GoldMine works are shown in Fig. 20.1. A register transfer level (RTL) design
is simulated in the data generator using random or constrained stimuli. The data
mining phase (A-miner) mines the simulated data for candidate assertions. Static
analysis information from RTL is provided to A-miner. The candidate assertions are
then checked by a formal verification engine against the design. If the candidate
assertion guessed by the data miner is incorrect, the formal verification will fail the
candidate. The passed assertions are invariant in the design. A-val represents the
evaluation and ranking phase of the assertions, which is based on subjective and
objective metrics.

A-Miner
Formal
Verifier

Data
Generator

Assertion
Evaluator

Simulation
Traces

Likely
Assertions

System
Assertions

Target RTL
Design

Temporal/Propositional
Assertions

Domain
Information

Designer Feedback

Static
Analyzer

Fig. 20.1 The GoldMine methodology

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 611

In GoldMine, we are seeking to resolve the issues with automatic assertion
generation outlined above, to make this a widely used technology that can evolve
to increase the efficiency and productivity of the designer. To this end, we are
investigating the extent to which each phase of GoldMine affects assertion quality.

We have researched the impact of static analysis such as logic cone-of-
influence [32], word level feature and target generation [39], design domain
knowledge [41], and counterexample guided assertion refinement [38]. We have
also investigated evaluation algorithms [6] and [31] in the A-val phase.

In this work, we investigate the effect of applying different types of data mining
algorithms on assertion generation, i.e., the A-miner. In [32, 40, 66], we have used
a decision tree-based supervised learning algorithm in the data mining phase (A-
miner). Broadly speaking, there are two kinds of mining algorithms—tree based and
association rule based [26]. Decision tree algorithms [52, 53] are ideal for assertion
generation because they are simple, scalable, and represent the data in a compact
and intuitive way [26].

Decision tree algorithms perform a greedy search to quickly identify local
regions in the data space. These algorithms recursively partition the dataset by
assigning values to feature variables until the value of the target variable is
consistent. Consequently, decision tree algorithms induce a rule by walking from
the root of the tree to a leaf. Each edge in the walked path defines a proposition in
the rule as antecedent and the leaf node defines its consequent.

Decision tree algorithms can introduce irrelevant propositions into a set of rules
since they partition the dataset hierarchically. Tree-based algorithms are greedy in
their search for the choice of splitting variable. Once they decide on a splitting
variable, they continue to split further and add more levels to the tree based on the
initial choice.

However, due to their greedy approach to partitioning the dataset and choosing
splitting variables, they can generate overconstrained rules. In the context of
assertions, redundancies in the antecedent of the assertion1 will result in low
coverage of the input space by the assertion.

In this work, we introduce the best-gain decision forest, as an alternative to
the decision tree algorithm. Decision tree algorithms select one feature variable
with maximum information gain to partition the dataset. In contrast, the best-gain
decision forest (BGDF) algorithm partitions the dataset using all such variables.
Consequently, the BGDF algorithm builds all decision trees optimized for maxi-
mum information gain. To maintain efficiency, the algorithm shares nodes between
decision trees. The BGDF algorithm extracts all assertions from a decision forest
and uses a set containment algorithm to discard those that are redundant. The BGDF
algorithm is most useful in cases where there are many candidate variables with
equal information gain, any of which could be chosen as the next feature variable

1GoldMine generates assertions in linear temporal logic (LTL) of the form A => C where the
antecedent A and consequent C can be propositional or temporal.

612 S. Vasudevan et al.

in the tree. It removes the artificial constraints imposed by the hierarchical nature of
the decision tree by maintaining all valid trees that could be built.

Association rule learning induces rules exhaustively between all variables [3].
Association rules that fall beneath a minimum level of support are then discarded
as insufficiently represented in the data. In [56, 57], we presented a novel algorithm
for association mining guided by input space coverage of the assertions. Such a
coverage guided mining approach iteratively eliminates assertions (rules) that do not
satisfy a progressively shrinking minimum coverage threshold. Consequently, this
method is optimized for high input space coverage, concise assertions. A drawback
of association rule learning algorithms in machine learning is their inefficiency in
performance and the large number of association rules they generate. The reliance
on coverage filters out many of the irrelevant association rules, and emphasizes
succinctness of generated assertions. Some preliminary results on small benchmarks
were presented in [56]. We present an extensive set of results on this algorithm in
our comparison experiments in this work.

We have also implemented the PRISM [11] algorithm in GoldMine for compar-
ing our results against the other algorithms. PRISM is known to alleviate some of the
problems of the decision tree. Unlike the decision tree and decision forest (BGDF),
the PRISM algorithm does not select feature variables based on their ability to
partition the dataset. Instead, the algorithm selects the feature variable, value pair
that reduces the dataset entropy most. The PRISM algorithm recognizes that not all
values of a feature variable are relevant to the target variable. Hence, it does not
introduce irrelevant propositions into a set of assertions.

Our experiments compare the four data mining algorithms discussed using open
source benchmark designs such as USB, PCI, and OR1200 [47]. We compare the
algorithms with respect to objective and subjective metrics that provide a (partial)
method to compare assertion quality. We provide an analysis of the comparisons
and empirical results.

Our contributions to this work are as follows. We introduce the best-gain decision
forest algorithm for generating more concise and succinct assertions than the
decision tree. We provide a comparative study of four different static analysis
guided data mining algorithms for assertion generation—decision tree, coverage
guided association mining, best-gain decision forest, and PRISM. We provide an in-
depth analysis of each algorithm. We present experimental results on open source
benchmark designs such as the PCI, USB, and OR1200. We also hereby provide
access to all these implementations in GoldMine that can be downloaded from [64]
for research purposes.

20.1.1 Related Work

Work in deductive program verification [7, 10, 44] has studied assertion generation
through static analysis of source code since the 1970s. Static analysis [49, 65]
and dynamic analysis [4, 14, 46] techniques to generate assertions for program

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 613

verification exist. Due to the size and complexity of software programs and
constructs, these are not as wide in scope and applicability as hardware assertions.

In hardware, previous work [30, 50, 67] has used static analysis to generate
hardware assertions. IODINE [29] generates low-level dynamic assertions for
hardware designs, but it does not use data mining. Instead, IODINE analyzes
dynamic program behavior with respect to standard property templates such as
onehot encoding or mutex. The methodology in [54] uses dynamic simulation
trace data to generate assertions, but it does not use data mining. Instead, the
methodology tries to generalize design behavior based on simulation data. It has
two phases. In the first phase, a predefined set of basic properties are inferred
using template matching. In the second phase, the temporal dependency between
the basic properties is checked to formulate more complex properties. There is
no learning process and the derived properties are also limited by the predefined
set of basic properties. Inferno [20] uses simulation data to extract the semantic
protocol from a communication interface RTL design. Inferno infers a set of
transaction diagrams which it uses to generate a set of assertions. For each vertex
in the transaction diagram, it generates a disjunction of all the expressions on
outgoing edges. Therefore, it discards the complex temporal relationship between
different signals. Consequently, Inferno assertions might complicate the search for
bugs in such designs. In addition, Inferno is limited to designs that implement a
communication protocol, which constitute a small subset of hardware.

In [12], the authors use sequential pattern mining to infer causal relationships
between frequently occurring sequences of input and output events. Since their
methodology only seeks relationships between inputs and outputs, it might not
generate meaningful assertions for designs with high temporal depth. In addition,
since their methodology enumerates each unique input and output event, it might
not scale for large designs.

In [15], the authors use symbolic simulation to extract assertions from test bench
constraints. The authors use the generated assertions to optimize the design under
test. Since their methodology extracts assertions from a constrained test bench, the
assertions might reflect a bug in the test bench or overlook untested behavior. In
addition, the generated assertions might have limited value since their methodology
extracts them using simple templates and verifies them using bounded formal
verification.

Previous work [9, 33, 68] has proposed methods to overcome the limitation
of decision trees by constructing random subspace forests. These methodologies
construct decision forests to avoid overfitting the dataset but do not address high
quality rule induction.

Since GoldMine’s inception, several commercial methodologies have emerged
for assertion generation, including Atrenta’s BugScope [5] and Jasper’s Active-
Prop [1]. The quality and number of assertions generated tend to be inconsistent
with commercial tools, making them good point solutions. GoldMine is intended to
be a comprehensive, integrated, generic solution to this problem.

614 S. Vasudevan et al.

In our own previous work, we have enhanced GoldMine to improve the quality
of assertions in various ways [32, 38] from generating word level assertions [39] to
mining system level assertions [37].

Many researchers have used GoldMine for various applications [18, 19, 22, 24,
27, 28, 60–62]. Some work [13, 19, 42] improves over the early version of GoldMine
[66] and is comparable to more recent work in GoldMine [32, 39].

20.2 Summary of Comparison of Assertion Generation
Algorithms in GoldMine

We provide an overview of how the algorithms discussed in this chapter compare.
The four mining algorithms discussed here are at different points in the spectrum
of inferencing. We quantify some common metrics to judge the quality of an
assertion—(1) conciseness of the assertion, (2) predictive accuracy of the algorithm
in generating likely assertions, (3) number of assertions generated, (4) complexity
of behavior and importance of the assertions generated, and (5) how unexpected the
generated assertions are. With respect to these metrics, the four algorithms presented
here have different capabilities and trade-offs. The definitions of these metrics are
provided in Sect. 20.4.6 and the quantitative comparisons are presented in Sect. 20.9.

The decision tree algorithm attempts to find an explanation for the given data
as quickly as possible. This means that it optimizes for minimal depth in the tree
structure. It also generates non-overlapping assertions, so that each one corresponds
to a different behavior of the dataset. It also maintains a single tree data structure
for each output. This is very restrictive in terms of the type of rules generated. The
splitting variable choices made once in the past cannot be revised. This inclusion
of all previous splitting variables, as well as frequent overfitting to explain the
data results in redundant propositions in the antecedent. This makes decision tree
assertions less concise and lower quality. The quickest explanation usually means
that it is not subtle or capturing complex behaviors. The predictive accuracy of the
decision tree is high, since it makes “safe” guesses. It does not attempt to make leaps
in inferencing, since it is constrained by the tree structure and simply fits the data
irrespective of the size or relevance of the assertion. Due to the overconstraining
problem, the assertions capture design paths that are less expected from a uniform
distribution. Resource utilization is minimal for the decision tree.

The decision forest, introduced in this chapter, is a decision tree with more
freedom and flexibility. This forest structure circumvents the issue of being confined
to a particular splitting variable choice. Multiple trees are built for exploring the
equal information gain choices that would not be explored by the tree. In situations
where there is a tie between splitting variable choices, the decision forest ensures
that the redundant variables are eliminated. Hence it is better than the decision tree
in conciseness. Since the decision forest is composed of many trees, the basic tree
structure is maintained for inferencing every assertion. So within a tree structure,

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 615

the attempt is to generate minimal depth explanations. The complexity of behaviors
captured by the forest (quality) is higher than the tree due to more than one tree
capturing alternate behaviors for the same output. However, it is less than the
inferencing by free associations between variables. The predictive accuracy is high
as in the decision tree. The resource utilization would normally be high, but due to
key optimizations like node sharing, our implementation consumes very reasonable
resources.

The PRISM algorithm also maintains a tree structure in inferencing, but it
generates rules (assertions) for a single concrete value of a variable each time.
In the Boolean space, this implies that assertion generation for variable f when
f = 0 is distinct from when f = 1. The focused inferencing around the values
of a variable results in very high quality assertions. PRISM assertions capture the
most complex, subtle behaviors, especially in temporal assertions. However, due to
the duplication in generating assertions for the same variable, the total number of
assertions generated by PRISM is very high. Since every inference is made within
the tree structure, the minimal depth principle is followed. Due to the external
regulation of the target variables in each tree, there is less redundancy in the resulting
assertions. PRISM is optimized for relevance and completeness of predictions with
respect to the dataset. It can produce assertions that are concise, but it also generates
verbose assertions infrequently. It means there are a lot of redundant propositions
in generated assertions. PRISM has a lower predictive accuracy than the decision
tree and forest, since it does not adopt the low risk, greedy approach of these
algorithms. It makes more risky inferences, in favor of more quality in the assertions
instead of finding the best existing explanation. Also, the high number of generated
candidate assertions results in a smaller percentage being correct as attested by
formal verification. However, the subtle assertions mean that they are unexpected
as they cover rare behaviors. The resource utilization by PRISM is not high.

Coverage guided association mining is a domain-aware variation of association
rule mining. Input space coverage is used as a guiding parameter to accept or
discard an association rule. This approach does not infer using a tree structure,
but with free associations between variables. The filtering and constraining due to
input space coverage being above a certain threshold for this algorithm results in
the free associations being regulated significantly. This alleviates the problem with
association rule-based approaches generating large volumes of results. The coverage
guided miner produces a reasonable number of assertions, which tend to be less than
PRISM and more than decision tree. Since the input space coverage is used to filter
the candidate assertions, conciseness is highest with this algorithm. If an assertion
has higher input space coverage, it translates to fewer propositions in the antecedent
and more concise (simpler) explanations. The resource utilization of the coverage
guided miner is the highest, since it exhaustively searches the rule space to generate
simpler explanations until it cannot find them. It has a higher percentage predictive
accuracy than PRISM due to the fewer number of assertions generated. However,
the unexpectedness factor is low in these assertions due to the focus on high input
space coverage.

616 S. Vasudevan et al.

In summary, there is no single winner with respect to all metrics. The best
algorithms for a task depend on the design and user-defined relevance for each
metric.

20.3 The GoldMine Principle: Statistics Meet Static

In this section we present the intuition behind the scalability and effectiveness of
our solution. This section can be skipped without loss in continuity to the reader.

Data mining is the process of deciphering knowledge from data [48, 63]. Data
mining uses dynamic behavior in the form of simulation data or training sets to find
statistical correlations and make inferences about the system. In typical data mining
applications such as web-mining, online recommendation systems, health-care, and
bioinformatics, there are three striking characteristics.

• The underlying systems, namely human psychology, human interest patterns,
medical records, protein sequences, or web data are highly unstructured and
prone to wild fluctuations.

• It is not possible to claim that the knowledge generated by data mining is true,
since it relies purely on statistical evidence and there is no oracle to attest it.
For highly unstructured systems (or those whose structure has not yet been
deciphered), behavioral traces are the only information that can be gleaned from
the system.

• The data mining suffers from the problem of not being able to simulate judgment,
i.e., it will not be able to decide how “interesting” a piece of information (say,
a rule) is to a domain expert [43, 58, 63]. It relies on iterative learning from a
human domain expert and tries to predict interestingness, or relevance of a rule
to the domain where it is applied.

In contrast to typical applications of data mining, hardware designs are extremely
structured and their design is a very regulated process. This means that data mining
algorithms would have higher accuracy and predictability than usual.

• Since these systems are designed by humans, there is a notion of “absolute
truth” in these systems that can be attested by an oracle—either the specification
document, a reference model, or the system architect. The data mining algorithms
can get reinforcement for their correct statistical inferences as well as quick
recovery from their wrong ones. Formal verification techniques are built to
answer the questions of truth about a system automatically [25] as well as expose
falsehood through a witness. A formal verification algorithm coupled with a data
mining algorithm makes a statistical approach a rigorous method; it would also
make an inherently intractable problem of state space exploration directed and
restrained.

• Another reason is that measures of interestingness [43, 58] for hardware systems
can, to a large extent, be identified and quantified. For example, in a digital

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 617

circuit, a signal with a high fan-in may be considered important, and any
assertion about its behavior interesting. This type of steady and accurate high
level guidance is atypical for data mining algorithms.

The existence of techniques that can extract domain knowledge from systems and
guide the data mining is unique to computer systems. We have given examples of
fan-in-based priority and cone-of-influence that can provide this knowledge. There
are multiple such known techniques in hardware that can be used for analyzing
the target system. We group all these techniques under the term static analysis
techniques. In hardware, we use the term static analysis to mean methods that
analyze design structure/function (analogous to program syntax and semantics in
software). Examples of structural methods include cone-of-influence [8, 16, 17]
and localization reduction [36]. Formal verification can be considered a static
analysis of the semantics of a model. Formal verification, therefore, is also a type
of static analysis in our terminology. We distinguish between the two by calling one
“lightweight” and the other “formal.”

20.4 Background on GoldMine

Figure 20.1 depicts each component of the methodology. GoldMine has different
use cases in industry: (1) ranked list of assertions to be used directly by designers
for legacy/stable designs, (2) providing hints to designers about assertions they can
write, (3) enhanced design understanding from a different perspective, (4) corner
case or rare event analysis by examining low support assertions, (5) code coverage
and behavioral coverage analysis for each assertion, (6) coverage hole analysis
of simulation data by examining failing assertions, (7) regression test suite over
optimization phases of the design, (8) generating “specification” assertions from
System C for functionality and performance, and (9) coverage analysis of tests on
emulation/prototyping FPGA platforms.

20.4.1 GoldMine Assertions

In this chapter, a target is a Boolean RTL variable for which we want to generate
assertions. A feature variable with respect to a target variable is a Boolean variable
that can potentially affect the value of the target [26, 45]. In our implementation,
the variables considered for mining assertions are primary inputs, registers, and the
primary outputs. Output serves as target variable in mining algorithm and primary
inputs and registers serve as feature variables. GoldMine can generate propositional
as well as temporal assertions.

The generated propositional assertions are of the form A ⇒ B, where the
consequent B is a single proposition with respect to a target variable. The con-
sequent asserts that the target variable value is true or false. The antecedent A is a

618 S. Vasudevan et al.

conjunction of propositions in terms of feature variables of the corresponding target.
For example, in assertion p ∧ ¬q ⇒ ¬r , r is the target and p and q are feature
variables with respect to r .

GoldMine generates bounded time assertions in LTL [51] using the “next”
operator X. We provide the data miner a mining window length, or the duration
of time cycles over which we capture temporal behavior. For example, if we want
to consider the following behavior: once req is valid, the ack should be valid two
cycles later, the mining window length should be set to 2. The generated assertion
will span up to a maximum of two cycles, as in req ⇒ XXack. We do not generate
unbounded assertions using the “eventually” operator F . Although “until” operator
U has not been shown in the examples of this chapter, some of our assertions can
be interpreted as a “bounded” until operation. For example, p ∧ Xp ∧ XXp ⇒
XXXq , we can potentially extend this to a contrived “until” proposition like pUq.
It should be noted that it is not faithful to the true semantics of the “until” operation,
since the observations are only within a bounded cycle.

For temporal assertions, we annotate a variable within a mining window with its
corresponding cycle. In the example, variable req is annotated as req(t), req(t+1),
and req(t + 2) within a mining window. Each time annotated variable can now
be treated like a propositional variable, converting temporal assertion generation
into a propositional assertion generation problem. When we finally report the
generated assertions, the generated assertion req(t)⇒ ack(t +2) is transformed to
req ⇒ XXack in LTL. We will only explain propositional assertion generation for
all algorithms for ease of understanding.

For ease of the explanation of the algorithms, we will use a variable value pair
〈v, α〉, where α ∈ 0, 1, to represent the propositions of the assertion, where v
can be a target or a feature variable. 〈v, 0〉 represents ¬v and 〈v, 1〉 represents v.
Therefore, the antecedent can then be simply represented as a set of such pairs, and
the consequent by a single such pair.

20.4.2 Static Analyzer

The static analyzer parses and extracts a variety of static information from a Verilog
[35] design. It determines the top module in the design hierarchy, clock, reset
signals, and the target variable. It also selects a set of feature variables for the target
variable.

It uses the bounded cone-of-influence to select feature variables [16, 17]. The
bounded cone-of-influence extends the classic cone-of-influence [36]. Instead of
computing all of a variable’s dependencies, it computes only those within a bounded
number of temporal frames.

In [39], the static analyzer uses a modification of the weakest liberal precondition
computation [34] to discover word level features from RTL design for mining word
level assertions. The word level feature extraction is independent of and applicable

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 619

to all the mining algorithms. Finally, the assertion evaluator A-val uses the static
analyzer to compute evaluation metrics for an assertion, including the importance,
complexity, and coverage of an assertion [31].

20.4.3 Data Generator

The data generator generates and parses simulation data. The data generator creates
an unconstrained as well as a directed/constrained random test bench for the design.
The unconstrained random test bench assigns random values to each input variable
for user-specified number of cycles of simulation. We have found empirically
that the optimal simulation length for generating interesting data mining results is
between 10,000 and 20,000 cycles. The data generator uses the created (supplied)
test bench to simulate the design. It unrolls the data into temporal frames of length
t and compresses it by discarding duplicate frames.

20.4.4 A-Miner

A-miner is the data mining engine of GoldMine. A-miner searches for causal
relationships between feature variables and the target variable in the simulation data.
If the data miner finds a relationship with 100% confidence, then it will generate an
assertion. Any suitable rule induction algorithm can mine a set of assertions from
the simulation data. In this chapter, we discuss four algorithms GoldMine uses to
generate assertions.

20.4.5 Formal Verifier

The data miner generates assertions from the simulated data. This means that the
assertions are being generated on the subset of design behavior that was simulated.
Even if we consider only the 100% confidence results, there is no guarantee that
the generated assertions are true system invariants. These are still likely invariants.
A formal verification phase is used to verify if the likely invariants are true system
invariants. The likely invariants that are not system invariants are poor guesses made
by the mining algorithms, mostly due to insufficient data. In a counterexample
guided version of Goldmine [38, 40], we use the counterexamples from formal
verification as feedback to generate better assertions. In this chapter, we will not
be describing this algorithm. We constrain the design’s reset signal to prevent the
tool from generating trivial counterexamples. The tool reports assertions that pass
formal verification as true system invariants.

620 S. Vasudevan et al.

20.4.6 Assertion Evaluator

GoldMine attempts to automate a traditionally manual process. Consequently,
the assertion evaluator evaluates GoldMine’s performance and the quality of the
generated assertions. The original metrics for assertion evaluation in GoldMine
included antecedent size, temporal length, input space coverage, and hit rate.
Antecedent size refers to the number of propositions in an assertion’s antecedent.
Temporal length refers to the number of bounded temporal frames spanned by an
assertion’s antecedents. The assertion evaluator reports the average antecedent size
and temporal length for a set of generated assertions to estimate their readability.

– Input space coverage estimates the functional coverage of an assertion. Suppose
we create a truth table that computes the target variable’s value as a function
of the feature variables. The input space coverage of assertion p : A ⇒ C is
equal to the fraction of entries in the table that satisfy A. We can use the formula

1
2|A| to compute the input space coverage p. Intuitively, an assertion with fewer
propositions in its antecedent will cover a greater fraction of the input space.
Though computing an assertion’s input space coverage is trivial, doing so for an
entire set of assertions is not since the coverage of two assertions might not be
mutually exclusive.

– Hit rate refers to the fraction of generated assertions that passed formal verifi-
cation. Hit rate evaluates the data miner’s performance and completeness of the
simulation data. In other words, we prefer a data mining algorithm that can find
true assertions over one that can find high quality false assertions. Regardless, a
data mining algorithm’s performance will be limited by the completeness of the
simulation data.

– Statement coverage of assertion estimates the fraction of RTL statement covered
by an assertion. In [2], the authors propose a correctness-based coverage
algorithm to compute RTL code coverage of an assertion. The correctness-based
coverage algorithm computes the set of statements executed after the satisfaction
of an assertion’s antecedent. If an executed statement transitively satisfies the
assertion’s consequent, then the assertion covers that statement. The algorithm
proceeds as follows. Let p denote an assertion with temporal length k. First, the
algorithm initializes the dataset S so that it satisfies the antecedent of p. Next,
the algorithm performs an event-based simulation of the design for k temporal
frames. During simulation, the algorithm records all assignment statements
triggered/executed in each temporal frame. Starting from the variable used in
the consequent of p, we could identify the statement assigning to that variable.
Then for each variable used in the statement, we can transitively identify the
corresponding assignment statements. This final transitive set of statements is
covered by assertion p.

– Assertion expectedness estimates the probability that an assertion’s antecedent
will be satisfied, assuming that the design inputs vary uniform-randomly. Asser-
tions with low expectedness convey design behavior that occurs rarely. Con-

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 621

sequently, we rank assertions with low expectedness higher than those with
high expectedness. We use simulation techniques to estimate an assertion’s
expectedness.

– Assertion importance estimates the importance of an assertion to a design using
fan-in, fan-out cones and other design specific measures computed by static
analysis as in [31]. A more important assertion is desirable.
Intuitively, the importance score of an assertion estimates the importance of
the design paths that are covered by the assertion. Assertion importance also
considers temporal depth and spatial distance between the target variable and the
variables in the antecedent. It ranks an assertion higher if the temporal depth and
the spatial distance are higher. Consequently, an assertion with a high importance
score covers behavior that is critical with respect to its design’s functionality.

– Assertion complexity estimates the human understandability of an assertion. It
quantifies the amount of effort in understanding an assertion in terms of levels
of logic, temporality, etc.[31]. Lower complexity means ease of understanding,
but higher complexity may also be desirable to identify subtle interactions in the
design.
Intuitively, the complexity score of an assertion estimates the “coverage of
complex behaviors” of a design. It measures the spatial distance, temporal
distance, and understandability of execution paths between uses of a variable
in the antecedent and definitions of the target variable. A complex assertion will
have high spatial distance, high temporal distance, will cover complex design
paths between the satisfaction of its antecedent and consequent.

20.5 Decision Tree-Based Learning

The classical algorithm for building decision trees called ID3 employs a top-down,
greedy search through the space of possible branches with no backtracking [52, 53].
ID3 uses entropy and information gain [45] to construct a decision tree. In each
partition, the algorithm computes information gain for each feature variable and
then selects one feature variable with maximum information gain to partition the
dataset. If the entropy is zero, the algorithm stops splitting and exits. In the context
of hardware, each variable is Boolean variable and the decision tree is thus a binary
tree.

In [32], GoldMine uses decision tree-based learning algorithm to automatically
generate assertions for hardware verification. Here, we present an example of the
process. Consider the AND gate design and its decision tree in Fig. 20.2. The root
node assigns multiple values to f . Therefore, the algorithm cannot generate an
assertion and partitions the simulation data. The root’s left child node always assigns
f = 0. Therefore, the algorithm generates the assertion ¬a ⇒ ¬f . Again, the
root’s right child node assigns multiple values to f . Therefore the algorithm will
partition the simulation data again. Each new child node assigns a single value to f .

622 S. Vasudevan et al.

M: 0.25
H: 0.81

a=0

a b f

0 0 0

0 1 0

1 0 0

1 1 1

ASSERT p1:
a => f

a b f

0 0 0

0 1 0

M: 0.00
H: 0.00

M: 0.50
H: 1.00

a b f

1 0 0

1 1 1

M: 0.00
H: 0.00

M: 1.00
H: 0.00

a=1

b=0 b=1

a b f

1 0 0

a b f

1 1 1

ASSERT p2:
aΛ b => f

ASSERT p3:
aΛb => f

Fig. 20.2 A decision tree for an AND gate design. Each node is pictured with the data it represents
and is labeled with its mean and entropy. Each branch is labeled with the feature variable and value
used to partition the data represented by its parent

Therefore, the algorithm generates assertions a ∧ ¬b ⇒ ¬f and a ∧ b ⇒ f .
In each node, we calculate the mean value and the entropy value of target in
the corresponding examples. We select the best splitting variable according to the
highest information gain [26].

20.6 Best-Gain Decision Forest Algorithm

We introduce the best-gain decision forest algorithm (BGDF) to generate concise
assertions.2 Decision tree algorithms only select one feature variable with maximum
information gain to partition the dataset, even if there are multiple feature variables
with the same maximum information gain. As a result, the decision tree algorithm
tends to introduce irrelevant propositions in the antecedent of generated assertions.
Irrelevant proposition in assertion overconstrains the antecedent condition for

2We use the terms decision forest and acronym BGDF interchangeably through this chapter.

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 623

asserting the target variable, and thus degrades the readability and coverage of the
assertion. Consider the assertion a∧¬b⇒ ¬f in Fig. 20.2. Regardless of the value
of a, ¬b ⇒ ¬f . Therefore, the proposition a in this assertion is irrelevant. As a
result, the assertion is verbose and constrained—limiting its use and value.

Let us analyze why decision tree-based learning algorithm introduces irrelevant
propositions in the generated assertion. At the root node in Fig. 20.2, the information
gain for feature variables a and b is calculated. a and b have the same information
gain. However, the algorithm is allowed to select only one feature variable for
partitioning the data. Variable a is selected in this example. Variable b is selected to
partitioning the dataset in the next level of decision tree. Inevitably, the proposition
a is included in the assertion a ∧ ¬b⇒ ¬f .

Our BGDF algorithm solves this problem by allowing multiple feature variables
to partition the dataset. It breaks down the dataset using all such feature variables
with the same maximum information gain simultaneously. If there are two feature
variables with the same maximum information gain, both of them will be selected
for split the dataset. The algorithm will build a decision forest, within which one
decision tree is constructed for each selected feature variable at every internal
decision node.

In order to maintain efficiency, the algorithm implements two optimizations
during the construction of decision forest. First, when we split for multiple variables
with the same maximum information gain on current node, we do not generate
multiple copies of current node for every subtree. We retain only one copy of
the current node. As shown in Fig. 20.3, the root node is shared when we split
on variable a and variable b. From this perspective, the decision forest we finally
construct is actually a tree, within which internal decision nodes might have more
than two branches.

Another optimization tries to improve the running efficiency of the algorithm
in a practical way. This occurs when multiple variables have the same maximum
information gain. We are required to split on all these variables according to BGDF
algorithm and construct a subtree for each. In order to improve the algorithm
efficiency, we no longer retain all these variables as features for each subtree. If
one such variable is previously used to grow a subtree of current node, then we do
not retain it as feature variable for subsequent subtree of current node. Let’s use the
example in Fig. 20.3 to explain this optimization. In the root node, we split on both
a and b. Variable a is first used to grow a subtree, which includes feature variables
a and b. We subsequently construct subtree for variable b. Now variable a is not
used as features in this subtree, since the first subtree has already included a and b
as features. That’s why we stop splitting on the rightmost node in Fig. 20.3, though
the entropy is not 0. In Fig. 20.3, suppose we continue to split on the rightmost
node using variable b. We will generate two assertions. One is p2. Another one is
¬a ∧ b⇒ ¬f , which is redundant since ¬a ∧ b implies ¬a in p0.

When the entire decision forest is finally constructed, we can generate assertions
from it. Due to multiple decision trees within the decision forest, we might generate
the same assertion only with different order of propositions in the antecedent. Also
the antecedent of one assertion may imply the antecedent of another assertion. For

624 S. Vasudevan et al.

M: 0.25
H: 0.81

a=0

ASSERT p0:
a => f

M: 0.00
H: 0.00 M: 0.50

H: 1.00

M: 0.00
H: 0.00

M: 1.00
H: 0.00

a=1

b=0 b=1

ASSERT p1:
aΛ b => f

ASSERT p2:
aΛb => f

M: 0.00
H: 0.00

M: 0.50
H: 1.00

b=0 b=1

ASSERT p3:
b => f

Stop splitting because of
the second optimization
(V==NULL in Line 17)

Fig. 20.3 A decision forest for the AND gate design. Each node is labeled with its mean and
entropy. Each branch is labeled with the feature variable and value used to partition the data
represented by its parent. The BGDF algorithm selects both a and b to partition the root node’s
data since they do so equally well

example, assertion p1 and p3 in Fig. 20.3 are derived from two different decision
trees within the decision forest. Assertion p1 is redundant since a∧¬b implies¬b in
p3. In such situation, the first assertion is redundant and should not be reported out.
As a post-processing step of our implementation, we use set containment algorithm
to detect the redundant assertions.

20.6.1 Algorithm

Algorithm 7 shows the best-gain decision forest algorithm. To simplify the algo-
rithm explanation, the proposition represented by 〈v, α〉 pair is also referred to as
literal. The input parameters of the algorithm are V , S, and A. P is the global
variable recording all generated assertions. A records all literals from the root node
to current node. G(S, v) is the information gain if feature variable v is selected to
partition S. We record the set of feature variables having maximum information gain
into VmaxG.

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 625

Algorithm 7 Best-gain decision forest algorithm
1: Global P : Set of generated assertions
- S : Dataset f or mining
- vt : T arget variable
- V : Set of f eature variables of dataset
- A : Set of literals appearing in antecedent

2: procedure decision_f orest(V, S,A)
3: if H(S) = 0 then
4: ifMean(S) = 1 then
5: P ← P ∪ ((∧liti∈A liti)⇒ vt);
6: else
7: P ← P ∪ ((∧liti∈A liti)⇒ ¬vt);
8: return P;

9: for all v ∈ V do
10: Calculate G(v, S);
11: VmaxG ← all v ∈ V having maximum G(v, S);

12: for all v ∈ VmaxG do
13: V ← V \ v
14: if V ! = NULL then
15: decision_f orest (V , Sv=0, A ∪ 〈v, 0〉);
16: decision_f orest (V , Sv=1, A ∪ 〈v, 1〉);

Lines 3–10 of the algorithm report the generated assertion ifH(S) = 0. It means
each row in dataset S has the same value: Mean(S), on target variable vt . The
algorithm then stops splitting. If all rows in S have value 0 on target variable, the
consequent of the generated assertion is ¬vt . If all rows in S have value 1 on target
variable, the consequent of the generated assertion is vt . Since the set A records all
literals from the root node to the current node, the conjunction of all these literals
constitutes the antecedent of the generated assertion.

Lines 11–13 first calculate the information gain for each feature variable. Line
14 records the feature variables with maximum information gain. In the classical
decision tree-based algorithm, only one feature variable with maximum information
gain is selected to partition dataset. If two feature variables have the same maximum
information gain, the decision tree-based algorithm randomly selects one feature
variable. However, in our BGDF algorithm, we retain all feature variables with the
same maximum information gain. Each such feature variable is used to partition
the dataset simultaneously and leads to one decision tree. That’s the reason why
we name the structure as decision forest. Our BGDF algorithm is most useful when
there is a tie between candidate variables with the same maximum information gain.

Lines 15–20 recursively construct the decision forest. For each feature variable
with maximum information gain, one left subtree and one right subtree are
recursively built. For left subtree, we also record into the literal set A the literal
〈v, 0〉, which means ¬v . For right subtree, we record the literal 〈v, 1〉 into the literal
set A.

626 S. Vasudevan et al.

The two optimizations are also implemented between Line 15 and Line 20.
In Line 18 and 19, we share the same variable v as the root node to recursively
construct two different subtrees. Line 16 implements the second optimization. The
variables with the same maximum information gain are removed from set V for
further subtree construction.

Our BGDF algorithm simultaneously partitions the dataset using all the feature
variables with maximum information gain. The assertions generated from different
decision trees within the decision forest may contain redundancy. For example, in
first decision tree, one feature variable v1 is first selected to partition the dataset and
another feature variable v2 is then selected, while in the second decision tree, v2 is
first selected and then v1 is then chosen to partition the dataset. Our BGDF algorithm
will derive assertions from both decision trees. As a result, we may generate two
completely same assertions. Moreover, the v1 is probably not chosen at all in the
second decision tree. As a result, the antecedent of the assertion from the first
decision tree implies the antecedent of the assertion from the second decision tree.
For example, we may derive the following two assertions: (1) v1 ∧ v2 ⇒ vt and
(2) v2 ⇒ vt , from two decision trees in the decision forest. Since v2 is implied by
v1 ∧ v2, assertion v1 ∧ v2 ⇒ vt is redundant.

The BGDF algorithm minimizes redundancy in P using set containment.
Assertion px : (∧liti∈Ax liti) ⇒ Cx contains assertion py : (∧liti∈Ay liti) ⇒ Cy
if Ax ⊂ Ay and Cx ≡ Cy . Here, Ax is the set of literals appearing in antecedent
of assertion px and Ay is the set of literals appearing in antecedent of assertion py .
That is, if assertion px contains assertion py , then px conveys the same behavior as
py more concisely. Therefore, assertion py is redundant. Moreover, it is impossible
for assertion px to contain assertion py if |Ax | >

∣∣Ay∣∣. The BGDF algorithm uses
this fact to reduce the number of set containment checks between assertions.

20.6.2 Example

We revisit the AND gate design to illustrate the BGDF algorithm. Let V = {a, b}
and let vt = f . Let S be the dataset on the left of the root node in Fig. 20.2.

The best-gain decision forest algorithm begins by computing H(S) =
− 3

4 log2(
3
4) − 1

4 log2(
1
4) = 0.81. Since the H(S) �= 0, the algorithm partitions

S. To do so, the algorithm computes each variable’s information gain and records
maximum information gain. G(a, S) = 0.81 − 0.50 · 0.00 − 0.50 · 1.00 = 0.31;
G(b, S) = 0.81−0.50 ·0.00−0.50 ·1.00 = 0.31. Now, we have to feature variables
having the maximum information gain. VmaxG = a, b.

Next, the algorithm recurses. Since both a and b have the same maximum
information gain, the algorithm uses both of them to partition S. In the recursive
call where a = 0, the mean of S is also equal to 0. Therefore, the algorithm adds
assertion p0 : ¬a ⇒ ¬f to P and terminates.

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 627

In the recursive call where a = 1, theH(S) �= 0. Therefore, the algorithm selects
b to partition S since it is the only remaining variable in V . In both subsequent
recursive calls, H(S) = 0. Therefore, the algorithm adds the assertions p1 : a ∧
¬b⇒ ¬f and p2 : a ∧ b⇒ f to P .

Figure 20.3 depicts the decision forest constructed by the algorithm. Set P
contains the following assertions:

p0 : ¬a ⇒ ¬f
p1 : a ∧ ¬b⇒ ¬f
p2 : a ∧ b⇒ f

p3 : ¬b⇒ ¬f

Consider the p1 and p3. Both assertions have the same consequent, but p3 is more
concise. Therefore, the proposition (a, 1) in the antecedent of p1 is unnecessary.
After the algorithm uses set containment to remove such assertions, P contains p0,
p2, and p3.

20.6.3 Analysis

We analyze the best-gain decision forest algorithm. First, we analyze the algorithm’s
complexity. Consider the construction of a worst case decision forest with variables
V = {v0, v1, . . . , vn}. Since the BGDF will select all variables to partition S, it
cannot select v0 to partition S in the subforest of any other vi ∈ V . Consequently, if
we disregard v0, then the algorithm will construct a worst case decision forest with
n−1 feature variables. Similarly, each child of v0 will be a worst case decision forest
with n − 1 feature variables. Let’s denote the algorithm complexity for n variables
as T (n). Then we have the following recursive equation:

T (n) = 2 ∗ T (n− 1)+ 2 ∗ T (n− 2)+ · · · + 2 ∗ T (1) (20.1)

Solving the above equation, the worst case size of a decision forest isO(3|V |). In
practice, the complexity of the algorithm is much smaller than the theoretical bound
since we generally do not have a tie of all feature variables in every node.

Finally, we show that the BGDF algorithm generates assertions that are more
concise than those generated by the decision tree algorithm. Let P and P ′ denote the
sets of assertions generated by the BGDF and decision tree algorithms, respectively.
Since the BGDF algorithm builds all optimal decision trees, P ⊇ P ′. Now, the
BGDF algorithm discards only functionally redundant assertions and P ⊇ P ′.
Therefore, the assertions in P are either equivalent to or more concise than
those in P ′.

628 S. Vasudevan et al.

20.7 Coverage Guided Mining Algorithm

Gain is a data mining concept that refers to the value of adding some rule to the
solution set of rules. In data mining, we only want to add a rule to our solution set
if its gain is higher than any other potential rules. This concept fits well with our
concept of input space coverage since we can define a notion of coverage gain. The
coverage gain of a rule (assertion) refers to the change in total coverage of a set
given that the rule is added to that set.

Typically, an association mining algorithm will try to exhaustively produce all
possible rules relating all input variables to all output variables. To restrict the
number of rules, we apply several constraints. Our first constraint, as in [66], is
that only rules with 100% confidence can be considered as candidate assertions
for association rule mining. We now include coverage feedback as a constraint.
We impose a minimum coverage gain to drastically limit the number of candidate
assertions. We then gradually relax this constraint until we have reached a desired
coverage value. The greedy set covering algorithm will always choose the highest
coverage assertions in each iteration.

Following the notation of previous algorithm, P is defined as the solution set
of assertions. The total input space coverage of P is defined as c(P). We define
g(P, P ′) as the input space coverage gain between two sets of assertions where
P ′ = P ∪ p and p is an assertion. We also define gmin as the minimum coverage
gain. The minimum coverage gain ensures that any assertion that is mined must
raise the total coverage of P by gmin. We set a minimum coverage gain threshold
gthreshold and a maximum total coverage threshold cthreshold which result in algorithm
termination when reached. Our goal is to maximize the total input space coverage
c(P) by maximizing the g(P, P ′) in each iteration while minimizing the total
number of assertions and propositions in the antecedent of each assertion.

20.7.1 Overview of the Algorithm

The basic flow of the coverage guided mining algorithm [57] is shown in Fig. 20.4.
We will apply the algorithm as it is explained to the simulation trace in Fig. 20.5.
We set the maximum total coverage threshold to 99% and the minimum coverage
gain threshold to 1%.

The algorithm starts by initializing the gmin = 50%, P = {}, and c(P) = 0%. We
know that at least one proposition must be in the antecedent of the assertion which
means that the maximum coverage gain must be 50%. We do not consider assertions
without any propositions in the antecedent since those assertions are trivial.

In the next step, gen_candidate, the algorithm described in Algorithm 8, is
invoked. In the gen_candidates, A refers to a set of 〈var, val〉 pairs representing
the antecedent of a potential assertion p. R refers to the set of {var, val} pairs not
in A, since we do not want to add the same 〈var, val〉 pair to an antecedent twice.

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 629

Fig. 20.4 Coverage guided association mining algorithm

Fig. 20.5 Dataset and
function for example and
candidate assertions

a b c f

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Simulation trace
f=(a ~c)&b

p1: ¬a => ¬f

p2: ¬b => ¬f

p3: c => ¬f

p4: a ¬b => ¬f

p5: a b => f

p6: a ¬c => f

p7: a c => ¬f

Candidate assertions

Λ

Λ

Λ

Λ

Algorithm 8 Association miner
gen_candidates(R,A, S)
1: for each {var, val} pair ri in R do
2: if g(P, P ∪ assertion(A ∪ ri ⇒ 〈f,X〉)) ≥ gmin then
3: if ∀sj ∈ S, A ∪ ri ⇒ 〈f, 0〉 then
4: Pc = Pc ∪ assertion(A ∪ ri ⇒ 〈f, 0〉)
5: else if ∀sj ∈ S, P ∪ ri ⇒ 〈f, 1〉 then
6: Pc = Pc ∪ assertion(A ∪ ri ⇒ 〈f, 1〉)
7: else
8: gen_candidates(R − ri , A ∪ ri , S)

630 S. Vasudevan et al.

Algorithm 9 recalibrate_add
recalibrate_add(Pc, P)
1: for all p ∈ Pc do
2: if g(P, P ∪ p) ≥ gmin then
3: P = P ∪ p

S refers to the simulation trace and is represented as a set of signal values at each
cycle. In our example R = {〈a, 0〉, 〈a, 1〉, 〈b, 0〉, 〈b, 1〉, 〈c, 0〉, 〈c, 1〉}, A = {}, and
S is the data in Fig. 20.5.

Essentially what gen_candidates does is recursively add 〈var, val〉 pairs to A.
If all pairs in A are 100% correlated with the target pair 〈f, 0〉, or 〈f, 1〉, in all
cycles of the simulation trace represented by S, a candidate assertion is generated
based on that correlation and the algorithm returns. The algorithm also returns when
the coverage gain falls below the minimum coverage gain because adding more
propositions to the antecedent can only decrease the coverage gain.

In line 1, ri = 〈a, 0〉. The coverage gain of the assertion (¬a) ⇒ (f = X)3 is
calculated to 50% in line 2, which is equal to gmin. At line 3, we can see that for
the data in every cycle, sj , (¬a) ⇒ (¬f), which means that there is a correlation
between a = 0 and f = 0 which indicates a candidate assertion. The candidate
assertion p1 is added to Pc, the set of candidate assertions, in line 4.

Now, back at line 1, ri = 〈a, 1〉. Even though the coverage gain of assertion
a ⇒ (f = X) is also 50%, neither the rule a ⇒ (¬f) nor a ⇒ f is true for each
cycle of data, ej . This means that the conditions in lines 3 and 5 are not satisfied. The
algorithm recurses at line 8 withA = {〈a, 1〉} andR = {〈b, 0〉, 〈b, 1〉, 〈c, 0〉, 〈c, 1〉}.

Next the coverage gains of assertions (a∧¬b)⇒ (f = X), (a∧b)⇒ (f = X),
(a ∧ ¬c ⇒ (f = X)), and (a ∧ c) ⇒ (f = X) are each 25% since each has two
propositions in the antecedent. The minimum coverage gain is never satisfied in
lines 2, and the algorithm returns.

The algorithm is continued from line 1 for the remaining 〈var, val〉 pairs
resulting in the candidates p2 and p3 being added to P . The assertions in P
are sorted by the number of propositions to keep the number of propositions per
assertion to a minimum. In the example, the list remains unchanged since each
candidate has the same number of propositions.

In the next step, recalibrate_add adds candidate assertions with coverage gain
greater than or equal to gmin to the solution set as shown in Algorithm 9. Because
coverage gain, g(P, P ′), is relative to the solution set P , as soon as the solution set
changes, the coverage gain of all assertions must be recalculated based on the new
solution set. For this reason, even though all assertions in Pc must have coverage
gain greater than or equal to gmin with respect to the P before this function is called,
the coverage gain of any assertion may decrease below gmin as other assertions are

3X refers to a “don’t care” value since the output does not affect the input space coverage.

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 631

added to P . Because of this, Pc must be recalibrated with regard to coverage gain
of each assertion before an assertion may be added to P .

In our example p1 is added to the solution set, P , since P remains the same as
before the function was called. After adding that candidate to the solution set, the
coverage gain of next candidate, p2, is recalculated based on the new P . Since P
contains assertion p1 with the antecedent 〈a, 0〉, it should be noted that the truth
table entries where 〈a, 0〉 and 〈b, 0〉 are already covered. Therefore, the assertion
p2 with antecedent 〈b, 0〉 can only cover the truth table entries where 〈a, 1〉 and
〈b, 0〉, resulting in decreased coverage gain of only 25%. By the same logic, the
coverage gain of assertion a3 with antecedent 〈c, 1〉 is also reduced to 25%. Since
both candidates have coverage gain less than gmin, they are both discarded.

In the final step of the first iteration, Pc is cleared and the minimum coverage
gain, gmin, is reduced by half. In the example, gmin is reduced from 50% to 25%,
which is still greater than the minimum gain threshold. The total coverage of P
is 50%, which is less than the maximum total coverage threshold, cthreshold. Since
neither threshold is passed, the algorithm continues to the second iteration.

In the second iteration, gen_candidates is performed again with the reduced
gmin. This generates the following candidate assertions which are added to Pc: p4,
p5, p6, p7, p2, and p3. These candidate assertions are added to Pc and then sorted
by number of propositions per assertion with resulting order is p2, p3, p4, p5, p6,
p7.

Assertion p2 is added to P . The coverage gain of the remaining candidate
assertions is recalculated, causing p3, p6, and p7 each drop to 12.5% and p4 drop
to 0. This leaves only the assertion p5 that remains at 25% which is also added to P .
It should now be noted that the total input space coverage of P has reached 100%,
which is above the total coverage gain threshold. This means that the algorithm can
exit, producing the following assertions: p1, p2, and p5.

It should be noted that this algorithm can be applied to temporal assertions much
like in the decision tree algorithm.

20.8 PRISM Algorithm

The PRISM algorithm [11] was initially proposed to resolve several disadvantages
of the decision tree-based algorithm. The tree structure is difficult to manipulate.
The entire tree needs to be traversed to extract information for any single classifica-
tion [11]. Moreover, to sustain a tree structure, irrelevant feature variables are added
to the derived rules. This is because a variable, once committed to a path, needs
to be present for every rule that will be generated along that path. When a feature
variable v is selected to partition the dataset, the decision tree algorithm recursively
constructs both the left subtree and right subtree. Any assertion derived from the
right subtree must include the proposition ¬v and any assertion derived from the
left subtree must include the proposition v. In the example of Fig. 20.2, the decision
tree derives the rules: a ⇒ f and ¬a ∧ b ⇒ f since variable a is selected in the

632 S. Vasudevan et al.

root node. Obviously, proposition ¬a is irrelevant in assertion ¬a ∧ b ⇒ f . As a
result, the rules generated from decision tree are too specific and there can be many
irrelevant feature variables in some rules.

To solve the problem, PRISM algorithm does not maintain the tree structure.
Also, it selects a variable, value pair 〈v, α〉 to split the dataset each time. The PRISM
algorithm generates rules for each value of the target independently. For current
〈vt , β〉 pair, where β ∈ {0, 1}, it goes through the following steps:

1. It selects a 〈v, α〉 pair, where α ∈ {0, 1}, with maximum information gain. We
will elaborate how to calculate the information gain for the 〈v, 0〉 and 〈v, 1〉 pair
with respect to 〈vt , β〉 pair.

2. The current dataset is checked and only the rows satisfying the proposition
represented by the selected 〈v, α〉 pair are retained for next step.

3. Steps 1–2 are repeated until each row of the current dataset has the consistent
value β on target variable.

4. At this point, a rule can be derived from the structure. All rows covered by the
induced rule are eliminated from the dataset. Steps 1–4 are repeated until all
rows satisfying vt = β are removed.

When all datasets satisfying vt = β have been covered by the induced rules,
the algorithm switches to another value of the target variable and the training set is
restored to its initial state for the next iteration.

The PRISM algorithm does not branch on any node and thus resolves the
disadvantages of the decision tree. Irrelevant feature variables are automatically
excluded from the induced rules, since a rule (Steps 1–4) is induced for exactly
one value of a target variable. No side effects are allowed to propagate.

The PRISM algorithm does not select one feature variable to partition the dataset.
Instead, it selects 〈v, 0〉 or 〈v, 1〉 to partition the dataset. Therefore, we define the
information gain for 〈v, α〉 instead of variable v with respect to 〈vt , β〉. We denote
it as Gβ(S, v, α), and compute it according to the following formula:

Gβ(S, v, α) = pβ(Sv=α, vt)
pβ(S, vt)

, α ∈ 0, 1 and β ∈ 0, 1. (20.2)

We adapt the PRISM algorithm in [11] to generate assertions. The algorithm
induces one assertion at a time for assignment vt = β. In each iteration, the
algorithm adds a proposition (v ∈ V, α) for which Gβ(S, v, α) is maximum to
the candidate rule until H(S) = 0. After the algorithm generates a rule, it discards
vectors in S that satisfy the rule. The algorithm repeats this process until Svt=β is
empty.

Figure 20.6 shows an example of the PRISM algorithm for the AND gate design.
First, the algorithm generates an assertion for f = 0. The algorithm computes the

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 633

Fig. 20.6 An example of the PRISM algorithm for the AND gate design. Each node is labeled with
its mean and entropy. Each branch is labeled with the feature variable and value used to partition
the data represented by its parent

information gain of propositions (a, 0), (a, 1), (b, 0), and (b, 1) as follows: The
algorithm adds (a, 0) to the assertion’s antecedent and generates the assertion p0 :
¬a ⇒ ¬f since H(S) = 0.

Next, the algorithm removes the first and second rows from S since they satisfy
p0. Since S contains another row where f = 0, the algorithm generates another
assertion for f = 0. Again, the algorithm computes the information gain of
propositions (a, 0), (a, 1), (b, 0), and (b, 1) and adds (b, 0) to the assertion’s
antecedent. The algorithm generates the assertion p1 : ¬b ⇒ ¬f and removes
the third row from S. Now, since S does not contain any rows where f = 0, the
algorithm generates the assertion p2 : a ∧ b⇒ f for f = 1 and terminates.

20.9 Experimental Results

We present experimental results to compare the assertion mining algorithms. We
used each algorithm to generate assertions for three Verilog designs—the Universal
Serial Bus (USB) protocol, master state machine from the Peripheral Component
Interconnect (PCI) protocol, and the OpenRisc 1200 (OR1200) CPU. USB has 142
inputs, 100 outputs, and 868 lines of RTL code, PCI has 99 inputs, 133 outputs,
and 669 lines of RTL code, and OR1200 has 41 inputs, 239 outputs, and 1533
lines of RTL code. For all experiments, the data generator simulated each module
for 10,000 cycles using an unconstrained random test bench. We explicitly limited
the antecedent size and temporal length of all assertions to 5 and 2, respectively.
We conducted all experiments using a 2.67 GHz quad core Intel Core i5 with 16
gigabytes of memory. The results shown in this section are averaged across all
assertions for all outputs in the three designs above.

634 S. Vasudevan et al.

20.9.1 Number of Generated Assertions

Figure 20.7 shows the number of assertions generated by each data mining
algorithm. The decision tree algorithm consistently generates a small number of
assertions. This is expected, since the decision tree tries to generate the necessary
assertions required to minimally and completely describe the dataset. The decision
tree generates a minimal depth tree to explain the data. The decision forest tries
to optimize for low antecedent size within the tree structure. Hence the number
of assertions tends to be on the lower side for the forest as well. For all designs,
the PRISM algorithm generates more assertions than any other algorithm. This is
because PRISM finds assertions for every (variable, value) pair. Hence, the number
of assertions it generates tends to be high.

The average antecedent size per algorithm is shown in Fig. 20.8. This is a metric
that captures the readability and comprehensibility of the assertions generated.
The coverage guided mining algorithm consistently generates smaller, succinct
antecedents, since it is optimized for that parameter.

0

50

100

150

200

250

300

usbf_pe pci_master32_sm or1200_ctrl

N
um

be
ro

fA
ss

er
�o

ns

tree forest coverage Prism

Fig. 20.7 The number of assertions generated by each data mining algorithm

Fig. 20.8 The average
antecedent size of generated
assertions for each data
mining algorithm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

usbf_pe pci_master32_sm or1200_ctrl

Av
er

ag
e

an
te

ce
de

nt
siz

e

tree forest coverage Prism

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 635

Fig. 20.9 The average
temporal length of generated
assertions for each data
mining algorithm

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

usbf_pe pci_master32_sm or1200_ctrl
Av

er
ag

e
te

m
po

ra
ll

en
gt

h

tree forest coverage Prism

20.9.2 Sequential Depth of Generated Assertions

In general, temporal behavior is difficult for the human mind to analyze, and
temporal properties tend to be the most difficult to express correctly. We use average
temporal length as a metric for comparison of algorithms, since it gives us an idea
which algorithm produces more complex assertions.

Figure 20.9 shows the average temporal length of generated assertions for each
data mining algorithm. For all designs, the PRISM algorithm generates assertions
that have higher temporal length than those generated by any other algorithm.

For PCI and OR1200, the decision forest algorithm generates assertions that have
higher temporal length than those generated by the decision tree algorithm.

For USB and OR1200, the coverage mining algorithm generates assertions that
have least temporal length.

20.9.3 Input Space Coverage and Hit Rate of Generated
Assertions

Figure 20.10 shows the average input space coverage of generated assertions for
each data mining algorithm. Since input space coverage is inversely proportional to
antecedent size, these results provide an inverse graph of the antecedent size graph.
Here again, the coverage mining algorithm wins among the other algorithms, since
it optimizes for high input space coverage.

Hit rate is a measure of the predictive accuracy of the data mining algorithm.
If the data mining algorithm makes accurate predictions, the formal verification
will pass the predicted assertion. If not, the assertion will fail formal verification.
Figure 20.11 shows the hit rate of generated assertions for each data mining
algorithm. The decision tree algorithm consistently generates a high percentage of
true assertions.

The decision forest algorithm’s hit rate is very close to the decision tree’s hit
rate, since the decision forest can be viewed as a collection of decision trees.

636 S. Vasudevan et al.

Fig. 20.10 The average input
space coverage of generated
assertions for each data
mining algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

usbf_pe pci_master32_sm or1200_ctrl
Av

er
ag

e
in

pu
t s

pa
ce

 c
ov

er
ag

e
tree forest coverage Prism

Fig. 20.11 Hit rate of
generated assertions for each
data mining algorithm

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

usbf_pe pci_master32_sm or1200_ctrl

Hit Rate
tree forest coverage prism

Fig. 20.12 Runtimes of each
data mining algorithm

0

100

200

300

400

500

600

700

800

usbf_pe pci_master32_sm or1200_ctrl

Ru
n

�m
e

(s
ec

)

tree forest coverage Prism

The coverage guided miner’s hit rate seems to be quite high in general, since it
exhaustively attempts to generate all possible associations and rules and cover a
large fraction of the dataset.

20.9.4 Runtime and Memory Usage

Figures 20.12 and 20.13 show the runtime and memory use of each data mining
algorithm. While the decision tree, decision forest, and PRISM algorithms utilize

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 637

Fig. 20.13 The memory use
of data mining algorithm

0

500

1000

1500

2000

2500

usbf_pe pci_master32_sm or1200_ctrl

Memory
tree forest coverage prism

M
em

or
y

us
ag

e
(M

B)

Fig. 20.14 The average
statement coverage of the
assertions that passed formal
verification for each data
mining algorithm

0

0.25

0.5

0.75

1

usbf_pe pci_master32_sm or1200_ctrl

tree forest coverage prism

RT
L

St
at

em
en

t c
ov

er
ag

e

less runtime (less than 3 min) and memory (less than 100 Mb), the coverage guided
miner is resource intensive.

20.9.5 RTL Statement Coverage of Generated Assertions

In this subsection, we present experimental results that compare GoldMine’s data
mining algorithms with respect to statement coverage and expectedness. RTL
statement coverage is defined in Sect. 20.4.6. We show the results for the assertions
that passed formal verification since they will be retained for further verification
usage.

Figure 20.14 shows the average normalized code (statement) coverage of the
25% highest coverage assertions that passed formal verification for each data mining
algorithm. The definition of code coverage is from [2]. We observe that there is
no algorithm that always generates assertions with high statement coverage. This
implies that the extent of statement coverage is not related to the mining approach.
This might be due to code coverage being a different, unrelated metric as compared
to input space or state space-based coverage. Hence, the code coverage itself is not
strongly correlated to the type of mining algorithm used.

638 S. Vasudevan et al.

20.9.6 Expectedness Analysis of Generated Assertions

Figure 20.15 shows the average normalized expectedness of the 25% highest ranked
assertions that passed formal verification for each data mining algorithm according
to the ranking algorithm described in [31]. Lower expectedness is desirable, as
unexpected scenarios are more interesting in many contexts. The coverage mining
algorithm performs the worst with respect to unexpectedness, while the decision
tree-based algorithm performs the best.

20.9.7 Complexity Analysis of Generated Assertions

Figure 20.16 shows the average normalized complexity of the 25% highest ranked
assertions that passed formal verification for each data mining algorithm according
to the algorithm described in [31]. Depending on the context, lower complexity or
higher complexity may be desirable. If we consider lower complexity desirable, the
coverage guided mining produces lowest complexity assertions.

Fig. 20.15 The average
normalized expectedness of
the assertions that passed
formal verification for each
data mining algorithm

0

0.25

0.5

0.75

1

usbf_pe pci_master32_sm or1200_ctrl

tree forest coverage prism

As
se

r�
on

ex
pe

ct
ed

ne
ss

Fig. 20.16 The average
normalized complexity of
assertions that passed formal
verification for each data
mining algorithm

0

0.2

0.4

0.6

0.8

1

1.2

usbf_pe pci_master32_sm or1200_ctrl

tree forest coverage prism

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 639

Fig. 20.17 The average
normalized importance of
assertions that passed formal
verification for each data
mining algorithm

0

0.2

0.4

0.6

0.8

1

1.2

usbf_pe pci_master32_sm or1200_ctrl

tree forest coverage prism

20.9.8 Importance Analysis of Generated Assertions

Figure 20.17 shows the average normalized importance of the 25% highest ranked
assertions that passed formal verification for each data mining algorithm according
to the algorithm described in [31]. Higher importance is desirable. Since no
algorithm produces important assertions consistently, the algorithms should be
selected in a design specific manner. The coverage guided mining tends to generate
less important assertions than the others.

20.9.9 Qualitative Analysis of Sample Assertions

20.9.9.1 Qualitative Comparison of Assertions Generated by Different
Algorithms

In this experiment, we select two assertions generated by each mining algorithm
and make a qualitative analysis of the assertions. The design used for analysis is
usbf _pe module.

From the assertions shown in Table 20.1, it can be observed that the decision tree
always contains too many propositions in each assertion due to its tree structure.
For example, the proposition ¬csr[0] in tree_A1 is redundant if we compare the
assertion tree_A1 with the assertion PRISM_A1. The assertion PRISM_A1 does
not include the redundant proposition ¬csr[0] and is still a true assertion. Other
algorithms avoid using the strict tree structure and generate assertion with fewer
propositions.

In Table 20.1, coverage guided mining always generates the most succinct
assertions, since it tries to maximize the input space coverage of each assertion
during the generation process. In the assertions coverage_A1 and coverage_A2,
there is only one proposition in each assertion. A false assertion: pid_SOF ⇒
X¬send_token is also generated by coverage guided mining method. However, the
true assertion tree_A1 is not generated by coverage guided mining method. The
reason is that the input space coverage of tree_A1 is too low and does not satisfy
the input space coverage requirement.

640 S. Vasudevan et al.

Table 20.1 Sample assertions generated by each mining algorithm for qualitative analysis

Assertion ID Assertions

tree_A1 ¬pid_SOF ∧ pid_NG ∧ model_hs ∧ ¬csr[22] ∧ ¬csr[0] ∧ match_r ⇒
Xsend_token

tree_A2 match∧buf 0[8]∧X¬pid_SOF∧Xpid_PING∧Xmode_hs∧X¬csr[3] ⇒
XX¬rx_dma_en

forest_A1 match ∧X¬pid_SOF ∧Xcsr[27] ⇒ XX¬tx_dma_en

forest_A2 ¬pid_SOF ∧ ¬csr[23] ∧ csr[22] ∧match_r ⇒ X¬send_token

coverage_A1 ¬csr[15] ⇒ X¬dma_en

coverage_A2 ¬rx_data_done⇒ X¬int_crc16_set

PRISM_A1 ¬pid_SOF ∧ pid_PING ∧ model_hs ∧ ¬csr[22] ∧ match_r ⇒
Xsend_token

PRISM_A2 ¬csr[15] ⇒ ¬dma_en

We pick up two assertions generated by each mining algorithm for comparison

Table 20.2 Manually written assertions for outputs send_token and rx_dma_en

Assertion ID Assertions

A1 (pid_SETUP & idma_done & ¬abort) ∧X(state == IDLE)⇒
(send_token == 1)

A2 (csr[27 : 26] == 2′b01 & no_buf 0_dma) ∧X(state == IDLE)⇒
(send_token == 1)

A3 (¬csr[17]) ∧X(to_large == 1 & match == 1) ∧X(csr[27 : 26] ==
2′b10 & state == IDLE)→ (rx_dma_end == 1)

From Table 20.1, it is hard to compare the quality of generated assertions by
PRISM algorithm with the decision forest algorithm. They both resolve the over-
constraining problem in decision tree based learning.

20.9.9.2 Qualitative Comparison of Automatically Generated Assertions
with Manually Written Assertions

Since the effort of automatic assertion generation is to reduce the human effort of
writing good assertions, our “gold standard” is manually generated assertions. We
compare automatically and manually generated assertions with respect to quality.

We compare automatic assertions from Table 20.1 and manual assertions of
Table 20.2. We analyze assertions for two outputs, send_token and rx_dma_en
outputs of the USB protocol engine.

• Succinctness: We compare assertions from PRISM (PRISM_A1 from
Table 20.1) and manual assertions (A1 from Table 20.2). PRISM generates
assertions that incorporate internal registers (like match_r , which is the input
match delayed by one cycle). On the other hand, manual assertions tend to use
primary inputs and outputs (abort and idma_done). Depending on the temporal
distance between the target variable and the feature variables, the presence

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 641

of internal design registers in the automatically generated assertions capture
behavior more succinctly compared to manually created assertions.

• Understandability: A comparison between PRISM_A1 of Table 20.1 and A2 of
Table 20.2 shows that manually written assertions are more understandable. For
example, A2 incorporates csr[27 : 26] in the assertion which can deterministi-
cally decide if the control status register is operating on a IN, OUT, or CONTROL
token for the buffer. A single isolated bit such as csr[22] does not provide
sufficient contextual information regarding control status registers, making the
assertion PRISM_A1 less expressive.

• Temporal depth: It is very challenging, even for an experienced verification
engineer to craft an assertion that captures multi-cycle design behavior effec-
tively. In Table 20.2, none of the assertions span more than 2–3 clock cycles
whereas GoldMine can reason about large number of cycles (e.g., up to 7 clock
cycles for tree_A2) as shown in Table 20.1. Hence, automatic assertions capture
complex temporal behavior with ease.

• Effort: Each assertion in Table 20.2 took approximately 1 person-hour to
construct (not counting time taken to understand module behavior). In contrast,
GoldMine could generate assertions such as tree_A2 of Table 20.1 spanning
over 7 clock cycles in less than a minute. Manual crafting of assertions involves
understanding the cone-of-influence of the target variable, temporal relationship
between target variable and feature variables, identifying the correct values of
each of the feature variables—each of which is an involved task. This is over and
above the effort spent in understanding the design intent and the design modules.
Automatic assertion generation is much more time and resource efficient.

Overall, manually written assertions tend to be more comprehensible than
automatically generated assertions. On the other hand, GoldMine generates succinct
and multi-cycle assertions easily and quickly where the human mind struggles.
We believe that automatically generated succinct assertions spanning over multiple
cycles can compensate for understandability, by allowing the verification engineer
to focus on debugging.

20.9.10 Scalability of GoldMine

In practical designs, data mining algorithms do not suffer from scalability issues.
Our methodology’s scalability is restricted by formal verification. Although formal
verification technology is sensitive to state space, we find that in practice, we are
able to effectively verify many modules of large designs, like PCI design. So far,
we find that we cannot verify a large design with many memory elements. In these
infrequent cases, there are several options. One option is to individually verify the
submodules of the limiting module. Another option is to disable formal verification
of candidate assertions. The candidate assertions can then be simulated to determine
if they are valid.

642 S. Vasudevan et al.

20.10 Conclusions

In this chapter, we presented an in-depth analysis of the principal components of
our automatic assertion generation tool, GoldMine. GoldMine was one of the first
known applications of machine learning to hardware, and to verification. GoldMine
has been applied to and adopted in several industrial, practical contexts as well as
in research environments. The applications of GoldMine assertions have been in
regression testing, equivalence checking between system level and RTL, debugging,
root causing, and post-silicon validation. Since this software and its source has been
made publicly available, it has been used considerably more for research.

While this research has a practical objective, the fundamental objective is to be
able to mimic human intuition through computational analysis. A consistent obser-
vation in all our experiments is that statistical dynamic analysis, when constrained
by the parameters of static, deterministic analysis, gives rise to insights that are not
obvious otherwise. Machine learning, in the absence of static analysis guidance,
does not generate sequentially deep, complex, and subtle behavior. Algorithms
that combine deterministic guidance with statistical analysis are the keystone of
GoldMine. We believe that this insight can be applied to generate causal knowledge
in other domains where machine learning is being used.

We present four different mining algorithms used in GoldMine and compare
these algorithm for generating hardware assertions: decision tree, best-gain decision
forest, coverage guided association mining, and PRISM. Our comparisons do
not produce a single winner across all metrics, since we intentionally use very
diverse metrics. In practice, not all metrics may simultaneously be desirable. In
our experience, only one or two metrics are of interest in realistic environments.
The algorithm(s) that perform best with respect to the desired metrics can be used
on a case by case basis. We believe that this versatility is a merit of the assertion
generation technology of GoldMine.

In the future work, we will generate an ensemble method that combines all the
approaches in GoldMine, for better predictive performance than what is available
through any of the algorithms alone.

Acknowledgement We thank Debjit Pal for his assistance with editing this chapter.

References

1. ActiveProp assertion-based verification system, http://www.jasper-da.com/products/
activeprop-assertion-based-verification-system

2. V. Athavale, S. Ma, S. Hertz, S. Vasudevan, Code coverage of assertions using RTL source code
analysis, in The 51st Annual Design Automation Conference 2014, DAC ‘14, San Francisco,
CA, June 1–5, 2014 (2014), pp. 61:1–61:6

3. R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large
databases, in Proceedings of SIGMOD (1993), pp. 207–216

4. G. Ammons, R. Bodk, J.R. Larus, Mining specifications, in POPL (2002), pp. 4–16

http://www.jasper-da.com/products/activeprop-assertion-based-verification-system
http://www.jasper-da.com/products/activeprop-assertion-based-verification-system

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 643

5. Assertion synthesis, http://www.atrenta.com/about-assertion_based-verification.htm5
6. V. Athavale, S. Hertz, S. Vasudevan, Evaluating code coverage of assertions by static analysis

of RTL. Technical report uilu-eng-11-2209 (2011)
7. S. Bensalem, Y. Lakhnech, H. Sadi, Powerful techniques for the automatic generation of

invariants, in Proceedings of CAV (1996), pp. 323–335
8. A. Biere, E.M. Clarke, R. Raimi, Y. Zhu, Verifying safety properties of a power PC micropro-

cessor using symbolic model checking without BDDs, in Computer Aided Verification, 11th
International Conference, CAV ‘99, Trento, July 6–10, 1999, Proceedings (1999), pp. 60–71

9. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)
10. M. Caplain, Finding invariant assertions for proving programs, in Proceedings of the

International Conference on Reliable Software (ACM, New York, 1975), pp. 165–171
11. J. Cendrowska, Prism: an algorithm for inducing modular rules. Int. J. Man-Mach. Stud. 27(4),

349–370 (1987)
12. P.-H. Chang, L.-C. Wang, Automatic assertion extraction via sequential data mining of

simulation traces, in Proceedings of ASPDAC (2010), pp. 607–612
13. H. Chao, H. Li, X. Song, T. Wang, X. Li, On evaluating and constraining assertions using

conflicts in absent scenarios, in 2017 IEEE 26th Asian Test Symposium (ATS), Nov 2017,
pp. 195–200

14. X. Cheng, M.S. Hsiao, Simulation-directed invariant mining for software verification, in
Proceedings of DATE (2008), pp. 682–687

15. C.-N. Chung, C.-W. Chang, K.-H. Chang, S.-Y. Kuo, Applying verification intention for design
customization via property mining under constrained testbenches, in Proceedings of ICCD
(2011), pp. 84–89

16. E.M. Clarke, M. Fujita, S.P. Rajan, T.W. Reps, S. Shankar, T. Teitelbaum, Program slicing
of hardware description languages, in Correct Hardware Design and Verification Methods,
10th IFIP WG 10.5 Advanced Research Working Conference, CHARME ‘99, Bad Herrenalb,
September 27–29, 1999, Proceedings (1999), pp. 298–312

17. E.M. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded model checking using satisfiability solving.
Formal Methods Syst. Des. 19(1), 7–34 (2001)

18. A.M. Cruz, R.B. Fernández, H.M. Lozano, M.A. Ramírez Salinas, L.A. Villa Vargas, Auto-
mated functional test generation for digital systems through a compact binary differential
evolution algorithm. J. Electron. Test. 31(4), 361–380 (2015)

19. A. Danese, F. Filini, G. Pravadelli, A time-window based approach for dynamic assertions
mining on control signals, in 2015 IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), Oct 2015, pp. 246–251

20. A. DeOrio, A. Bauserman, V. Bertacco, B. Isaksen, Inferno: streamlining verification with
inferred semantics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(5), 728–741
(2009)

21. M.D. Ernst, J.H. Perkins, P.J. Guo, S. McCamant, C. Pacheco, M.S. Tschantz, C. Xiao, The
daikon system for dynamic detection of likely invariants. J. Sci. Comput. Program. 69, 35–45
(2007)

22. F. Farahmandi, R. Morad, A. Ziv, Z. Nevo, P. Mishra, Cost-effective analysis of post-silicon
functional coverage events, in Design, Automation & Test in Europe Conference & Exhibition,
DATE 2017, Lausanne, March 27–31, 2017 (2017), pp. 392–397

23. H.D. Foster, A.C. Krolnik, D.J. Lacey, Assertion-Based Design, 2nd edn. (Springer Publishing
Company, New York, 2010)

24. T. Ghasempouri, G. Pravadelli, On the estimation of assertion interestingness, in 2015
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Oct 2015,
pp. 325–330

25. O. Grumberg, H. Veith (eds.), 25 Years of Model Checking: History, Achievements, Perspec-
tives (Springer, Berlin, 2008)

26. J. Han, M. Kamber, Data Mining: Concepts and Techniques (Morgan Kaufmann Publishers
Inc., San Francisco, 2000)

http://www.atrenta.com/about-assertion_based-verification.htm5

644 S. Vasudevan et al.

27. M. Hanafy, H. Said, A.M. Wahba, Complete properties extraction from simulation traces for
assertions auto-generation, in 2015 IEEE 24th North Atlantic Test Workshop, May 2015, pp. 1–
6

28. M. Hanafy, H. Said, A.M. Wahba, New methodology for complete properties extraction from
simulation traces guided with static analysis. J. Electron. Test. 32(6), 705–719 (2016)

29. S. Hangal, N. Chandra, S. Narayanan, S. Chakravorty, Iodine: a tool to automatically infer
dynamic invariants for hardware designs, in Proceedings of DAC (2005), pp. 775–778

30. A. Hekmatpour, A. Salehi, Block-based schema-driven assertion generation for functional
verification, in Proceedings of ATS (2005), pp. 34–39

31. S. Hertz, Enhancing quality of assertion generation: methods for automatic assertion
generation and evaluation. PhD thesis, The University of Illinois at Urbana-Champaign, 2013

32. S. Hertz, D. Sheridan, S. Vasudevan, Mining hardware assertions with guidance from static
analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32, 952–965 (2013)

33. T.K. Ho, The random subspace method for constructing decision forests. IEEE Trans. Pattern
Anal. Mach. Intell. 20(8), 832–844 (1998)

34. C.A.R. Hoare, An axiomatic basis for computer programming. Commun. ACM 12(10), 576–
580 (1969)

35. IEEE standard for verilog hardware description language. IEEE Std 1364-2005 (Revision of
IEEE Std 1364-2001) (2006), pp. 1–560

36. R.P. Kurshan, Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach (Princeton University Press, Princeton, 1994)

37. L. Liu, D. Sheridan, V. Athavale, S. Vasudevan, Automatic generation of assertions from
system level design using data mining, in Proceedings of MEMOCODE (2011), pp. 191–200

38. L. Liu, D. Sheridan, W. Tuohy, S. Vasudevan, Towards coverage closure: using GoldMine
assertions for generating design validation stimulus, in Proceedings of DATE (2011), pp. 173–
178

39. L. Liu, C.-H. Lin, S. Vasudevan, Word level feature discovery to enhance quality of assertion
mining, in Proceedings of ICCAD (2012), pp. 210–217

40. L. Liu, D. Sheridan, W. Tuohy, S. Vasudevan, A technique for test coverage closure using
goldmine. IEEE Trans. CAD Integr. Circuits Syst. 31(5), 790–803 (2012)

41. L. Liu, X. Zhong, X. Chen, S. Vasudevan, Diagnosing root causes of system level performance
violations, in Proceedings of ICCAD, 2013

42. J. Malburg, T. Flenker, G. Fey, Property mining using dynamic dependency graphs, in 22nd
Asia and South Pacific Design Automation Conference, ASP-DAC 2017, Chiba, January 16–19,
2017 (2017), pp. 244–250

43. K. McGarry, A survey of interestingness measures for knowledge discovery. Knowl. Eng. Rev.
20(1), 39–61 (2005)

44. J. Misra, Prospects and limitations of automatic assertion generation for loop programs. SIAM
J. Comput. 6(4), 718–729 (1977)

45. T.M. Mitchell, Machine Learning. McGraw Hill Series in Computer Science (McGraw-Hill,
New York, 1997)

46. J.W. Nimmer, M.D. Ernst, Automatic generation of program specifications, in ISSTA (2002),
pp. 229–239

47. Opencore web page, http://www.opencores.org
48. M.S. Pang-Ning Tan, V. Kumar, Introduction to Data Mining (Pearson, London, 2005)
49. C.S. Pasareanu, W. Visser, Verification of java programs using symbolic execution and

invariant generation, in Proceedings of SPIN (2004), pp. 164–181
50. G. Pinter, I. Majzik, Automatic generation of executable assertions for runtime checking

temporal requirements, in Proceedings of HASE 2005 (2005), pp. 111–120
51. A. Pnueli, The temporal logic of programs, in Proceedings of the 18th Annual Symposium on

Foundations of Computer Science (1977), pp. 46–57
52. J.R. Quinlan, Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
53. J.R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann Publishers, San

Francisco, 1993)

http://www.opencores.org

20 A Comparative Study of Assertion Mining Algorithms in GoldMine 645

54. F. Rogin, T. Klotz, G. Fey, R. Drechsler, S. Rülke, Automatic generation of complex properties
for hardware designs, in Proceedings of DATE (2008), pp. 545–548

55. C.E. Shannon, A mathematical theory of communication. SIGMOBILE Mob. Comput.
Commun. Rev. 5(1), 3–55 (2001)

56. D. Sheridan, H.-S. Kim, L. Liu, J. Han, S. Vasudevan, Guided association rule learning for
assertion generation. Technical report (2012)

57. D. Sheridan, L. Liu, H. Kim, S. Vasudevan, A coverage guided mining approach for automatic
generation of succinct assertions, in 2014 27th International Conference on VLSI Design
and 2014 13th International Conference on Embedded Systems, Mumbai, January 5–9, 2014
(2014), pp. 68–73

58. A. Silberschatz, A. Tuzhilin, What makes patterns interesting in knowledge discovery systems.
IEEE Trans. Knowl. Data Eng. 8(6), 970–974 (1996)

59. Systemverilog, 2012
60. P. Taatizadeh, N. Nicolici, Emulation-based selection and assessment of assertion checkers

for post-silicon validation, in 2015 33rd IEEE International Conference on Computer Design
(ICCD), Oct 2015, pp. 46–53

61. P. Taatizadeh, N. Nicolici, Automated selection of assertions for bit-flip detection during post-
silicon validation. IEEE Trans. CAD Integr. Circuits Syst. 35(12), 2118–2130 (2016)

62. P. Taatizadeh, N. Nicolici, Emulation infrastructure for the evaluation of hardware assertions
for post-silicon validation. IEEE Trans. VLSI Syst. 25(6), 1866–1880 (2017)

63. P. Tan, V. Kumar, J. Srivastava, Selecting the right interestingness measure for association
patterns, in Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, July 23–26, 2002, Edmonton, AB (2002), pp. 32–41

64. The GoldMine Website, http://goldmine.csl.illinois.edu/
65. A. Tiwari, H. Rue, H. Sadi, N. Shankar, A technique for invariant generation, in Proceedings

of TACAS (2001), pp. 113–127
66. S. Vasudevan, D. Sheridan, S.J. Patel, D. Tcheng, W. Tuohy, D.R. Johnson, Goldmine:

automatic assertion generation using data mining and static analysis, in Design, Automation
and Test in Europe, DATE 2010, Dresden, March 8–12, 2010 (2010), pp. 626–629

67. L.-C. Wang, M.S. Abadir, N. Krishnamurthy, Automatic generation of assertions for formal
verification of powerpc microprocessor arrays using symbolic trajectory evaluation, in
Proceedings of DAC (1998), pp. 534–537

68. H. Zhao, A. Sinha, An efficient algorithm for generating generalized decision forests. IEEE
Trans. Syst. Man Cybern. A: Syst. Hum. 35(5), 754–762 (2005)

http://goldmine.csl.illinois.edu/

Chapter 21
Energy-Efficient Design of Advanced
Machine Learning Hardware

Muhammad Abdullah Hanif, Rehan Hafiz, Muhammad Usama Javed,
Semeen Rehman, and Muhammad Shafique

21.1 Artificial Intelligence and Machine Learning

Over the past several years, artificial intelligence (AI) has evolved significantly
because of the revolutionary advancements in its subdomains of machine learning
(ML) and deep neural networks (DNNs). The AI gives machines the ability to
learn from the provided set of examples called training data and use the experience
gained from it for solving real-time problems. Today’s AI systems are capable of
outperforming professional human players at sophisticated strategic games, like
chess and Go [8], and have also been reported to perform significantly well in many
other real-world applications, like cancer detection [25], human activity recognition
[30], autonomous driving [63], etc. Such algorithms are nowadays commonly being
employed for assisting and training humans [26].

Out of all the machine learning algorithms, neural networks (NNs) offer the state-
of-the-art accuracy on many AI applications, like computer vision, data analytics,
speech and language processing, etc. The superior performance of NNs is usually
attributed to their ability to learn features directly from raw sensory data using
backpropagation algorithm, which is in contrast to the conventional ML techniques
(illustrated in Fig. 21.1) that require explicitly designed features and pipeline for
performing the intended tasks. However, the state-of-the-art accuracy offered by
neural networks comes with high-computational and memory overheads which
give rise to numerous other problems like enormous memory traffic and data

M. A. Hanif (�) · S. Rehman · M. Shafique
Vienna University of Technology (TU Wien), Vienna, Austria
e-mail: muhammad.hanif@tuwien.ac.at; semeen.rehman@tuwien.ac.at;
muhammad.shafique@tuwien.ac.at

R. Hafiz · M. U. Javed
Information Technology University (ITU), Lahore, Pakistan
e-mail: rehan.hafiz@itu.edu.pk; usama.javed@itu.edu.pk

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8_21

647

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04666-8_21&domain=pdf
mailto:muhammad.hanif@tuwien.ac.at
mailto:semeen.rehman@tuwien.ac.at
muhammad.shafique@tuwien.ac.at
mailto:rehan.hafiz@itu.edu.pk
mailto:usama.javed@itu.edu.pk
https://doi.org/10.1007/978-3-030-04666-8_21

648 M. A. Hanif et al.

Bus DogCar

Input Images

Data
Preprocessing

Human defined
Feature Extrac�on

Feature Mapping and
Classifica�on

Output labels

? ?

Class 1
Class 2

K=3

K nearest neighbor SVM

Enhancement

HOG

Fig. 21.1 Pipeline of conventional image/object classification algorithm

management for real-time processing applications. Since the design of efficient
architectures demands insightful knowledge of the algorithm to be implemented,
in the upcoming subsections, we provide an in-depth premier of neural networks,
specifically in the context of deep convolutional neural networks.

21.1.1 Neural Networks

A neural network comprises a large number of interconnected units called neurons,
where a neuron is the basic computational unit of a neural network. Each neuron
in a network receives information in the form of signals from other neurons/inputs
through connections called synapse and generates an output which is then transmit-
ted to other subsequent neurons/output. The operation performed by these neurons
is typically the weighted sum of inputs followed by a transformation function

21 Energy-Efficient Design of Advanced Machine Learning Hardware 649

(commonly known as activation function), for example, rectified linear function.
An illustration of a neuron along with a few example activation functions is shown
in Fig. 21.2.

Typically, in NNs the neurons are organized in the form of layers where each
layer receives input from the preceding layer(s), performs some operation, and
transfers the processed information to the succeeding layer(s)/output. Multiple types
of layers are used in state-of-the-art neural networks, namely, convolutional layer,
fully connected layer, pooling layer, activation layer, and normalization layer. A
brief summary of the layers is presented in Table 21.1. These layers are usually
connected in series to perform a sequence of operations on the inputs to generate a
meaningful output. Out of all the aforementioned types of layers, the convolution
(CONV) and fully connected (FC) layers have the most computational significance.
They can optionally be succeeded by pooling, activation, and/or normalization
layer(s). A sample architecture of a convolutional neural network (CNN) is shown
in Fig. 21.3. Here, we consider a CNN trained for handwritten digit recognition
(MNIST Dataset [20]) for numbers from 0 to 9. Since there are 10 possible
outcomes, we have 10 different classes to which a particular input can be mapped.
As illustrated in Fig. 21.3, the first CONV layer receives the input and generates a
series of feature maps, which are then fed to the subsequent layer for processing.
One of the basic interpretations of a convolutional neural network is that the initial
convolutional layers extract low-level features using small- and medium-sized filters
which are then fed to the subsequent layers to extract higher-level features. In the
end, the fully connected layers operate on the higher-level features to compute the
final classification scores and, based on the maximum score, the input is associated
with one of the available classes.

Thus far, several neural network architectures have been proposed in the literature
to cover a wide variety of applications ranging from simple handwritten digit
recognition [20] all the way to human activity recognition in videos [30]. These

Dendrite

Axon of another neuron

Cell body

Synapse

Output Axon

Ac�va�on Func�ons

Σ
Σ

Fig. 21.2 A naive mathematical model of a biological neuron

650 M. A. Hanif et al.

Table 21.1 Building blocks of CNNs

Type of layer Brief description Illustration

Fully connected
(FC)

FC layers are usually
used at the end of con-
volutional neural net-
works as classification
layers. Neurons in FC
layers have full connec-
tions to all activations in
the previous layer

Class 1

Class 2

Fully Connected Layer

Input 1

Input 2

Input 3

Input Layer

Hidden Layer

Output Layer2111

Synapse layer 1 Synapse layer 2

Convolution
(CONV)

A convolution layer is
composed of multiple
filters where each filter
defines a feature. The
convolved outputs (a.k.a
feature maps) of all the
filters are concatenated
together to form the out-
put of the layer which
us then used as input to
the subsequent layer in a
feed forward network

Filters
Feature Maps

f1

f2

f3

f4

Convolu�on Layer

Activation Activation layers are
employed to introduce
nonlinearity in neural
networks. Usually this
is considered a part of
each convolutional and
fully connected layer

RELU

Feature Maps Feature Maps

Ac�va�on Layer

max(0,)

Normalization Normalization is used in
CNNs to realize ‘lat-
eral inhibition’, i.e., to
reduce the response of
neighboring neurons of
an excited neuron. The
normalization is usually
of two types ‘Within
Channel’ and ‘Across
Channel’

Normalize

Feature Maps

Normaliza�on Layer

Feature Maps

Pooling Pooling layers are used
in convolutional neu-
ral networks in order
to periodically reduce
the spatial size of fea-
ture maps to reduce the
amount of parameters
in order to avoid over-
fitting

Max Pooling

Feature Maps

Feature Maps

0.25 1.33

1.04 1.09

Max
1.33

Deep CNNs typically comprise of multiple instances of such blocks

21 Energy-Efficient Design of Advanced Machine Learning Hardware 651

Output
Classes

Input Image Feature Maps

Convolu�on
+ Pooling

Convolu�on
+ Pooling

Fully-
Connected

Fully-
Connected

Fig. 21.3 An example convolutional neural network (CNN) architecture consisting of multiple
convolution and fully connected layers

network architectures typically vary in terms of connectivity of neurons/layers,
types of layers, and/or additional components used in each layer, e.g., cells for
storing intermediate states in long short-term memory (LSTMs) networks. Among
all the networks, the feed-forward neural networks (which includes the conventional
fully connected networks and convolutional neural networks) along with recurrent
neural networks (which covers fully recurrent networks and LSTMs) are the most
widely used networks because of their wide applicability in the areas of computer
vision and language processing.

21.1.2 Resource Requirements of State-of-the-Art Neural
Networks

Over the past few years, neural networks have evolved greatly and a significant
portion of this advancement can be related to the developments in hardware
technology of the underlying computing devices. Because of these hardware
advancements, specifically in SIMD and GPU processors, neural networks were
able to scale significantly. Recently, it has also been reported that deeper networks
demonstrate more accuracy as compared to shallower networks [60]. The main
reason behind the high accuracy offered by deeper neural networks is that it extracts
low-level features from the input samples and later in each subsequent layer extracts
higher-level features considering the combination of the features extracted in the
previous layer(s). This allows the deeper networks to classify samples using less
number of parameters as compared to wider networks, which also lead to faster and
robust training and lower memory footprint. However, to solve complex problems,
a significant number of the layers (i.e., depth) with significant width per layer
(i.e., number of neurons/filters) are required which eventually leads to significant
computational and memory (and thereby also energy/power) requirements.

652 M. A. Hanif et al.

To highlight the resource requirements of state-of-the-art neural networks, we
present a summary of few of the D-CNN architectures that, over the course of years,
showed groundbreaking results on ImageNet Dataset [21] in Table 21.2. The table
illustrates the evolution of the neural networks for image classification applications.
The top-5 classification accuracy of the networks increased over the years and has
a strong correlation with the depth of the network. It can also be observed from
the table that even the simplest DNN architecture, i.e., AlexNet, which has a top-
5 accuracy of 80.2% requires 61 million floating point weights and 724 million
MAC operations to classify a single image of size 227 × 227 × 3. Therefore,
to reduce the computational complexity and the memory requirements associated
with a neural network, various optimization/approximation techniques have been
proposed in the literature. For ease of illustration, we partition these techniques into
two broad categories, i.e., software-level and co-design optimization techniques, and
hardware-level optimization techniques.

21.2 Software and Co-design Optimizations

In earlier days of deep neural networks, most of the research was concentrated
on improving the accuracy without paying much attention to the computational
and memory requirements. However, the recent surge of use of AI in battery-
powered embedded computing devices demands design of dedicated hardware and
hardware/software co-design for reducing the implementation complexity of the
networks. For example, the architectural improvement in ResNet50 [34] resulted
in a significant reduction in the number of weights and computations as compared
to VGG [58] while providing significant improvement in classification accuracy, as
illustrated in Table 21.2. This reduction in the total number of effectual parameters
and the number of operations can directly be associated with the energy efficiency.

In this section, we discuss few of the most important software and hardware–
software co-design optimization methods, which have shown remarkable results in
state-of-the-art NN architectures.

Table 21.2 Summary of a subset of popular DNN architectures

Metrics AlexNet Overfeat fast VGG GoogLeNet ResNet 50 ResNet 152

Top-5 error 19.8 17 8.8 10.7 7 6.16

Year released 2012 2013 2014 2014 2015 2015

Total MACs (billion) 0.724 2.8 15.5 1.43 3.9 −
Depth (# of layers) 8 8 16 22 50 152

of weights (million) 61 146 138 7 25.5 −
Execution time (ms) 4.31 − 41.2 11.5 34.14 73.52

The reported accuracy is based upon top-5 error on ImageNet [21]. The forward pass execution
time are computed by executing the model architecture on a machine with an Intel Core i7-7700
CPU, 64 GB RAM and GTX 1080Ti [1]

21 Energy-Efficient Design of Advanced Machine Learning Hardware 653

• The software-level optimizations discussed in this section include pruning,
weight sharing, compact architectural designs, and knowledge distillation, which
mainly focus on reducing the number of effectual parameters and the model size
of a network.

• The co-design techniques work mainly on the principle of reducing the precision
of operands and operations for achieving the energy and power efficiency.

21.2.1 Pruning

At present, neither there is a formal way of designing neural network architectures
nor the knowledge of the optimal number of parameters required for solving a
specific AI problem. Therefore, in order to facilitate the learning process, the
networks are usually over-parameterized. As a result, a significant amount of
parameters in trained networks are redundant and ineffectual and hence can be
removed. This process of removing the ineffectual weight from a network is usually
termed as pruning and is often followed by retraining (a.k.a fine-tuning) to regain a
significant amount of the lost accuracy.

Pruning was first introduced by Cun et al. [18] in 1989, which showed a sig-
nificant improvement in training as well as testing/classification speed. It was also
observed that by removing redundant/unimportant weights followed by retraining
(for regaining a significant portion of lost accuracy), the networks were able to
generalize better, especially for a smaller dataset. A similar method was recently
introduced by Han et al. [31]. However, instead of using a saliency-based approach,
as used by Cun et al. in [18], a magnitude-based approach was adapted for
pruning. Weights having magnitude below a certain threshold (close to zero) were
considered unimportant and were pruned. This approach showed remarkable results
for reducing the overall model size of the network, for example, it can reduce the
total number of weights in AlexNet by 9× and in VGG-16 by 13×without affecting
the overall classification accuracy. A simple example of pruning is illustrated in
Fig. 21.4, where all the branches corresponding to weights that have magnitude
below 0.05 are pruned.

One significant drawback of this type of pruning is that the removal of weights
only on the basis of their absolute values leads to irregular/unstructured distribution
of zeros in the network which in turn requires a special compressed format, e.g.,
compressed sparse row (CSR) or compressed sparse column (CSC), for storing
the weights in memories. The compression formats usually have some overheads
associated with them for keeping track of the locations of the effectual weights,
which is specifically significant in case the sparsity is low.

Another disadvantage of irregular/unstructured pruning is that in most of the sce-
narios the processing of neural networks is carried out using matrix–matrix/matrix–
vector multiplication, as illustrated in Fig. 21.5a, and in case the weights are stored
in CSR format, complete input data is required to be fetched from the memory,
despite the fact that a significant portion of it is not used. Similar is the case when

654 M. A. Hanif et al.

Fig. 21.4 An illustration of unstructured pruning where the highlighted branches are removed
solely based upon their weight values regardless of the location

the weights are stored in CSC format except that in this scenario the output has to be
accessed and updated multiple times [32]. In both the cases, a significant amount of
benefit is lost and cannot be fully exploited by data-parallel hardware architecture
(e.g., SIMD), which are commonly found in existing GPGPUs. Note that here it is
assumed that the weights are stored in a matrix such that each row corresponds to a
single neuron.

As specified above, unstructured pruning does not provide any significant
advantage for regular hardware architectures like GPGPUs. One way to leverage
it is by designing custom hardware that process data without decompressing, which
is discussed in Sect. 21.3. Recently, researchers have also explored a more effective
way of pruning to avoid the need for custom hardware, i.e., structured pruning.
Instead of removing weights individually from a network, structured pruning
involves pruning weights in a regular fashion (in the form of groups) from a network.
Therefore, rather than computing the saliency of individual weights a combined
saliency of a group of weights is computed and based upon that significance of
the group it is eradicated. The major benefits of this technique over unstructured
pruning are: (1) it requires lesser overhead for storing the weights; (2) as illustrated
in Fig. 21.5b, it results in a significant reduction in the size of input and weight
matrices that significantly reduces the number of operations and the overall size of
data that have to be fetched from the memory for processing.

21.2.2 Weight Sharing

Weight sharing is another optimization technique used for alleviating the memory
requirements of a neural network. The main concept behind weight sharing is to
reduce the number of bits required to represent each weight. This is usually achieved
by using a common set of a limited number of values (defined in the form of a
dictionary) for representing the weights of a network/layer. For storing the model,

21 Energy-Efficient Design of Advanced Machine Learning Hardware 655

I1 I2 I3 I4 I5

I6 I7 I8 I9 I10

I11 I12 I13 I14 I15

I16 I17 I18 I19 I20

I21 I22 I23 I24 I25

F1 F2 F3

F4 F5 F6

F7 F8 F9

I13 I14 I15 I18 I19 I20 I23 I24 I25

I12 I13 I14 I17 I18 I19 I22 I23 I24

I11 I12 I13 I16 I17 I18 I21 I22 I23

I8 I9 I10 I13 I14 I15 I18 I19 I20

I7 I8 I9 I12 I13 I14 I17 I18 I19

I6 I7 I8 I11 I12 I13 I16 I17 I18

I3 I4 I5 I8 I9 I10 I13 I14 I15

I2 I3 I4 I7 I8 I9 I12 I13 I14

I1 I2 I3 I6 I7 I8 I11 I12 I13

F1 F2 F3 F4 F5 F6 F7 F8 F9

F1 F2 F3 F4 F5 F6 F7 F8 F9

F1 F2 F3 F4 F5 F6 F7 F8 F9

F1 F2 F3

F4 F5 F6

F7 F8 F9

F1 0 F3

0 F5 0

F7 0 F9

I13 I14 I15 I18 I19 I20 I23 I24 I25

I11 I12 I13 I16 I17 I18 I21 I22 I23

I7 I8 I9 I12 I13 I14 I17 I18 I19

I3 I4 I5 I8 I9 I10 I13 I14 I15

I1 I2 I3 I6 I7 I8 I11 I12 I13

F1 F3 F5 F7 F9

F1 F3 F5 F7 F9

F1 0 F3

0 F5 0

F7 0 F9

O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 O2 O3 O4 O5 O6 O7 O8 O9

F1 F2 F3

F4 F5 F6

F7 F8 F9

0 0 0

0 0 0

0 0 0

Input data matrix (Im)

Filter matrix (Fm) Output matrix (Om) = Fm* Im

Filter data

Image data

Input data matrix (Im)

Filter matrix (Fm)

Filter data

Filter 1 Filter 2 Filter 3

Filter 1 Filter 2 Filter 3

(a)

(b)

Output matrix (Om) = Fm* Im

Fig. 21.5 Lowering convolution to matrix multiplication for pruned and unpruned networks. (a)
illustrates the conversion of input data and filters into matrices that can be multiplied to generate
the resultant output. (b) shows the reduction in the dimensions of matrices in case of structured
pruning

656 M. A. Hanif et al.

Fig. 21.6 Illustration of weight sharing in a filter. (a) Values of the filter before weight sharing.
(b) Dictionary that stores the common weight values. (c) The corresponding binary indexes that
are actually stored in memory along with the dictionary

both dictionary and the indexes specifying the corresponding value in the dictionary
for each weight have to be stored. This approach shows significant improvements
only when the number of shared weights, i.e., the number of dictionary elements,
is significantly less. For example, in [31], through weight-sharing approach the
number of unique weights per layer in AlexNet was reduced to 256 for convolutional
layers and 16 for fully connected layers, thus required only 8-bit and 4-bit weight
indexes, respectively. Note that in weight-sharing approach the precision of MAC
units is not changed and they perform the same floating point operation. A naive
example of weight sharing is illustrated in Fig. 21.6, where a filter is represented
using just 3 floating point values (illustrated using differed colors).

21.2.3 Compact Network Architectures

Contrary to the aforementioned optimization techniques, the network efficiency can
also be improved by improving the network architecture. This is usually achieved
by replacing large filters with a series of smaller filters, which are implemented
sequentially without the use of nonlinearity/activation layers in between. The core
concept behind this is that the smaller filters, when applied sequentially, can traverse
the same amount of input region (in images) as a larger filter and therefore can give
the effects similar to that of the larger filter. For example, an 11 × 11 2D filter can
be replaced with two 6× 6 2D filters in series to produce a similar effect. Similarly,
for 3D filters, the convolution can be broken down into multiple 2D channel-wise
convolutions (depthwise convolution) followed by multiple of 1×1 3D convolutions
(pointwise convolution). This type of convolution is usually termed as depthwise
separable convolution. MobileNets [36] and Xception [14] are based upon these
types of layers.

21 Energy-Efficient Design of Advanced Machine Learning Hardware 657

Filter
concatena�on

3x3 convolu�ons 5x5 convolu�ons 1x1 convolu�ons

1x1 convolu�ons 1x1 convolu�ons 3x3 convolu�ons

Previous layer

1x1 convolu�ons

Fig. 21.7 Inception module with dimension reductions [60]

One drawback of this type of network is that although it reduces the number of
weights significantly, the reduction in the computations is not proportional to the
reduction in the number of parameters. For example, when compared to AlexNet,
GoogLeNet utilizes only 11.5% of the weights while requiring almost twice the
number of computations, as can be observed from Table 21.2. To address this issue,
pointwise convolutional layers have been employed in “Inception module with
dimension reductions,” as shown in Fig. 21.7, for reducing the number of channels
before expansion to reduce the total number of computations in the subsequent
convolutional layers [60].

SqueezeNet [37], another state-of-the-art network architecture, is also based
upon the aforementioned principles and reports to reduce the number of weights
by 50×, while still consuming more energy as compared to AlexNet.

21.2.4 Hardware–Software Co-design

To address the energy efficiency and storage issues in neural networks, several
techniques have been proposed that seek to reduce the precision of weights and/or
activations. The most common technique, in this context, is the conversion of float-
ing point numbers to fixed-point numbers, which achieves a significant reduction in
the complexity of computational elements like adders and multipliers and thereby
reduces the energy consumption of a network significantly. To further improve
the energy efficiency, the precision of fixed-point numbers is also reduced and,
usually, a modified version of fixed-point format, i.e., dynamic fixed-point format,
is employed [29]. A summary of a few state-of-the-art techniques is presented in
Table 21.3.

658 M. A. Hanif et al.

Table 21.3 Relative validation set accuracy of networks using single and half-precision floating
point formats, fixed and dynamic fixed-point formats, ternary weights, and binary format on the
CIFAR-10 dataset [15, 42]

Operators used Memory saving Accuracy (CIFAR-10)

Single precision floating point x, − ,+ 1× 1

Half-precision floating-point x, −, + ∼2× 0.999

Fixed-point x, −, + ∼1.6× 0.978

Dynamic fixed-point x, −, + ∼2.9× 0.991

Ternary weights +, − ∼1.9× 0.997

Binary network +, − ∼32× 0.967

An extreme in this context is to use single sign function to binarize the weight
values [16] to reduce the complexity by eliminating the need for multiplications.
Extensions of the aforementioned [17, 48] have also been proposed that uses binary
values for both activations and weights. A counterpart of binarized networks,
i.e., ternary networks [42], have also been introduced that showed significant
improvement in the learning capability as compared to a binarized network without
the need for multiplications. Note that the aforementioned techniques require
specialized training process for learning the quantized weights.

21.3 Hardware-Level Techniques

Multiple hardware-level architectures have been proposed recently to efficiently
process neural networks in hardware. The primary motivation for building
FPGA/ASIC-based systems is the large power overhead associated with GPU-based
processing. For example, although a NVIDIA DGX-1 with Tesla V100 can train
ResNet50 96× faster than a CPU server with two Intel Xeon E5-2699v4 CPUs,
it consumes 32× more power as compared to a commodity GPU that typically
consumes 100 W [61]. In this section, we discuss few of the most prominent
architectures along with the underlying techniques that are designed to maximize
the energy efficiency and minimize the execution time of a neural network.

21.3.1 Dataflows and Architectures for Accelerators

The key insight in DNN acceleration is to process in parallel to the maximum.
Accordingly, numerous dataflows have been proposed with varied parallelism goals.
One popular choice is systolic arrays. Systolic arrays are a mesh-like assembly of
processing elements (PEs), where each processing element is connected to adjacent
processing elements, as shown in Fig. 21.8. The data enters the array from the PEs

21 Energy-Efficient Design of Advanced Machine Learning Hardware 659

Fig. 21.8 An illustration of a typical systolic array where data and weights are fed from one side
and the resultant partial sums are produced on the other side, after several iterations/clock cycles.
Each processing element in the array is composed of a MAC unit, a control logic, and an internal
register for storing the intermediate or stationary values

that are at the boundaries of the systolic array and is moved across the array for
processing. The outputs are then generated on the other side of the array which
is then transferred to the memory. Systolic arrays are inherently pipelined and
can be implemented with ease. Recently, high-level mapping systems are being
proposed that make use of systolic arrays [65]. Even though systolic arrays are
easy to implement, they may not provide optimal performance across networks
with varying parallelism opportunities. In practice, DNN architectures show varying
degrees of parallelism, and using one dataflow for all types of workloads is not
optimal. For example, systolic arrays only exploit parallelism in synapses, excluding
the parallelisms in input and output feature maps [44], which makes them inflexible.
As a solution, [44] FlexFlow dataflow offers flexible dataflow and enables a mix of
synapse, input, and output feature maps parallelisms.

As DNNs show great diversity among their architectures, a scalable accelerator
should be able to accommodate newer architectures with multiple filter sizes, strides,
and channels. Eyeriss [11] is one such architecture. It has 168 reconfigurable
processing elements which are placed spatially in a 2D mesh-like fashion. Each PE
has its own MAC unit, control logic, and register/scratch pad memory (for caching
intermediate results). To minimize the energy consumption of data processing and
movement, Eyeriss uses row stationary (RS) dataflow in which the movement of
weights, pixels, and partial sums is minimized. One limitation of using such spatial
architecture is the communication cost among PEs that can lead to complex control
circuitry and extra power consumption.

660 M. A. Hanif et al.

21.3.2 Hardware Friendly Strategies for Deep CNN
Accelerators

As mentioned in earlier sections of the chapter, deep convolutional neural networks
are one of the most widely used networks because of their applicability in the
domain of computer vision and language processing. The layers which mainly
constitute a CNN are convolutional, fully connected, pooling, and activation layers.
Out of all these layers, convolutional layers are the most computationally expensive.

One way to optimize the architecture is by shifting to the frequency domain,
where the convolution is transformed into point-to-point multiplications. Therefore,
frequency-domain acceleration can provide a speedup over time-domain accelera-
tion. The complexity of convolution improves fromO(N2×n2) toO(N2× log2N)
for an input data of sizeN×N , and a kernel with n×n dimension. Use of Hermitian
symmetry can further decrease the required number of computations, as components
at negative frequencies are conjugate of those at positive frequencies. Overlap and
Add method (OaA) [35] is another FFT-based algorithm that further improves the
computational complexity of frequency-domain convolution to O(N2 log2 n). In
OaA method, input arrays are first divided into parts. These subparts are convolved
with each other (subparts of one input with subparts of second input) to generate
partial products. Finally, these partial products are added. Zhang and Prasanna in
[68] designed an accelerator while making use of OaA method. Earlier attempts only
performed the convolutional layer in the frequency domain. Thus, FFT and IFFT
steps were required for each convolutional layer, thus adding an overhead to move
back and forth from the Fourier domain. Recently, Ko et al. [40] presented an end-to-
end frequency-domain DNN training accelerator. This work requires FFT operation
only once at the start, and then an IFFT towards the end of the DNN. All DNN
modules including convolution, pooling, and nonlinear functions are performed
in frequency domain. They reported 4.5× and 6.0× improvement for latency and
energy as compared to spatial domain design for AlexNet CNN.

Note that the benefits of frequency-domain acceleration diminish for small filter
sizes. As the trend in newer convolutional neural network architectures is to use
3× 3 filters, frequency-domain acceleration is unlikely to improve the performance
metrics. This motivates the use of another class of algorithms: minimal convolution
algorithms. Minimal convolution algorithms are transforms that lead to a reduction
in the number of required multiplications. Multipliers are the most power consuming
blocks, and reduction in their use directly enhance the performance. One such
technique is the Winograd convolution, which is inspired by Chinese Remainder
theorem. It is useful as it requires less number of multiplications. Given a 3×3 filter
and 2 × 2 output matrix, Winograd convolution require 2.25× less multiplication
[41]. Similarly, Wang et al. [64] proposed a fast convolution unit (FCU) for kernel
sizes of five and three. It makes use of fast finite impulse response algorithm (FFA).
FFA can save 36% energy for kernel size of five: A typical convolution requires

21 Energy-Efficient Design of Advanced Machine Learning Hardware 661

25 multiplications, and 24 additions, while a convolution using FFA requires 15
multiplications, and 34 additions, thus providing 1.6× reduction in multiplication
operations.

Use of minimal convolution algorithms can lead to a decrease in the number
of resources but can put a strain on memory, as more intermediate results are
to be stored. Also, the benefits of these algorithms diminish with the increase
in filter size. A practical use, as demonstrated in [66], includes the use of both
conventional and Winograd convolution to avoid high memory traffic, and exploit
available hardware resources, respectively. This is because conventional convolution
is resource exhaustive, and minimal convolution is memory exhaustive.

21.3.3 Memory-Efficient Architectures

Memory transactions account for a significant portion of energy consumption and
worsen the system latency and throughput. Data reuse is a solution to alleviate this
problem. This approach includes maximizing the data reuse to minimize memory
traffic and thereby improves latency, energy efficiency as well as the throughput
of a system. DNNs offer several opportunities for data reuse. Some of them are
discussed below:

1. Allocating on-chip memory for storing kernel values: In this approach, kernel
values are stored using on-chip memory. Thus, they only need to be loaded once
for several or all the associated computations.

2. Reusing overlapped data between filters: As there are multiple filters in a layer,
a segment of an input image is required to be loaded only once for several/all
filters.

3. Avoiding the data transfer of intermediate results: The intermediate results from
previous computations can be kept on-chip and then summed with the new results
(of associated values) to generate partial versions of the output feature maps. This
provides with an opportunity to avoid intermediate data storage.

4. Reusing overlapped data between adjacent windows of an input: A window of
input feature maps can be cached using on-chip memory. Afterwards, only those
rows/columns of input need to be loaded which are not currently in the cache
buffer. This is significantly useful for convolutional layers where the overlap
between adjacent windows is very significant.

5. Sharing feature maps between adjacent layers: As multiple convolution layers
are cascaded, the result of one layer can serve as the input of the next layer. This
eliminates the need to move and then fetch intermediate results to/from off-chip
memory. Using the approach, authors in [33] achieved 55% less communication-
to-computation ratio.

A similar approach was adopted by Alwani et al. [5] for enabling data reuse.
They proposed to process multiple convolution layers in a fused way at the same
time, in contrast with existing methods which process each layer separately, to

662 M. A. Hanif et al.

avoid memory transfer. Two or more convolution layers are fused, and the results
of intermediate layers are not communicated back to memory and are reused for
further processing. Using fused processing, they reported 95% decrease in memory
transfers. Escher [57] made use of a batching strategy to effectively retrieve data for
multiple inputs. In batching, accelerator avoids data transfers by storing weights
on-chip. In [57], batching is applied to both fully connected and convolutional
layers. Groups of weights are reused for given batches of images. Their design
was optimized for throughput, making use of analytical models, incorporating
computation resources, on-chip storage, input and output buffers, and memory
bandwidth.

21.3.4 Hardware Architectural Techniques for Leveraging
Sparsity in Neural Networks

A significant portion of weights in a DNN is zero-valued numbers or insignificant
values. Alongside this, since ReLU (rectified linear unit) is one of the most popular
activation functions which is used in almost all the state-of-the-art neural networks,
a significant amount of activations are also zero valued. For example, according to
[47], 50–70% of activations are zero valued and 20–80% weights are zero valued.
Computation and memory transfer of such numbers can be skipped, as they do
not contribute to classification accuracy. Overall, computation skipping shows a
promising way to reduce computation and memory overhead as DNN architecture
remains unchanged. This insight can lead to substantial savings in energy consump-
tion and reduction in memory transfers. A few techniques exploit the particular
response of the activation function. These techniques are usually effective for the
networks that employ ReLU activation function for introducing the nonlinearity in
the network, as mentioned above. ReLU function sets all the negative inputs to zero
and thereby introduces a significant amount of sparsity in feature maps; for example,
the feature maps in AlexNet have a sparsity between 19% and 63%. This sparsity
can be exploited for improving the overall efficiency of the underlying hardware
by skipping corresponding DRAM accesses and computations. Furthermore, the
hardware can also be modified such that it skips the memory access to weights and
also skips computation of MAC for zero-valued activations to improve the energy
efficiency [12]. Rather than just gating the read and MAC computation, the hardware
could also skip the cycle to increase the throughput by 1.37× [4]. Also, as described
earlier applying pruning to a network results in a sparse network. However, due to
the asymmetrical nature of sparsity, synchronization is required to keep track of
valid data. Even with 89% weights removed, sparse AlexNet on CPU takes 25%
more time than baseline dense model [67]. Therefore, application-specific hardware
architectures are proposed that can deliver the improved performance for a sparse
network.

21 Energy-Efficient Design of Advanced Machine Learning Hardware 663

EIE is an ASIC accelerator [32] that operates on the compressed DNN model
acquired after applying Deep Compression [31] methodology. It keeps track of
sparsity and skips zero-valued activations by storing only nonzeros values in
compressed sparse column (CSC) format. Apart from a vector containing the
nonzero values of the weights, a vector that contains the locations of nonzeros
values is also required. The EIE delivers 103 GOPs/s computation power for a
sparse network, which (due to high sparsity ratios offered by Deep Compression
on state-of-the-art neural networks) is equivalent of 3 TOPs/s for a dense network.
Furthermore, the CNV accelerator proposed in [4] is capable of skipping the
computation when an activation value is zero. It is built on top of DaDianNao
[10] and targets convolution layers. CNV skips the computation when the activation
value is zero across all layers of a network except first layer. The zero skipping is
achieved by using Zero-Free Neuron Array Format that removes the zero values
of activations. An offset variable is used to determine the original positions of
remaining nonzero values. CNV achieves 1.37× performance on average over
DaDianNao accelerator, least being 1.24× on GoogleNet at 4.49% area overhead.
Parashar et al. proposed another accelerator SCNN [47] that can skip computations
corresponding to zero-valued weights and activations, in contrast to Cnvlutin [4]
that only optimizes for zero-valued activations. It tracks location of nonzero values
by encoding the nonzero-valued inputs, and weights. So, the data delivered to
processing elements are only nonzeros values. Unlike EIE, SCNN works on both
convolution and FC layer.

As mentioned earlier, a conventional DNN contains a large number of insignifi-
cant parameters which lead a large number of ineffectual computations and thereby
can be removed. Apart from this, even the remaining parameters contain a majority
of zero-valued bits, for example, only 18.1% of nonzero neurons are nonzero bits
for AlexNet [3]. Such zero-valued bits result in ineffectual partial products during
multiplication operations and eliminating the generation of such partial products can
provide further energy savings. Pragmatic accelerator or PRA [3] aims to eliminate
such ineffectual multiplications. PRA is also built to function as an extension of
DaDianNao. It tracks the locations of 1’s in a neuron value and uses shifters to
calculate the desired partial product. PRA provides 1.48× energy efficiency on
average as compared to DaDianNao with 1.35× area overhead.

21.4 Error Resilience Analysis: DNN-Specific
Approximations for Low-Power Accelerators

As mentioned in the previous sections, various optimization techniques can be
employed for reducing the power and energy requirements of an NN accelerator. To
further improve the energy/power efficiency, implementations of DNNs can benefit
from approximate computing-based low-power/low-energy computing modules, as
most of the applications of DNNs are inherently error resilient. This error resilience
can be associated with two main reasons:

664 M. A. Hanif et al.

1. In DNN architecture, all input samples are processed in the same manner
regardless of their inherent difficulty for a particular classification application.
There is a potential in identifying ineffectual computations/neurons and hence
simplifying their implementation to reduce power/energy consumption without
affecting the output quality of the system [55].

2. Training in NNs is an iterative process, which can be stopped when the desired
accuracy is achieved. Moreover, retraining can be employed to mitigate the
effects of approximations and can lead to even better results than with the
accurate implementation [55].

In the following, we present a case study of approximate resilience analysis that
selects an appropriate datapath for approximation within a particular DNN [56]. We
consider a scenario where a reduced power budget demands the application of low-
power approximations. The problem then reduces to identifying datapaths where
approximations have least affect while offering a significant amount of reduction in
the power consumption. Since filters in a trained DNN architecture are responsible
for extracting specific features, we anticipate that their outputs shall have defined
data distributions. Furthermore, the errors produced by the approximate modules are
highly data dependent and, therefore, different approximate modules respond differ-
ently to different data distributions. An analysis of data distribution across various
datapaths of NN and the sensitivity of approximate modules under consideration
can help in choosing appropriate approximate circuits and the paths that result in
the minimum loss in the output quality.

For this analysis, we consider a LeNet-5 [20]-based neural network, as shown in
Fig. 21.9, for classifying handwritten digits in the MNIST dataset. The network is
composed of two convolution layers (C1 and C2), two pooling layers (P1 and P2),
and a fully connected layer (FC). The convolutional layers are used for extracting
features and the fully connected layers, which are connected at the end, are used
as the classifiers. C1 layer is composed of six different filters and produces six
different output Feature Maps (FM1, FM2, . . . , FM6) for a single input sample.
The input size for this network is 28 × 28. Afterwards, P1 layer applies average
pooling on the output from C1, assuming stride of one and a window of 2 × 2.

Fully-Connected
Layer

C1

1
2
3
4
5
6
7
8
9
0

C2P1 P2 FC

First Convolu�on C1
with 6 filters

Average
Pooling P1

Second Convolu�on C2
with 12 filters

Average
Pooling P2

Input Image

Fig. 21.9 Modified LeNet for Handwritten Digit Classification (MNIST dataset) used in our
experiments. Figure illustrates the outputs of various layers. Adapted from [56]

21 Energy-Efficient Design of Advanced Machine Learning Hardware 665

Then, C2 layer, composed of 12 filters of six kernels each, operates on the output
from P1 layer. Note that the output of P1 is composed of six kernels. The filters are
convolved with the output of P1 to generate an output composed of 12 feature maps,
i.e., one FM per filter. Finally, these 12 output feature maps are passed through P2
layer and afterwards are concatenated together in a vector, which is then passed
onto the final FC layer for classification. Output vector at the end of the FC layer
holds the probability of the input belonging to each possible digit. In order to show
the importance of the case study on the optimized network, we used fixed-point
simulations with Q(6.7) bit format (6 integer and 7 fractional bits), which provided
classification accuracy of 94%, when tested on 200 images.

In this, we analyze the data distribution of the six feature maps generated after
convolution at the output of C1. The analysis is then employed to select appropriate
low-power approximate adder(s) for average pooling in P1. Figure 21.10 shows the
Feature Maps at the output of C1, for four randomly selected input images from the
MNIST dataset.

Figure 21.11 shows the corresponding data distributions of the feature maps illus-
trated in Fig. 21.10. It can be observed from the figure that histograms corresponding
to the same kernels have strong correlation and are nearly identical, regardless of the
input image.

Fig. 21.10 (a) to (f) show the Feature Maps (FMs) at the output of six filters of C1, obtained for
four randomly selected input images. Adapted from [56]

666 M. A. Hanif et al.

(a)

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

(b)

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

(c)

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

(d)

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

(e)

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

(f)

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

0.70

0.35

0
-10 -5 0 5 10

Fig. 21.11 Histograms in (a) to (f) provide the data distribution of the corresponding Feature Maps
illustrated in Fig. 4 [56]. The x-axis and y-axis of each represent activation values and probability,
respectively

Next, we evaluate performance of five low-power approximate adder configura-
tions (α1, α2, α3, α4, and α5), which are based on low-power IMPACT [28] full
adders. The adders were selected such that their design is in accordance with our
Q (6.7) fixed-point number format. The IMPACT adders provide five approximate
full-adder designs (LP1 to LP5). Here, α1 = LP1:6 means that the 6 least significant
bits of the adder shall be of type LP1. Similarly, α2, α3, α4, and α5 were chosen to
be LP2:6, LP3:6, LP4:7, and LP5:7, respectively. We evaluate the performance of
each of these five adders for six Feature Maps using data generated with the help of

21 Energy-Efficient Design of Advanced Machine Learning Hardware 667

Table 21.4 Classification accuracy obtained by employing approximate adders (α1 to α5) in the
P1 layer for various datapaths [56]

Adder Approximation applied to individual feature maps

configuration FM1 FM2 FM3 FM4 FM5 FM6 Average

α1 92% 92% 92% 92% 90% 92% ∼92%

α2 56% 92% 60% 84% 92% 94% ∼80%

α3 56% 92% 60% 88% 93% 94% ∼81%

α4 92% 92% 92% 92% 91% 92% ∼92%

α5 94% 92% 92% 94% 92% 94% ∼93%

Average ∼78% ∼92% ∼79% ∼90% ∼92% ∼93%

50 randomly selected images from the training set. It can be seen from Table 21.4,
different approximate adders have different tolerance for different data distributions.
It can also be observed that the datapaths that belong to FM2, FM5, and FM6 show
better error resilience to approximations (when employed for average pooling in P1
layer) as compared to rest of the datapaths. This is because of the fact that the input
data distribution resulted in adder operands that were less sensitive to approximation
and resulted in an accuracy of 92% at least. Based upon this analysis, we define a
function R(αi) to rank the approximation resilience of a particular feature map for
each of the provided approximate adder configuration. Thus, the FM that illustrates
the lowest error for a particular adder configuration ranks first in terms of error
resilience. Thus, for example, for the simulated data, R(α3) = {FM6, FM5, FM2,
FM4, FM3, FM1}. Accordingly, if there is a power constraint requirement to apply
α2 approximation to the P2 layer of any one of the FMs, FM6 shall be the most
suitable while FM1 be the least. Table 21.4 also highlights that α1, α4, and α5
provide results with higher accuracy, in general, as compared to other adder variants
for all the FMs. This is because, as per their truth tables in [28], these adders produce
accurate results in case both of their inputs are zero, which is the most probable case
in the current scenario as evident from the data distributions illustrated in Fig. 21.11.

To evaluate our hypothesis, we consider a scenario where it is required to apply
approximation to at least two datapaths between C1 and P1. Table 21.4, in general,
predicts that the highest accuracy is achieved when datapaths corresponding to
FM5 and FM6 are approximated. Similarly, for the scenario where the same
approximation has to be used for all the datapaths, adder configuration α1, α4,
and α5 provides better results as compared to α2 and α3. Thus, we demonstrate
that due to the fixed architectural design of a neural network, each datapath has a
fixed data distribution. Since the error of approximate modules is also a function of
data distribution, prior analysis on training data can thus provide useful insight for
selecting appropriate approximation modules, given that there is a strong correlation
between the testing and training data.

668 M. A. Hanif et al.

21.5 Energy-Efficient Hardware Accelerator Design
Methodology for Neural Networks

In this section, we provide a holistic design methodology, from training to hardware
realization, for the on-chip realization of neural networks. The suggested methodol-
ogy is expected to result in hardware designs with significant energy reductions. As
illustrated in Fig. 21.12, the methodology comprises four major stages. Below, we
provide a description of each of these.

1. Training: Libraries such as TensorFlow and Caffe are typically employed to train
networks for a particular application [12]. The decision to select a particular
network architecture (AlexNet, Googlenet, SqueezeNet, etc.) is a fundamental
one. The selection is guided by the application requirements (required accuracy
level, number of classes, and computational resources at hand). It has been
recently demonstrated that thinner and deeper CNNs with fewer weights may
not necessarily consume less energy than shallower CNNs with more weights.
Thus, while SqueezeNet provides a model with low memory footprint (33×
lower than AlexNet), its energy consumption was reported to be 33% greater
than that of AlexNet. Thus, an estimate of number and type of memory accesses
along with an estimate of computational load has to be considered when selecting
a particular DNN. The result of this stage is a trained neural network described
by its filter weights and layer/connectivity information.

2. Model Compression: Once a particular model/DNN architecture is selected
(such as AlexNet and ResNet), the next step is to prepare the model for its
implementation on an embedded platform such as ASICs and FPGAs. Since
embedded platforms are typically low on resources (battery and storage), the
selected models are typically compressed to make them hardware friendly.
Two pre-dominantly employed schemes are Pruning and Quantization [31]. As
described in Sect. 21.2.1, pruning involves removing the unwanted portion of the
network. This may involve removing a few of the filter coefficients [31], complete
filters [6], or even a few of input activations [50]. When applied to filters, pruning
is typically performed by removing the filters weights that have lower magnitude.
Note, however, that in case the filter weights have correlated values, large error
shall be introduced. It has been thus recently suggested to perform pruning while
minimizing the error in the output feature maps. At algorithmic/software level,
MAC operations are carried out using floating point multiplications. Quantization
of floating point is thus suggested to reduce the number of possible values in
which the filter weights can be represented [31]. Such a quantization leads to a
representation of filters using a fewer subset of floating point values (quantized
subset). This effectively results in multiple filter weights sharing the same value
from the quantized subset. When considering implementation on embedded
processors, this step is proceeded by a codebook generation followed by Huffman
coding to reduce the memory requirements. Here, we are focusing on custom
dedicated designs and hence codebook generation is carried out at a later stage.

21 Energy-Efficient Design of Advanced Machine Learning Hardware 669

NN Architecture

Training & Validation
(Caffe, Tensorflow, Theano,

other)

Trained
Weights

Training
Data

#, type
of Layers

Pruning
(Filter, Channel, Neuron,

Synapse Pruning)

Retraining
& Validation

Training1

Quantization
Floating Point (FP)

Quantization

Compressed Model

Quantized FP
Weights

Pruned
Network

Model Compression2

Fixed-point Analysis
(Caffe/Matlab: Ristretto)

Retraining
& Validation

Weight Sharing
Weight

Codebook

Quality
Constraint

Effec�ve Fixed Point
Quan�za�on

3

Quantized Fixed Point
Weights

H/W Architectural
Op�miza�on

4

NN Specific Optimization
(Approximation, Multiplier-less)

Retraining
& Validation

Generated
Architectures

Memory Centric
Tiling, Efficient storage, I/O

Dataflow Centric
Low Power Arith., Adap�ve

Energy Efficient Design
for NN

Fig. 21.12 A systematic and comprehensive design methodology for designing of energy-efficient
hardware accelerators for deep neural networks (DNNs)

670 M. A. Hanif et al.

Since both pruning and floating point quantization can result in the reduction
of classification accuracy, retraining is required to be performed in order to
minimize the accuracy loss at this stage.

3. Effective Fixed-Point Quantization: Floating point arithmetic is computa-
tionally expensive as compared to fixed-point arithmetic. Dedicated hardware
accelerators thus typically exploit fixed-point arithmetic to leverage its benefits.
Since DNNs are dense computational architectures, reduction of even a single
bit can considerably impact the associated computational, memory, and storage
overhead. On the other extreme, uncontrolled and unsupervised reduction in
bits may lead to reduced classification accuracy. The dotted line in Fig. 21.12
illustrates that retraining after fixed-point conversion is an optional but rec-
ommended step. We thus suggest the use of tools, such as Ristretto, Caffe,
and MATLAB, that retrain the network in order to minimize the effect of
reduced fixed-point representation. A quality constraint is typically provided
that assists the selection of best possible fixed-point representation within a
quality bound. Since, fixed-point representation affects all the three aspects
(computation, memory bandwidth, and storage). This shall provide a convenient
trade-off in case an adaptive design, supporting multiple accuracy levels, is
required. Note that multiple fixed-point representations may be obtained at this
stage. As discussed earlier, “weight sharing” is then performed, and a compressed
codebook is generated to reduce the storage requirements of the fixed-point
weights.

4. H/W and Architectural Optimizations: Previous stage provided the finalized
NN architecture along with the fixed-point weights to be implemented on
hardware. Next, we suggest to perform application-specific design optimizations.
Techniques such as generation of specialized arithmetic units (approximate,
stochastic, and others) allow further optimization in terms of computational
overhead.

• NN/Application-Specific Optimizations: In order to further reduce the
power consumption, implementations of DNNs can benefit from approximate
computing-based low-energy computing units [56]. This is possible because
the applications of DNNs are inherently error resilient. Approximation allows
a new dimension to be added to the design space exploration of the accelerator
design and hence allows further decrease in the energy requirements [28, 55].
Since approximation comes at the cost of loss of classification accuracy,
hence it requires careful analysis and at times retraining to select a particular
approximate arithmetic configuration. In [22], authors evaluated the use of
low-power imprecise multipliers using the UCI Machine Learning repository.

21 Energy-Efficient Design of Advanced Machine Learning Hardware 671

They reported that inexactness could be overcome by retraining the network.
They reported an energy savings of up to 62.49% over accurate face recogni-
tion. A similar approximate multiplier design was also explored [51], where
a multiplier-less neuron structure was trained to alleviate the accuracy loss
incurred due to approximation. Another strategy is to incorporate a selective
rule to apply approximation only to multiplication where both operands
are nonzero. The power consumption can be significantly reduced by such
strategies for a negligible decrease in classification accuracy [45].

• Memory Centric Optimizations: Memory operations are responsible for a
considerable portion of energy consumption. In order to reduce this energy,
one can optimize memory cells, memory hierarchy, memory access patterns
(e.g., tiling), data storage, refresh rates of DRAMs, and other properties
of the memory subsystem [54]. For example, a hybrid 8T-6T SRAM cell
was proposed to store the synaptic weights, wherein the sensitive MSBs are
stored in 8T bit-cells and resilient LSBs are stored in 6T bit-cells [54]. If
voltage scaling is applied, errors can appear in 6T cells, while 8T cells remain
operating correctly. Memory compression schemes are further suggested to
reduce the overall memory traffic and memory energy.

• Dataflow Centric: FPGA- and ASIC-based designs allow dedicated archi-
tectures to be built. This allows the use of custom arithmetic units (for
low-precision arithmetic), pipelining, and even allows design of adaptive
architectures [56]. Dataflow design is the most important part of accelerator
design as it determines the parallelism, data reuse, and defines memory
requirement. To cope up with varying degrees of parallelism in modern DNN
models, multiple data flows are proposed [10, 12, 23, 44, 47]. For instance,
Eyeriss employs Row-major type dataflow which processes each row using a
processing element. On the other hand, DaDianNao and SCNN operate on
a tile of the input data to reduce active memory footprint. Since 50–70%
of activations and 20–80% are zero-valued [47], computation and memory
transfer of such numbers can be skipped, as they generally do not contribute
significantly to classification accuracy. This can lead to substantial savings in
energy consumption and reduction in memory transfer.

21.6 Efficient Machine Learning Architectures: Challenges
and the Way Forward

In this section, we highlight few of the key research challenges and opportunities
that will help progress towards designing energy-efficient systems for machine
learning-based applications.

672 M. A. Hanif et al.

21.6.1 Optimizing Memory vs. Computations

DNNs are highly compute intensive and at the same time have a significant memory
footprint. Studies have shown that the average energy consumption associated
with memory access, especially off-chip memory, in state-of-the-art DNNs can
grow up to 50–80% of the total energy consumption of the system. Therefore,
optimizing the size of the models and reducing the memory footprint across the
complete memory hierarchy should be one of the key objectives for developing
modern systems for machine learning applications. To achieve this, all possible
optimization techniques, like pruning, weight sharing, quantization, efficient data
storage, refresh rate control, optimizing memory cells and access patterns, and
devising fine-grained memory power management policies, can be considered. In
future, emerging technologies like nano-wires-based 3D-stacked architectures could
also provide a very effective solution for reducing the energy/power consumption
associated with memory accesses. This can be achieved by connecting a sea of
accelerators directly to dense memory layers through these high-bandwidth nano-
wires. One significant effort in this direction is N3XT1000x [62]. Spintronic devices
[9], Memristors, and Graphene-based design are few of the other parallel emerging
technologies that possess the capability to reshape the course of energy-efficient ML
architectures.

21.6.2 Neuromorphic Computing

It is a well-known fact that the neural networks are mainly inspired from the brain.
However, the neuronal model which is widely being used at the current point in
time is very naive and barely mimics the functionality of the actual neurons. Apart
from this, the general computing systems process instructions at regular intervals,
i.e., based on a clock, which is significantly different from the communication
mechanism used by real neurons, i.e., asynchronous spiking [24]. This spiking
phenomenon is one of the key concepts which makes the neuromorphic systems
highly energy and power efficient, as it encodes information in impulses rather
than regular-interval signals. Another main functionality in neuromorphic systems
which is significantly different from the general computing systems is that they
process data in an analog, rather than a digital fashion. A number of systems/chips
have been proposed over the past few years, for example, TrueNorth [2], Neurogrid
[7], and Loihi [19]. However, the biggest challenge for such systems is learning
algorithms, as the conventional algorithms are not optimal for training networks
for such devices. Another alternative which has received a significant amount

21 Energy-Efficient Design of Advanced Machine Learning Hardware 673

of attention because of limitations of spiking-based neuromorphic systems is in-
memory computing using nonvolatile memory devices. Few of the most significant
works in this direction are PRIME [13], PipeLayer [59], and ISAAC [52]. However,
the use of this technology is limited because of the lack of development tools and
the sophistication in underlying technology so far.

21.6.3 Accuracy vs. Energy Trade-off

Approximate computing is one of the emerging paradigms that adds an additional
dimension to the design space by offering design and run-time trade-offs between
accuracy and performance metrics. Particularly, DNN architectures may require
different precision for different set of ML-based applications. Thus, an efficient
hardware for such applications should be able to optimize the performance and/or
energy consumption by adaptively regulating the accuracy of the accelerator while
meeting the user-defined quality constraints. However, to achieve this, there is
a substantial need to analyze the effects of approximations on the accuracy of
the DNNs. This requires development of efficient simulation frameworks and
evaluation methodologies. Furthermore, due to the layered nature of the NNs, it
may be advantageous to distribute the available budget across multiple layers while
considering the sensitivity of each layer/neuron.

21.6.4 Adaptability, (Re-)configurability, and Scalability

DNN architectures are composed of repetitive arrangement of limited types of
layers, for example, pooling, fully connected, convolutional, activation, and nor-
malization. However, the arrangement and the number of layers are different for
different applications and also vary depending upon the complexity of the appli-
cations. Developing a generic hardware/accelerator for DNN-based applications
requires a highly configurable and scalable design. This can lead to different design
choices, like time-shared vs. dedicated designs and choice of scratchpad vs. caches,
etc. In this direction, selection of reconfigurable fabric, such as FPGA and CGRA,
is also an interesting research question, as both offer particular advantages related
to reconfiguration granularity and associated performance and energy overheads.
Orthogonal to this, memory bandwidth requirements also scale with model sizes
and input data dimensions. Therefore, data compression techniques and efficient
storage patterns can also be employed for the energy-efficient implementation of
these networks.

674 M. A. Hanif et al.

21.6.5 Run-Time Evolutionary Algorithms for Designing and
Optimizing DNN Architectures

General-purpose optimization algorithms can also be used to optimally trade off
accuracy in particular layers/whole DNN architectures for improving performance,
power, and/or energy efficiency of the system. This can be achieved by optimizing
the DNN structure, memory access pattern, or the overall footprint of the network.
Evolutionary algorithms have shown remarkable success in the selection of suitable
NN models for particular applications, and a number of hyper-parameter tuning
works are based on such algorithms. Apart from the design time optimizations, such
algorithms can also be used for run-time adaptation for achieving the optimal trade-
off between accuracy and performance characteristics of a network.

21.6.6 Correct Benchmarking with Fairness and High Fidelity

Due to rapid developments of fields, a fair evaluation methodology has not yet
been established across different communities that are working on these challenging
problems. For validation, various different metrics are required to estimate the
standard test conditions, the fidelity of results, etc. to compare approximation
methods. Each benchmark method/circuit is requested to provide a Pareto-front
containing the points that offer the best trade-off for key circuit parameters, like
throughput, latency, area, accuracy, and power/energy consumption, assuming that
a fixed time budget is available for the procedure. Several works provided a
detailed comparison between different approximations, for example, for adders and
multipliers [38, 39]. However, if the models/codes of appropriate modules, details
of experimental setup, simulation platforms, and test conditions are not available
online, it is significantly hard to reproduce/validate their results and thereby achieve
fair comparisons between the state-of-the-art and the newly proposed techniques.

21.6.7 Open-Source Contributions

Alongside aforementioned challenges and future directions, there is a strong need
for researchers and developers to open-source their contributions, to facilitate others.
The open-source libraries not only offer valid candidates for comparison but also
facilitate the students and rookie researchers and developers to start directly from
state-of-the-art models/implementations without reinventing the wheel. Towards
this, we contribute through our open-source libraries of approximate arithmetic
modules which are available at: GeAr-DAC15 [27, 53] and lpACLib-ICCAD16
[43, 49] and [46].

21 Energy-Efficient Design of Advanced Machine Learning Hardware 675

References

1. https://github.com/jcjohnson/cnn-benchmarksAccessedo13thNov2017. Accessed 13th Nov
2017

2. F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y.
Nakamura, P. Datta, G.J. Nam, B. Taba, Truenorth: design and tool flow of a 65 mw 1 million
neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 34(10), 1537–1557 (2015)

3. J. Albericio, P. Judd, A. Delmás, S. Sharify, A. Moshovos, Bit-pragmatic deep neural network
computing (2016). Preprint. arXiv:1610.06920

4. J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N.E. Jerger, A. Moshovos, Cnvlutin:
ineffectual-neuron-free deep neural network computing, in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA) (IEEE, Piscataway, 2016), pp. 1–
13

5. M. Alwani, H. Chen, M. Ferdman, P. Milder, Fused-layer CNN accelerators, in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) (IEEE, Piscat-
away, 2016), pp. 1–12

6. S. Anwar, K. Hwang, W. Sung, Structured pruning of deep convolutional neural networks.
ACM J. Emerg. Technol. Comput. Syst. 13(3), 32 (2017)

7. B.V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran, J.M. Bussat,
R. Alvarez-Icaza, J.V. Arthur, P.A., Merolla, K. Boahen, Neurogrid: a mixed-analog-digital
multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2014)

8. S. Borowiec, T. Lien, Alphago beats human go champ in milestone for artificial intelligence.
Los Angeles Times 12 (2016)

9. C-spin, http://cspin.umn.edu/
10. Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun et al.,

DaDianNao: a machine-learning supercomputer, in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (IEEE Computer Society, Washington, 2014),
pp. 609–622

11. Y.H. Chen, J. Emer, V. Sze, Eyeriss: a spatial architecture for energy-efficient dataflow for
convolutional neural networks, in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA) (IEEE, Piscataway, 2016), pp. 367–379

12. Y.-H. Chen, J. Emer, V. Sze, Eyeriss: a spatial architecture for energy-efficient dataflow for
convolutional neural networks, in ACM SIGARCH Computer Architecture News, vol. 44, no. 3
(IEEE Press, Piscataway, 2016)

13. P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, Y. Xie, PRIME: a novel processing-
in-memory architecture for neural network computation in ReRAM-based main memory.
SIGARCH Comput. Archit. News 44(3), 27–39 (2016)

14. F. Chollet, Xception: deep learning with depthwise separable convolutions (2016). Preprint.
arXiv:1610.02357

15. M. Courbariaux, Y. Bengio, J.P. David, Training deep neural networks with low precision
multiplications (2014). Preprint. arXiv:1412.7024

16. M. Courbariaux, Y. Bengio, J.P. David, Binaryconnect: training deep neural networks with
binary weights during propagations, in Advances in Neural Information Processing Systems
(2015), pp. 3123–3131

17. M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neural networks:
training deep neural networks with weights and activations constrained to +1 or −1 (2016).
Preprint. arXiv:1602.02830

18. Y.L. Cun, J.S. Denker, S.A. Solla, Optimal brain damage, in Advances in Neural Information
Processing Systems 2 (Morgan Kaufmann Publishers, San Francisco, 1990), pp. 598–605.
http://dl.acm.org/citation.cfm?id=109230.109298

https://github.com/jcjohnson/cnn-benchmarksAccessedo13thNov2017
http://cspin.umn.edu/
http://dl.acm.org/citation.cfm?id=109230.109298

676 M. A. Hanif et al.

19. M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou, P. Joshi, N. Imam,
S. Jain et al., Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro
38(1), 82–99 (2018)

20. L. Deng, The MNIST database of handwritten digit images for machine learning research [best
of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

21. J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale hierarchical
image database, in IEEE Conference on Computer Vision and Pattern Recognition, 2009.
CVPR 2009 (IEEE, Piscataway, 2009), pp. 248–255

22. Z. Du, A. Lingamneni, Y. Chen, K. Palem, O. Temam, C. Wu, Leveraging the error resilience
of machine-learning applications for designing highly energy efficient accelerators, in 2014
19th Asia and South Pacific Design Automation Conference (ASP-DAC) (IEEE, Piscataway,
2014), pp. 201–206

23. Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, O. Temam, Shidiannao:
shifting vision processing closer to the sensor, in ACM SIGARCH Computer Architecture News,
vol. 43 (ACM, New York, 2015), pp. 92–104

24. S.K. Esser, R. Appuswamy, P. Merolla, J.V. Arthur, D.S. Modha, Backpropagation for energy-
efficient neuromorphic computing, in Advances in Neural Information Processing Systems
(2015), pp. 1117–1125

25. R. Fakoor, F. Ladhak, A. Nazi, M. Huber, Using deep learning to enhance cancer diagnosis and
classification, in Proceedings of the International Conference on Machine Learning (2013)

26. K. Finley, Ai fighter pilot beats a human, but no need to panic (really) (2016). https://www.
wired.com/2016/06/ai-fighter-pilot-beats-human-no-need-panic-really/

27. Gear adder library, https://sourceforge.net/projects/approxadderlib
28. V. Gupta, D. Mohapatra, S.P. Park, A. Raghunathan, K. Roy, Impact: imprecise adders for

low-power approximate computing, in Proceedings of the 17th IEEE/ACM International
Symposium on Low-Power Electronics and Design (IEEE Press, Piscataway, 2011), pp. 409–
414

29. P. Gysel, M. Motamedi, S. Ghiasi, Hardware-oriented approximation of convolutional neural
networks (2016). Preprint. arXiv:1604.03168

30. S. Ha, J.M. Yun, S. Choi, Multi-modal convolutional neural networks for activity recognition,
in 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE,
Piscataway, 2015), pp. 3017–3022

31. S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural networks with
pruning, trained quantization and Huffman coding (2015). Preprint. arXiv:1510.00149

32. S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M.A. Horowitz, W.J. Dally, EIE: efficient
inference engine on compressed deep neural network, in Proceedings of the 43rd International
Symposium on Computer Architecture (IEEE Press, Piscataway, 2016), pp. 243–254

33. X. Han, D. Zhou, S. Wang, S. Kimura, CNN-MERP: an FPGA-based memory-efficient
reconfigurable processor for forward and backward propagation of convolutional neural
networks, in 2016 IEEE 34th International Conference on Computer Design (ICCD) (IEEE,
Piscataway, 2016), pp. 320–327

34. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778

35. T. Highlander, A. Rodriguez, Very efficient training of convolutional neural networks using
fast Fourier transform and overlap-and-add (2016). Preprint. arXiv:1601.06815

36. A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H.
Adam, Mobilenets: efficient convolutional neural networks for mobile vision applications
(2017). https://arxiv.org/abs/1704.04861

37. F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size (2016). Preprint.
arXiv:1602.07360

38. H. Jiang, J. Han, F. Lombardi, A comparative review and evaluation of approximate adders, in
Proceedings of the 25th edition on Great Lakes Symposium on VLSI (ACM, New York, 2015),
pp. 343–348

https://www.wired.com/2016/06/ai-fighter-pilot-beats-human-no-need-panic-really/
https://www.wired.com/2016/06/ai-fighter-pilot-beats-human-no-need-panic-really/
https://sourceforge.net/projects/approxadderlib
https://arxiv.org/abs/1704.04861

21 Energy-Efficient Design of Advanced Machine Learning Hardware 677

39. H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, J. Han, A comparative evaluation of approx-
imate multipliers, in 2016 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH) (IEEE, Piscataway, 2016), pp. 191–196

40. J.H. Ko, B. Mudassar, T. Na, S. Mukhopadhyay, Design of an energy-efficient accelerator for
training of convolutional neural networks using frequency-domain computation, in Proceed-
ings of the 54th Annual Design Automation Conference 2017 (ACM, New York, 2017), p. 59

41. A. Lavin, S. Gray, Fast algorithms for convolutional neural networks, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 4013–4021

42. F. Li, B. Zhang, B. Liu, Ternary weight networks (2016). Preprint. arXiv:1605.04711
43. lpaclib library, https://sourceforge.net/projects/lpaclib/
44. W. Lu, G. Yan, J. Li, S. Gong, Y. Han, X. Li, Flexflow: a flexible dataflow accelerator

architecture for convolutional neural networks, in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA) (IEEE, Piscataway, 2017), pp. 553–564

45. V. Mrazek, S.S. Sarwar, L. Sekanina, Z. Vasicek, K. Roy, Design of power-efficient approxi-
mate multipliers for approximate artificial neural networks, in 2016 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD) (IEEE, Piscataway, 2016), pp. 1–7

46. V. Mrazek, R. Hrbacek, Z. Vasicek, L. Sekanina, Evoapproxsb: library of approximate adders
and multipliers for circuit design and benchmarking of approximation methods, in 2017
Design, Automation & Test in Europe Conference & Exhibition (DATE) (IEEE, Piscataway,
2017), pp. 258–261

47. A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S.W.
Keckler, W.J. Dally, SCNN: an accelerator for compressed-sparse convolutional neural net-
works, in Proceedings of the 44th Annual International Symposium on Computer Architecture
(ACM, New York, 2017), pp. 27–40

48. M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, XNOR-Net: Imagenet classification using
binary convolutional neural networks, in European Conference on Computer Vision (Springer,
Berlin, 2016), pp. 525–542

49. S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, J. Henkel, J. Henkel, Architectural-
space exploration of approximate multipliers, in 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD) (IEEE, Piscataway, 2016), pp. 1–8

50. M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, S.W. Keckler, Compressing DMA engine: lever-
aging activation sparsity for training deep neural networks (2017). Preprint. arXiv:1705.01626

51. S.S. Sarwar, S. Venkataramani, A. Raghunathan, K. Roy, Multiplier-less artificial neurons
exploiting error resiliency for energy-efficient neural computing, in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2016 (IEEE, Piscataway, 2016), pp. 145–150

52. A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J.P. Strachan, M. Hu, R.S.
Williams, V. Srikumar, ISAAC: a convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. SIGARCH Comput. Archit. News 44(3), 14–26 (2016)

53. M. Shafique, W. Ahmad, R. Hafiz, J. Henkel, A low latency generic accuracy configurable
adder, in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC) (IEEE, Piscat-
away, 2015), pp. 1–6

54. M. Shafique, F. Sampaio, B. Zatt, S. Bampi, J. Henkel, Resilience-driven STT-RAM cache
architecture for approximate computing, in Workshop on Approximate Computing (AC) (2015)

55. M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, J. Henkel, Cross-layer approximate
computing: from logic to architectures, in 2016 53rd ACM/EDAC/IEEE Design Automation
Conference (DAC) (IEEE, Piscataway, 2016), pp. 1–6

56. M. Shafique, R. Hafiz, M.U. Javed, S. Abbas, L. Sekanina, Z. Vasicek, V. Mrazek, Adaptive
and energy-efficient architectures for machine learning: challenges, opportunities, and research
roadmap, in 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (IEEE,
Piscataway, 2017), pp. 627–632

57. Y. Shen, M. Ferdman, P. Milder, Escher: a CNN accelerator with flexible buffering to minimize
off-chip transfer, in 2017 IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM) (IEEE, Piscataway, 2017)

https://sourceforge.net/projects/lpaclib/

678 M. A. Hanif et al.

58. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recogni-
tion (2014). Preprint. arXiv:1409.1556

59. L. Song, X. Qian, H. Li, Y. Chen, Pipelayer: a pipelined ReRAM-based accelerator for deep
learning, in IEEE International Symposium on High Performance Computer Architecture
(HPCA) (IEEE, Piscataway, 2017), pp. 541–552

60. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
A. Rabinovich, Going deeper with convolutions, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2015), pp. 1–9

61. The NVIDIA DGX-1 deep learning system, https://www.nvidia.com/content/dam/en-zz/
Solutions/Data-Center/dgx-1/dgx-1-ai-supercomputer-datasheet-v4.pdf

62. A. Todri-Sanial, A. Magnani, M. De Magistris, A. Maffucci, Present and future prospects of
carbon nanotube interconnects for energy efficient integrated circuits, in 2016 17th Interna-
tional Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in
Microelectronics and Microsystems (EuroSimE) (IEEE, Piscataway, 2016), pp. 1–5

63. C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins, T.
Galatali, C. Geyer et al.: Autonomous driving in urban environments: boss and the urban
challenge. J. Field Rob. 25(8), 425–466 (2008)

64. J. Wang, J. Lin, Z. Wang, Efficient convolution architectures for convolutional neural network,
in 2016 8th International Conference on Wireless Communications & Signal Processing
(WCSP) (IEEE, Piscataway, 2016) , pp. 1–5

65. X. Wei, C.H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, J. Cong, Automated systolic
array architecture synthesis for high throughput CNN inference on FPGAs, in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC) (IEEE, Piscataway, 2017), pp. 1–6

66. Q. Xiao, Y. Liang, L. Lu, S. Yan, Y.W. Tai, Exploring heterogeneous algorithms for accelerating
deep convolutional neural networks on FPGAs, in Proceedings of the 54th Annual Design
Automation Conference 2017 (ACM, New York, 2017), p. 62

67. J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, S. Mahlke, Scalpel: customizing
DNN pruning to the underlying hardware parallelism, in Proceedings of the 44th Annual
International Symposium on Computer Architecture (ACM, New York, 2017), pp. 548–560

68. C. Zhang, V.K. Prasanna, Frequency domain acceleration of convolutional neural networks on
CPU-FPGA shared memory system, in FPGA (2017), pp. 35–44

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-ai-supercomputer-datasheet-v4.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-ai-supercomputer-datasheet-v4.pdf

Index

A
Absolute exponential (AE) kernel function,

172
Activation function, 458
Activation layer, 649, 650
Adaptive Boosting (AdaBoost), 185
Additive noise, 127
Adjusted machine learning view

hypothesis space assumption, 387
Occam’s Razor principle, 386
quality assurance, 386

Aerial Image Measurement System (AIMS),
24–25

Aging analysis, 10
AlexNet, 657, 662
A-miner, 619
Analog and mixed-signal (AMS) circuits, 423

BMF (see Bayesian model fusion (BMF))
performance metrics, 403
post-silicon validation, 404
pre-silicon validation, 404

Analysis of variance (ANOVA), 480
Anchor gauges, 35
Antecedent size, 620
Antithetic variables, 327
Approximate high-level taxonomy, 1–2
Area under an ROC curve (AUC), 182,

197–198
Artificial intelligence (AI), neural networks

backpropagation algorithm, 647, 648
CNN, 649–651
layer types, 649, 650
LSTMs, 651
resource requirements, 651–652

Artificial neural network (ANN), 98
Assertion complexity, 621
Assertion evaluation, 620–621
Assertion expectedness, 620–621
Assertion generation, 610

complexity analysis, 638
coverage guided association, 615
decision forest, 614–615
expectedness analysis, 637–638
importance analysis, 638–639
input space coverage and hit rate, 635–636
number of, 634
PRISM algorithm, 615
qualitative analysis, 638–641
quality, 614
RTL statement coverage, 637
runtime and memory usage, 636–637
scalability, 641
sequential depth, 635

Assertion importance, 621
Assertion mining algorithms, see GoldMine
Association mining algorithm, 628
Automated test equipment (ATE), 120
Auto-regressive moving-average (ARMA)

model, 255
Autoscaling for multiple workloads

scaling down, 603–604
scaling up, 604–606

Autoscaling for separate workloads, 602–603

B
Bayesian inference, 131–132, 405
Bayesian learning, 15

© Springer Nature Switzerland AG 2019
I. M. Elfadel et al. (eds.), Machine Learning in VLSI Computer-Aided Design,
https://doi.org/10.1007/978-3-030-04666-8

679

https://doi.org/10.1007/978-3-030-04666-8

680 Index

Bayesian model fusion (BMF), 11–12
a prior distribution, 405
Bayesian inference, 405
post-silicon validation

Gaussian distribution, 418
likelihood function, 418
MAP estimation, optimization

formulation, 418–419
posterior distribution, 417
regression modeling, 416–417
VCO, 419–420

pre-silicon validation
distribution estimation, 411–416
moment estimation, 406–411

reuse, 405
Bayesian regularization, 486–487
Bayes’ theorem, 209
Best-gain decision forest (BGDF) algorithm,

611–612, 625
analysis, 627
antecedent condition, 622–623
assertions, 626
decision forest, 623–624
example, 626–627
feature variables, 623, 626
input parameters, 624
optimizations, 623, 624

Bias temperature instability (BTI), 10, 265
Bias-variance trade-off, 465–467
Bit error rate (BER), 410
Black-box optimization

BO based on GP, 509–511
machine learning, 508–509
TSBO

acquisition function, 514–515
algorithm progression times, 517
Euclidean distance, 513
fast exploration stage, 512
hierarchical partitioning scheme, 514
IMGPO and GP-UCB, 516
learning acquisition functions, 513
log distance to optima, 516
in MATLAB, 515, 516
pure exploration stage, 514
run time statistics, 518

Blockade filtering, 308
BMF, see Bayesian model fusion
Boolean learning, 388
Boolean satisfiability, 389
Built-in proactive tuning (BIPT) system, 269
Built-in self-test (BIST), 425

charge-pump PLL, 440
classification techniques, 441
classifier performance comparison, 441

CP and VCO quiescent currents, 441
scheme synthesis, 440
signature ranking, 442
test time optimization, 442

C
CDF, see Cumulative distribution function
Cell failure probability, extreme statistics

chip/array failure probability, 293
failure threshold, 293
incorporating redundancy, 295–296
in parts-per-billion (ppb), 295
random dopant fluctuation, 294
units, 294–295

Center for Advanced Electronics through
Machine Learning (CAEML), 15

Central limit theorem (CLT), 357, 358
Chip disposition criteria, 245
Chip-level silicon characterization, 220
Chip slack, 246
Chip testing, 9
CNV accelerator, 663
Compact lithographic process models, 7
Compact network architectures, 656–657
Compact process model (CPM)

machine learning
definition, 29
model tasks, 29–31
performance metrics, 33–35
physical mechanisms, 27–28
rigorous/TCAD simulators, 28
supervised learning (see Supervised

learning)
training experience, 31–33

neural network (see Neural networks
(NNs))

Compact set, 460
Compressed sensing, 203
Concentric circle area sampling (CCAS),

97–98
Confidence interval (CI)

scaled-sigma sampling, 370, 371
subset simulation, 357, 361, 362

Constrained process discovery approach, 396
Control variates method, 327
Convolutional neural network (CNN), 649–651

AlexNet architecture, 58–60
Convolution (CONV) layer, 649
Core scaling and thread assignment

autoscaling for multiple workloads,
603–606

autoscaling for separate workloads,
602–603

Index 681

DRAM power, 599–600
energy-aware workload execution, 600–602
flow diagram, 599
PARSEC workloads, 598

Covariance function, 125
Covariance matrices, 169
Coverage guided mining algorithm, 612,

628–631
CPM, see Compact process model
Critical dimensions (CDs), 74–75, 82, 91
Cross-validation, 381, 487–488
Crude Monte Carlo (CMC) technique, 350
C-Struts algorithm

auto-regressive moving-average model, 255
auxiliary probability distribution, 255,

258–259
column cluster prototype, 257
conditionally independent, 256
conditional probability, 255
joint probability, 257–258
marginal probability, 255
multiway clustering algorithms, 258
optimal mapping functions, 258
posterior distribution, 256
row cluster prototype, 257
time series, 254

Cumulative distribution function (CDF),
296–297

D
Data collection platform, LAR

modeling methodology, 580
mode specific registers, 579
PARSEC, 580
RAPL interface, 580
RHLE operating system, 579
SPEC CPU benchmark, 580
voltage regulation module, 579

Dataflow centric optimizations, 671
Data mining algorithms, 612, 616
Datapath-aware placement (PADE), 107–108
Data retention voltage (DRV), 313–315,

319–321
DCT, see Discrete cosine transform
Decision engine algorithms, 547–548

base decision algorithm, 549–550
comparsions, 556–559
14 nm data mining, 555
IBM server chips, 554
learning algorithm, 551–553
z13 22 nm server processor, 554–555

Decision tree-based learning, 621–622
Decision tree induction algorithm, 111

Deep learning, 378
Deep neural networks (DNNs), 51, 98

energy-efficient design, 647, 652, 658–659,
662

high-dimensional layout, 99
manual trial and error process, 100
MGD algorithm, 100
operation of convolution, 99
ReLU layer, 99–100
state-of-the-art hotspot detectors, 101

Delay monitoring schemes, 265
Dense line and space (DLS), 80
Dense set, 460
Deposition, 21
Design for test (DfT) infrastructure, 267
Design space exploration (DSE) approach, 539
Design-time solutions, 265
Detection accuracy, 96
Die-to-die (D2D) variation, 237
Diffraction-limited system, 24
Dirac delta function, 208
Discrete cosine transform (DCT), 9, 122–123

flush delay measurement data, 221, 222
leakage current measurement data, 226,

227
MAP estimation, 206–207
preselection, 216–217
RO period measurement data, 228, 229

Discriminative model, 4
Dissolution inhibitor concentration, 53
DNNs, see Deep neural networks
DRV, see Data retention voltage
Dual-lane data communication, 443
Dynamic reliability management (DRM), 269
Dynamic voltage and frequency scaling

(DVFS), 505, 572

E
Edge placement error (EPE) tolerance, 70
EIE, 663
Electronic design automation (EDA), 245–247
Empirical error rate, 383–384
Energy-efficient design

challenges
accuracy vs. energy trade-off, 673
adaptability, (re-)configurability, and

scalability, 673
benchmarking with fairness and high

fidelity, 674
neuromorphic computing, 672–673
open-source contributions, 674
optimizing memory vs. computations,

672

682 Index

Energy-efficient design (cont.)
run-time evolutionary algorithms, 674

error resilience analysis
data distributions, 667
DNN architecture, 664
feature maps, 665, 666
IMPACT, 666
LeNet-5, 664
NNs training, 664

hardware-level architectures
accelerators, dataflows and

architectures, 658–659
deep CNN, 660–661
FPGA/ASIC-based systems, 658
leveraging sparsity, 662–663
memory-efficient architectures,

661–662
neural networks

backpropagation algorithm, 647, 648
CNN, 649–651
effective fixed-point quantization, 670
H/W and architectural optimizations,

670–671
layer types, 649, 650
LSTMs, 651
model compression, 668–670
resource requirements, 651–652
training, 668

software and co-design optimizations
compact network architectures,

656–657
vs. hardware, 657–658
pruning, 653–655
ResNet50, 652
weight sharing, 655–656

Equivalent sigma (s), 295
Error resilience analysis

data distributions, 667
DNN architecture, 664
feature maps, 665, 666
IMPACT, 666
LeNet-5, 664
NNs Training, 664

Etch bias model, see Machine learning-guided
EPC (ML-EPC)

Etching, 21
Etch proximity correction (EPC), 7, 61
Expectation maximization (EM), 122, 436
Expectedness analysis, 637–638
Extreme statistics

cell failure probability
chip/array failure probability, 293
failure threshold, 293

incorporating redundancy, 295–296
in parts-per-billion (ppb), 295
random dopant fluctuation, 294
units, 294–295

statistical blockade, sampling rare events
algorithm, 309
blockade filtering, 308
circuit performance metric, 307
conditionals and disjoint tail regions,

313–316
efficient tail sampling method, 309, 310
extremely rare events and their

statistics, 316–317
recursive formulation, 317–321
sampling and commercially available

device models, 310–311
6T SRAM Cell, 311–313
tail and body regions, 308
unbiasing classifier, 309

tails (see Tails)
Extreme statistics in memories, 10
Extreme value theory (EVT), 298

F
False alarm, 96
False positive rate (FPR), 181, 198
Fast convolution unit (FCU), 660
Fast statistical analysis

Bernoulli trial, 325
importance sampling method, 327–329
logistic regression, 10 (see also Logistic

regression-based fast statistical
analysis)

memory design, 323–324
Monte Carlo method

Buffon’s needle experiment, 325
fail probability, circuit design,

326–327
rare circuit failures, 11
state-of-the-art FinFET SRAM design

experimental setup, 341
importance sampling stage, 343, 344
selective boosting and write-assist

circuitry, 338–341
uniform sampling stage, 342, 343
yield estimation and convergence

analysis, 343–346
statistical inference, 325
variance reduction method, 327

Feature-based analytics, 378
Feature-generating function, 40
Feature selection, 378

Index 683

Flush delay measurement data
DCT coefficients, 221, 222
measured flush delay values, 221, 222
M-LHS, 222
sparse pattern, 221
spatial sample generation, 222–224
spatial variation prediction, 224–226

14 nm data mining, 555
Fully connected (FC) layer, 649
Functional tests, 375, 376

G
Gaussian distribution

post-silicon validation, 418
pre-silicon validation

distribution estimation, 411–413
moment estimation, 406–408

Gaussian process models
e-test measurements

leave-one-out cross-validation, 147
measurement site diagram, 145–146
parameters, 145
prediction errors, 148–150
sampling rates, 146
virtual probe, 147–148, 151

HVM yield estimation
absolute percentile error metric, 162
baseline spatial correlation model, 161
correlation model enhancement,

162–164
mean error, 164–165
parametric probe-test measurements,

161
prediction error, 164
prediction models, 161–162
results, 165–168

IC parameters
actual and predicted lengths, 158–160
current value vs. trimmed time, 157–158
laser trimming machine, 156–157
length-based original-target prediction

method, 158–161
rate-based original-target prediction

method, 158–161
probe-test specification measurements

discontinuous spatial patterns, 152–153
prediction errors, 152–155
Test Escape, 154, 156
Yield Loss, 154, 156

regression models (see Linear regression
models)

for wafer-level correlations, 8
wafer-level test measurements

ATE, 120
e-test measurements, 120
specification tests, 120
statistical correlations, 120–123

Gauss–Newton method, 485
Generalized linear mixed model (GLMM), 106
Generalized Pareto distribution (GPD), 299

mean excess function, 304
parameters

maximum likelihood estimation,
305–306

probability-weighted moment matching,
306–307

statistical blockade sampling method,
305

probability density function, 300
Generative adversarial networks (GANs), 4–5
“Golden” failure rate

scaled-sigma sampling, 371
subset simulation, 360–361

GoldMine
A-miner, 619
assertion evaluation, 620–621
assertion generation, 610, 614–616

complexity analysis, 638
expectedness analysis, 637–638
importance analysis, 638–639
input space coverage and hit rate,

635–636
number of, 634
qualitative analysis, 638–641
RTL statement coverage, 637
runtime and memory usage, 636–637
scalability, 641
sequential depth, 635

BGDF algorithm, 611–612, 625
analysis, 627
antecedent condition, 622–623
assertions, 626
decision forest, 623–624
example, 626–627
feature variables, 623, 626
input parameters, 624
optimizations, 623, 624

coverage guided mining algorithm, 612,
628–631

data generator, 619
data mining algorithms, 612
decision tree algorithms, 611
decision tree-based learning, 621–622
dynamic analysis, 611–612
formal verification, 619
input and output event, 613
IODINE analyzes, 613

684 Index

GoldMine (cont.)
methodology, 610
principle, 616–617
PRISM algorithm, 612, 631–633
RTL, 610
static analysis, 611–612, 618–619
system-on-a-chip, 609
Verilog designs, 633

GoldMine system, 14
GoogLeNet, 657
Greedy set covering algorithm, 628

H
HBM-based approach, 106–107
HEAR algorithm, 249–252
Hessian matrix, 332
Hierarchical Bayesian model (HBM), 71, 106
High-volume manufacturing (HVM)

density estimation approaches, 141
histogram-based estimation method,

141–142
KDE, 142–144
post-silicon design validation, 141
prediction evaluation, 144–145
yield estimation

absolute percentile error metric, 162
baseline spatial correlation model, 161
correlation model enhancement,

162–164
mean error, 164–165
parametric probe-test measurements,

161
prediction error, 164
prediction models, 161–162
results, 165–168

Histogram with Random Sampling (Hist-RS),
166–167

Histogram with Spatiotemporal GP and
Progressive Sampling (Hist-GP-ST-
PS), 166–167

History-based enhancement
jump-start algorithm, 559–561
recommender system, 561–562

Hit rate, 620, 635–636
Hyperbolic tangent function, 474
Hypothesis space, 388–390

I
Importance sampling (IS) methods, 350

Gaussian distribution, 328
integrated importance sampling, 328–329
natural distribution, 327, 328

ratioed importance sampling, 328
regression importance sampling, 328

Input-referred correlation (IRC), 480–481
Input space coverage, 620, 635–636
Integrated circuits (ICs)

actual and predicted lengths, 158–160
application, 176–177
concept drift, 176
current value vs. trimmed time, 157–158
flash memory chip manufacturing, 177–178
imbalanced classification, 175–176
KGD procedures, 177
laser trimming machine, 156–157
learning models (see Learning models)
length-based original-target prediction

method, 158–161
packaging and memory testing process

with classifier, 179
confusion matrices, 180–181
mathematical formulation, 182–184
ROC curve, 181–182
without classifier, 179

rate-based original-target prediction
method, 158–161

Integrated importance sampling, 328–329
Integrated voltage regulator optimization,

12–13
Isolated line (Iso), 80
Iterative feature search

dataset construction, 379
domain knowledge, 380, 396–397
feature selection, 379
feature set, 380
model evaluation step, 381
process, 379
sample selection, 379
tool requirement, 381–382

J
Joint space–time sampling, 283–284
Jump-start algorithm, 559–561

K
KDE with Random Sampling (KDE-RS),

166–167
KDE with Spatiotemporal GP and Progressive

Sampling (KDE-GP-ST-PS),
166–167

Kernel-based methods, 456
Kernel density estimation (KDE), 142–144
Kernel function, 125
Kernel weighting

Index 685

atomized kernel, 426–430
EDA domain, 425
learning model, 430–431
mapped space, 429
Mercer’s condition, 430
methods, 425–426
noise/redundant features, 427
radial basis function, 427, 430
6-dimensional space, 427
support vector machines, 425

Known good die (KGD) test, 177
Kolmogorov–Smirnov (KS) test, 167–168
Kronecker delta function, 127

L
Labeled data, 31
Latent variable regression (LVR), 12, 451,

455–457
Latin hypercube sampling (LHS), 214–216
Leakage current measurement data, 226–228
Learning from limited data

coverage point, 375, 376
dataset format, 375, 376
functional verification, application in, 375,

376
iterative feature search (see Iterative feature

search)
layout snippets, 376, 377
learning about features, 378–379
limited number of samples, 378
negative samples, 375
positive samples, 375
SAT-based implementation

Boolean learning, 388
hypothesis space pruning, 389–390
monomial learning, 388–389
SAT encoding, 390–391
uniqueness requirement, 391–396

STA-critical path, 377
350 critical paths not predicted by STA,

376–377
Learning models

class imbalance, 189
concept drift

AUC results, 197
example of, 188–189
issue of, 188
optimal threshold, 196
probability distribution, 187–188
ROC curves, 195–196
semiconductor manufacturing, 188
substantial changes, 189

decision tree, 191

imbalanced classification problem, 185
incremental learning, 197–198
Learn++.NIE algorithm, 190–191
from limited data, 11
online machine learning

effectiveness, 193–195
good classifier, 179, 186
Online RUSBoost, 187–188
test instances, 186
traditional batch learning, 187

RUSBoost
AdaBoost framework, 185–186
imbalanced dataset, 192–193
random undersampling, 186

Least absolute shrinkage and selection operator
(LASSO), 574

Least-angle regression
advantages, 572
algorithm, 576, 577
core scaling and thread assignment

autoscaling for multiple workloads,
603–606

autoscaling for separate workloads,
602–603

DRAM power, 599–600
energy-aware workload execution,

600–602
flow diagram, 599
PARSEC workloads, 598

correlation coefficients, 578
data collection platform

modeling methodology, 580
mode specific registers, 579
PARSEC, 580
RAPL interface, 580
RHLE operating system, 579
SPEC CPU benchmark, 580
voltage regulation module, 579

Efron’s seminal work, 575
lasso, 574
mathematical and algorithmic background,

573
power proxies

in CMOS, 581
multicore case, 583–586
single-core case, 582–583

regression coefficients, 579
ridge regression, 574
sleep slates, 591–594
statistical metric model, 572
temperature proxies

multicore case, 589–591
single-core case, 586–588

workload signature, 594–597

686 Index

Leave-one-out cross-validation error, 529
Levenberg–Marquardt (LM) algorithm,

483–486
Linear (LI) kernel function, 171
Linear models, RSM, 450, 452–453
Linear regression models

covariance function value, 130
covariance with kernel functions, 124–126
discontinuous effect

Calinski and Harabasz index, 136–137
k-Means clustering algorithm, 136–137
overview of, 134–135
partitioning procedure, 135–136
spatial patterns, 133
wafer measurement data, 134

Gaussian random fields, 123
GP-ST-PS, 140
HVM

density estimation approaches, 141
histogram-based estimation method,

141–142
KDE, 142–144
post-silicon design validation, 141
prediction evaluation, 144–145

hyperparameters
Bayesian inference, 131–132
kernel functions, 130–131
Markov chain Monte Carlo, 132–133
MLE, 133
model selection and adaptation

procedure, 132
multivariate Gaussian distribution, 132
SA algorithm, 133

kernel stationarity property, 130–131
length scale parameter, 128–129
modeling radial variation, 127–129
monolithic linear regression formulation,

123
overview of, 123–124
predictive distribution, 126
production test deployment, 140–141
progressive sampling, 137–139
regularization parameter

additive noise, 127
decision-theoretic empirical risk

minimization, 126
effects, 127–129
hyperparameters, 129–130

spatiotemporal feature inclusion, 138–140
training locations, 126

Line-end to line-end (E2E) patterns, 80
Lithography

CPM (see Compact process model (CPM))
patterning process

deposition/etching, 21
distributions, 23
etch transfer function, 26–27
image transfer function, 22, 24–25
machine learning technology, 21
mask transfer function, 22–24
Moore’s law, 20–21
resist transfer function, 22, 25–26
schematic of, 27–28
shrinking device size, 21
silicon wafer, 21

Lithography compliance check (LCC),
101–102

Local clock buffer (LCB), 110
Logistic regression

hypothesis function, 331
likelihood function, 331
numerical optimization techniques,

332–333
simple review, 329–330

Logistic regression-based fast statistical
analysis

cross-validation, 337
methodology flow diagram, 334, 335
regularization framework, 335–337
terminology and definitions, 333–334

Logistic regression-based importance sampling
methodology, 323–324

Log-likelihood function, 305
Long short-term memory (LSTMs) networks,

651
Lookup tables (LUTs), dynamic adaptation,

269
Low-dropout regulator (LDO), 425

regression performance, 438
variability analysis, 437–440

Lumped model, 27
LVR, see Latent variable regression

M
Machine learning (ML)

adjusted machine learning view
hypothesis space assumption,

387
Occam’s Razor principle, 386
quality assurance, 386

assumptions in, 382–383
and big data analytics, 233–234
clustering, 235
co-clustering structural temporal data

C-Struts algorithm (see C-Struts
algorithm)

experimental results, 259–260

Index 687

problem formulation, 253–254
time series data, 253

and data mining, 234
definition, 29
fast statistical analysis (see Fast statistical

analysis)
mask synthesis (see also Machine

learning-guided OPC (ML-OPC))
OPC, 104–107
SRAFs, 102–104
standard flow, 101–102

model tasks, 29–31
MTL problem, 235
performance metrics, 33–35
physical design, 106

clock optimization, 110–111
datapath placement, 107–108
lithography routing, 111–112
routability-driven placement, 108–110

physical mechanisms, 27–28
physical verification

example of, 96–97
hotspot detection, 98–101
layout feature extraction, 97–98
lithography, 96
model selection, 97–98

procedure of, 69–70
regression problem, 234–235
rigorous/TCAD simulators, 28
robust spatial correlation extraction

algorithms, 239–243
experimental results, 243–244
problem formulations, 237–239
technology scaling, 236

statistical chip testing and yield
optimization

chip disposition criteria, 245
statistical test margin computation,

245–247
surrogate metrics, 245
target metrics, 245

supervised learning (see Supervised
learning)

time series data, 235
traditional

empirical error rate, 383–384
Occam’s Razor, 385
overfitting, 383–386
underfitting, 384

training experience, 31–33
unsupervised learning technique, 235
virtual metrology, 235
wafer quality prediction

experimental results, 252–253

HEAR algorithm, 249–252
problem formulation, 247–249

Machine learning-based aging analysis
aging prediction method

benefits of, 267
proposed technique (see Offline

correlation analysis; Runtime stress
monitoring)

DDmin, 270
delay monitoring scheme, 265–266
DRM techniques, 269
experiments

area and power overhead, 286
Leon3 and OpenRISC 1200 (OR1200),

281
overhead at design time, 286
performance overhead, 285–286
prediction accuracy evaluation,

283–284
setup, 282
SVM training and validation, 282
time-sampling hardware design

validation, 285
flip-flops, 271
LUTs, dynamic adaptation, 269
negative bias temperature instability,

267–268
online circuit failure prediction, 269
proactive aging mitigation, 266
signal probabilities, 266–267
state-of-the-art monitoring methods,

270
time constant, 266
workload-induced stress monitoring, 266
worst-case guard bands, 268–269

Machine learning (ML)-based Bayesian
optimization (BO), 505

Machine learning-guided EPC (ML-EPC), 78
construction of, 84–86
EPC algorithm, 86–87
etching process, 79–80
factors, 81–82
litho pattern, 81–82
MB-EPC, 81
parameter extraction, 83–84
RB-EPC, 80
training segments

assessment of accuracy, 88
CD errors, 91
effect of cross-validation, 90–91
parameter sets, 90
preparation, 80, 82–83
RMS errors, 89
sampling of, 90

688 Index

Machine learning-guided OPC (ML-OPC)
accuracy and runtime, 71–72
EPE tolerance, 70
parameters, 72–73
PFT signal

assessment of parameters, 76–77
basis function, 73–74
benefits, 75
Bessel function, 73
complexity of illumination, 77
critical dimensions, 74–75
hybrid ML-and MB-OPC, 77–78
intensity of light, 74
layer and device, 77–78
layout image, 74
MLP construction, 75–76

testing phase, 70–71
training phase, 70–71

Markov chain Monte Carlo (MCMC), 11,
132–133, 355–358

Mask diffraction model, 50–52
Mask rule check (MRC), 101–102
Mask synthesis problem, 7–8
Master–slave flip-flop (MSFF), 490–492
Maximum a posteriori (MAP) estimation, 203,

204
Maximum-likelihood estimation (MLE), 133,

207
scaled-sigma sampling, 366, 369
tail estimation, GPD parameters, 305–306

MCMC, see Markov chain Monte Carlo
Mean excess function, 303–304
Mean squared error on the training set

(MSEtrain), 43
Memory centric optimizations, 671
Memory-efficient architectures, 661–662
Mini-batch gradient descent (MGD) algorithm,

100
MNIST dataset, 664
MobileNets, 656
Model-based (MB) approach, 106–107
Model-based EPC (MB-EPC), 81
Model-based OPC (MB-OPC), 26

see also Machine learning-guided OPC
Model response

sensitivity analysis, 533–534
storage model, 530–533

Mode specific registers (MSRs), 579
Modified-Latin hypercube sampling (M-LHS)

algorithm, 214–216, 222
Modified Metropolis (MM) algorithm, 351
Monomial learning, 388–389
Monte Carlo (MC) method, 243, 506

Buffon’s needle experiment, 325

fail probability, circuit design, 326–327
Multicore processors, 14
Multilayer perceptron (MLP), 71, 75–76
Multi-macro tuning, STSS

priority ranking, 565–566
second pass SynTunSys runs, 566
STSS results, 566–567

Multi-objective optimization of IVR
buck converter efficiency model, 520–521
convergence comparison, 526
embedded inductor, 521–522
GP-UCB and IMGPO, 525
hand-tuned design, 524
non-ML and ML techniques, 519
optimization setup, 522–523
power efficiencies, 524
Type I inductors, 524

Multitask learning (MTL) problem, 235
Multitask learning (MTL) problem, wafer

quality prediction
experimental results, 252–253
HEAR algorithm, 249–252
problem formulation, 247–249

Multivariate Gaussian distribution, 132,
170–171

N
Negative bias temperature instability (NBTI),

267–268
Neural networks (NNs)

backpropagation algorithm, 647, 648
CNN, 649–651
computational architecture, 47–48
design methodology

effective fixed-point quantization, 670
H/W and architectural optimizations,

670–671
model compression, 668–670
training, 668

etch transfer functions, 61–63
image transfer function, 50–52
layer types, 649, 650
LSTMs, 651
machine learning, 63–66
mask transfer function, 48–49
resist model

CNN, 58–60
development rate, 53
dissolution inhibitor concentration, 53
human intervention and computation,

53
Mardiris’ model, 53–54
performance metric, 52

Index 689

three-dimensional resist model, 55–58
threshold, 52
training data, 53–54
two-dimensional resist model, 55–58
Zach’s model, 41, 54–55

resource requirements, 651–652
training algorithms, 47–48

Newton’s method, 483, 484
NN/application-specific optimizations,

670–671
No-free-lunch (NFL) theorem, 381
Nonparametric methods, 4
Nonstationary kernel functions, 130
Normal distribution, 170–171
Normalization layer, 649, 650
Normalized mean square error (NMSE), 438
Novel hardware architectures, 14
Nyquist–Shannon sampling theorem, 202, 221

O
Occam’s Razor, 385
Occam’s Razor principle, 386
Offline correlation analysis

and prediction model generation
aging-induced delay degradation and

SP extraction, 272–273
design time, 271
offline-characterization phase, 272
predictor training using support-vector

machines, 273–275
representative flip-flop selection, 271

correlation-based flip-flop selection,
275–276

fan-in cone-based flip-flop selection,
277–278

time complexity, 278–279
time sampling, 279–280

Online machine learning
effectiveness, 193–195
good classifier, 179, 186
Online RUSBoost, 187–188
test instances, 186
traditional batch learning, 187

Optical proximity correction (OPC), 29, 79–80
effectiveness, 104–105
flow of, 105–106
HBM, 106–107
MB approach, 106–107
problems, 7

Optimization oriented design flow, 506–507
Overall chip variance, 238
Overall detection and simulation time (ODST),

101

Overfitting, 383–386
Overlap and Add method (OaA), 660

P
Parametric methods, 4
Parts-per-billion (ppb), 294, 295
Parts-per-million (ppm), 294
Pass gate device (PGL), 341
Performance counter monitor (PCM), 580
Performance of interest (PoI), 351
Phase-locked loop (PLL), 425
Photolithography

etch transfer function, 26–27
image transfer function, 22, 24–25
mask transfer function, 22–24
resist transfer function, 22, 25–26

Physical design, 8
Physical verification, 7–8
Polar Fourier transform (PFT) signals

assessment of parameters, 76–77
basis function, 73–74
benefits, 75
Bessel function, 73
complexity of illumination, 77
critical dimensions, 74–75
hybrid ML-and MB-OPC, 77–78
intensity of light, 74
layer and device, 77–78
layout image, 74
MLP construction, 75–76

Polynomial chaos expansion
experimental design, 527
LARS algorithm, 528
leave-one-out cross-validation error, 529
post-processing, 530
from standard to sparse, 528–529

Polynomial (POLY) kernel function, 171
Pooling layer, 649, 650
Post-exposure bake (PEB), 39
Post-silicon tuning, 221
Post-silicon validation

BMF
Gaussian distribution, 418
likelihood function, 418
MAP estimation, optimization

formulation, 418–419
posterior distribution, 417
regression modeling, 416–417
VCO, 419–420

challenges for, 404
Power delivery network (PDN), 505
PPR, see Projection pursuit regression
Prediction error, 217

690 Index

Pre-silicon validation
BMF

distribution estimation, 411–416
moment estimation, 406–411

challenges for, 404
PRISM algorithm, 612, 615, 631–633
Probability density function (PDF), 207, 208,

506
Probability-weighted moment (PWM)

matching, 306–307
Process design kit (PDK), 443
Processing elements (PEs), 658–659
Product quality loss (PQL), 245
Progressive sampling (PS), 137–139
PROjection-Based Extraction (PROBE),

454–455
Projection pursuit regression (PPR), 12

bias-variance trade-off, 465–467
convergence

best function gi (t), 469–472
“greedy” approach, 467
i-th iteration, 468
kernel function, 472, 473
mean squared error, 469
nonidealities, 468
probability distribution, 467–468
projection vector w, 469–472

definition, 457
LVR, 458
neural networks, 457–458
smoothing method, 465–467
3LP, 458

Proxies, 14
Pruning, 653–655

Q
Quadratic model, 453–454
Quantiles

binomial distribution, 303
empirical distribution, 302–303
mean excess plot, 303–304
normal distribution, 303
sample quantile, 302

R
Radial basis function (RBF), 427, 430
Radius basis function (RBF), 108
Random dopant fluctuation (RDF), 490
Rare circuit failure events

CMC, 350
failure boundary, 350
IS methods, 350

SRAM bit-cell, 349, 350
SSS approach (see Scaled-sigma sampling

(SSS))
SUS technique (see Subset simulation

(SUS))
Ratioed importance sampling, 328
Raw probability (P), 294
Reaction–diffusion (RD) model, 267, 268
Receiver operating characteristic (ROC) curve,

181–182, 195–196
Rectified linear unit (ReLU), 662
Red Hat Linux Enterprise (RHLE), 579
Reduced-rank quadratic model, 454–455
Reduced-rank regression (RRR), 456
Register transfer level (RTL) design, 610, 637
Register transfer level (RTL) designs, 14
Regression importance sampling, 328
Relevance vector machine (RVM), 424
Response surface models (RSM)

circuit performance-metric/output space,
451–452

dimensionality, 450
linear models, 450, 452–453
LVR, 451, 455–457
nonlinearity, 450
PPR (see Projection pursuit regression

(PPR))
PROBE, 454–455
quadratic model, 453–454
ridge functions

definition, 457, 458
degree of approximation, 463–464
density, 461–462
terminology, 460
univariate ridge functions, 459

SiLVR (see SiLVR model)
SPICE simulations, 452
variations, 450

Ridge functions
definition, 457, 458
degree of approximation, 463–464
density, 461–462
terminology, 460
univariate ridge functions, 459

Ring oscillator (RO) period measurement data,
228–230

Robust spatial correlation extraction
algorithms

global variation component, 243
homogeneous and isotropic random

field, 240
inter-chip global variation, 241
least-square minimization problem, 242
overall process correlation, 240

Index 691

overall within-chip variance, 240
process variation, characterization, 242,

243
regression-like optimization problem,

241, 242
spatial variation component, 242
unbiased sample covariance, 241
unbiased sample variance, 240–241

experimental results, 243–244
problem formulations, 237–239
technology scaling, 236

ROC curve, see Receiver operating
characteristic curve

Root-mean-square error (RMSE), 34, 77
Roughness penalty, 486
RSM, see Response surface models
Rule-based EPC (RB-EPC), 80
Running Average Power Limit (RAPL)

interface, 580
Runtime stress monitoring, 271, 280–281

S
Sample mean excess plot, 303
SAT encoding, 390–391
Scaled-sigma sampling (SSS), 351

confidence interval, 370, 371
covariance matrix, 367
first-order optimality condition, 369
Gaussian distribution, 367, 370
“golden” failure rate, 371
high-probability failure region, 363
hyper-rectangles, 364–366
independent Monte Carlo simulations, 367
linear regression, 370
mean vector, 368
MLE solution, 366, 369
model coefficients, 370
original failure rate, 364, 366
pre-selected scaling factors, 369
probability distribution, 367
scaled failure rate, 363–364, 366–368
scaled PDF, 362
scaling factor, 362, 366
soft maximum, 365
SRAM column, 371
statistical distribution, 370
2-D example, 361–363

Scanning electron microscope (SEM), 24
Selective boosting and write-assist circuitry

14 nm FinFET SOI technology die, 340,
341

gate and source nodes, capacitive coupling,
338, 339

negative boost write assist, 339
programmable boost designs, 340
6-transistor SRAM cell, 338
SRAM cell cross-section, 340

Semisupervised learning, 2–3
Shipped product quality loss (SPQL), 246
Sigmoidal function, 474, 475
Signal probabilities (SPs), 266–267
Silicon characterization

chip-level, 220
cost, 202
issues, 202
Nyquist sampling theorem, 202–203
VP (see Virtual probe (VP))
wafer-level, 219–220

SiLVR model, 12
complexity, 477
convergence, 477–479
hyperbolic tangent function, 474
implementation, 488–489
interpretations

input-referred correlation, 480–481
relative global sensitivity, 479–480

i-th component, 475
i-th ridge function, 476
linear projection, 475
master–slave flip-flop with scan chain,

490–492
nonlinear projection, 475
realistic circuit test, 489
representation, 473
sigmoidal function, 474, 475
sub-1 V CMOS bandgap voltage reference,

497–500
training algorithm, 476–477

Bayesian regularization, 486–487
cross-validation, 487–488
fast convergence, 482
good generalizability, 481
Levenberg–Marquardt algorithm,

483–486
robust convergence, 482
Spearman’s rank correlation,

482–483
2-LV, 488–489
two-stage RC-compensated opamp

analog domain, 492, 493
gain, 495, 496
input offset, 495
observations, 494
performance metrics, 492
projection vector, 492, 493
quantitative comparisons, 496
quantitative measures, 495

692 Index

SiLVR model (cont.)
simulated and predicted values, 492,

494
Vt standard deviation, 492

Simulated annealing (SA) algorithm, 133
Simulation traces, 375, 376
Singular value decomposition (SVD), 47
Smoothing method, 465–467
Sparse relevance kernel machine (SRKM), 12

Bayesian learning model, 433–435
Bernoulli likelihood, 435
BG and IREF blocks, 443, 444
classification and regression problems, 425
expectation maximization (EM) algorithm,

436
process design kit, 443
relevance vector machine, 431–432
TSD block, 444

Spatial correlation, 121, 238
Spatial correlation function extraction, 239
Spatiotemporal Gaussian process with

progressive sampling (GP-ST-PS),
140, 142

Spearman’s rank correlation, 482–483
Speed binning, 220–221
Squared exponential (SE) kernel function, 171
SqueezeNet, 657
SRAFs, see Sub-resolution assist features
SRAM bit-cell, 349, 350
SSS, see Scaled-sigma sampling
Statement coverage, assertion, 620
State-of-the-art FinFET SRAM design

experimental setup, 341
importance sampling stage, 343, 344
selective boosting and write-assist circuitry,

338–341
uniform sampling stage, 342, 343
yield estimation and convergence analysis,

343–346
Static timing analysis (STA), 285, 377
Statistical blockade

algorithm, 309
blockade filtering, 308
circuit performance metric, 307
conditionals and disjoint tail regions,

313–316
efficient tail sampling method, 309, 310
extremely rare events and their statistics,

316–317
recursive formulation, 317–321
sampling and commercially available

device models, 310–311
sampling method, 305
6T SRAM Cell, 311–313

tail and body regions, 308
unbiasing classifier, 309

Steiner tree wirelength (StWL), 107
Step-by-step correlation, 284
Stone–Weierstrass theorem, 461–462
Stratified sampling, 327
Sub-resolution assist features (SRAFs)

effectiveness of, 102–103
EPE, PV band and runtime, 104–105
logistic regression, 103–104
model-based generation, 102
rule-based generation, 102
supervised learning, 103
SVM, 104

Subset simulation (SUS)
CLT, 357, 358
conditional PDFs, 351, 355, 356
confidence interval, 357, 361, 362
continuous PoI, 351
covariance, 360
efficacy, 360
failure rate of circuit, 352–353
“golden” failure rate, 360–361
intermediate failure events, 352
MCMC samples, 355–358
MM algorithm, 351, 355
normal distribution, 359
rare failure probability estimation, 351
rare failure rate, 357
SRAM column example, 360, 361
SSS approach, 351, 361
2-D example, 353, 354
vector, 352

Supervised learning, 2–3, 379
cost function, 36

feature-generation parameters,
45–46

feature vector, 44
functions, 44–45
linear regression parameters, 46–47
loss function, 43
measured and predicted CDs, 42–43
MSEtrain, 43
nonideal performance, 47
parameter vector, 43
regularization hyperparameters, 46
test set, 43
training set, 43
weight vector, 44

dataset, 36
input feature generation, 38–40
output representation, 38, 40–42
resist boundary contour, 37

definition, 36

Index 693

linear regression model form, 37
optimization procedure, 36–37

Support-vector machine (SVM), 98, 266, 423
predictor training using, 273–275
training and validation, 282

Support vector regression (SVR), 71
Surrogate metrics, 245
SUS, see Subset simulation
Synopsys Primetime, 285
Synthesis tuning system (SynTunSys), 13

architecture, 541–543
archive, 542
automated decision loop, 541
components

cost function, 547
main tuning loop, 547
rules file, 542, 546
secondary tuning loop, 547

decision engine algorithms, 547–548
base decision algorithm, 549–550
comparsions, 556–559
14 nm data mining, 555
IBM server chips, 554
learning algorithm, 551–553
z13 22 nm server processor., 554–555

DSE process, 539
footprint efficiency, 562–564
history-based enhancement

jump-start algorithm, 559–561
recommender system, 561–562

human design time vs. compute time, 542
parameters, 544
primitive library, 546
primitives, 542, 545
quality of results, 540
scheduler

priority ranking, 565–566
second pass SynTunSys runs, 566
STSS results, 566–567

synthesis parameters, 540
total negative slack, 541
VLSI chip design, 568

T
Tails

and extreme values
Monte Carlo based methods, 300
order statistics, 301–302
quantiles, 302–304

learning GPD parameters
maximum likelihood estimation,

305–306

probability-weighted moment matching,
306–307

statistical blockade sampling method,
305

and maxima
conditional CDF, 296–297
distribution tail, 299–300
sample maximum, 297–299
skewed distribution, SRAM metric,

296
Target metrics, 245
Testbench, 375
Test margin, 246
Thermal shutdown (TSD) function, 443
3-layer perceptrons (3LP), 458
Time series analysis, 235
Time-to-digital converters (TDCs), 440
Training dataset, 381
Transverse electric (TE) wave, 51
Transverse magnetic (TM) wave, 51
Trapping/detrapping (TD) model, 267, 268
True positive rate (TPR), 181
Tuning policy, 404
Two-stage Bayesian optimization (TSBO)

acquisition function, 514–515
algorithm progression times, 517
Euclidean distance, 513
fast exploration stage, 512
hierarchical partitioning scheme, 514
IMGPO and GP-UCB, 516
learning acquisition functions, 513
log distance to optima, 516
in MATLAB, 515, 516
pure exploration stage, 514
run time statistics, 518

Type II maximum likelihood (ML-II), 133

U
Uncertainty quantification, 12–13

description, 526–527
sensitivity analysis, 533–534
storage model, 530–533

Underfitting, 384
Unsupervised learning technique, 2, 235, 379

V
Validation dataset, 381
Valid spatial correlation function, 239
Variance reduction method, 327
VeSC-CoL vs. CART, 391–396
Virtual metrology, 235

694 Index

Virtual probe (VP), 9
applications

chip-level silicon characterization,
220

post-silicon tuning, 221
speed binning, 220–221
wafer-level silicon characterization,

219–220
implementation

advantages, 217–218
DCT coefficient preselection, 216–217
issues, 212–213
Latin hypercube sampling, 214–216
linear programming, 213–214
normalization, 213

MAP estimation, 203
accuracy of, 210–212
DCT coefficients, 206–207
Dirac delta function, 208
flush delay, 206
frequency domain, sparse pattern in,

204
likelihood function, 208, 209
L1-norm regularization, 209–210
MLE, 207
optimally fitted Laplace distribution,

207, 208
PDF, 207, 208
posterior distribution, 209
prior distribution, 206, 209

mathematical formulation, 204–206
numerical experiments

flush delay measurement data (see
Flush delay measurement data)

leakage current measurement data,
226–228

ring oscillator period measurement data,
228–230

2.8-GHz Linux server, 221
“smart” algorithm, 203, 208
test structures, 203, 204
wafer/chip, spatial variation of, 203

Virtual probe (VP) approach, 122
VLSI computer-aided design (VLSI CAD)

abstraction levels, 5–6
Voltage-controlled oscillator (VCO), 419–420,

440
Voltage regulation module (VRM), 579

W
Wafer-level silicon characterization, 219–220
Weight sharing, 655–656
Within-die (WID) variation, 237

X
Xception, 656

Y
Yield enhancement, 8–9

Z
Zach’s model, 41, 54–55
Zero-valued activations, 663
z13 22 nm server processor., 554–555

	Foreword
	Acknowledgments
	Contents
	Contributors
	About the Editors
	1 A Preliminary Taxonomy for Machine Learning in VLSI CAD
	1.1 Machine Learning Taxonomy
	1.1.1 Unsupervised, Supervised, and Semisupervised Learning
	1.1.2 Parametric and Nonparametric Methods
	1.1.3 Discriminative Versus Generative Methods

	1.2 VLSI CAD Abstraction Levels
	1.3 Organization of This Book
	1.3.1 Machine Learning for Lithography and Physical Design
	1.3.1.1 Shiely—Compact Lithographic Process Models
	1.3.1.2 Shim et al.—Mask Synthesis
	1.3.1.3 Lin and Pan—Physical Verification, Mask Synthesis, and Physical Design

	1.3.2 Machine Learning for Manufacturing, Yield, and Reliability
	1.3.2.1 Xanthopoulos et al.—Gaussian Process for Wafer-Level Correlations
	1.3.2.2 Chen and Boning—Yield Enhancement
	1.3.2.3 Tao et al.—Virtual Probe
	1.3.2.4 Xiong et al.—Chip Testing
	1.3.2.5 Vijayan et al.—Aging Analysis

	1.3.3 Machine Learning for Failure Modeling
	1.3.3.1 Singhee—Extreme Statistics in Memories
	1.3.3.2 Kanj et al.—Fast Statistical Analysis Using Logistic Regression
	1.3.3.3 Tao et al.—Fast Statistical Analysis of Rare Circuit Failures
	1.3.3.4 Wang—Learning from Limited Data

	1.3.4 Machine Learning for Analog Design
	1.3.4.1 Tao et al.—Bayesian Model Fusion
	1.3.4.2 Lin et al.—Sparse Relevance Kernel Machine
	1.3.4.3 Singhee—Projection Pursuit with SiLVR
	1.3.4.4 Torun et al.—Integrated Voltage Regulator Optimization and Uncertainty Quantification

	1.3.5 Machine Learning for System Design and Optimization
	1.3.5.1 Ziegler et al.—SynTunSys
	1.3.5.2 Karn and Elfadel—Multicore Power and Thermal Proxies
	1.3.5.3 Vasudevan et al.—GoldMine for RTL Assertion Generation
	1.3.5.4 Hanif et al.—Machine Learning Architectures and Hardware Design

	1.3.6 Other Work and Outlook

	References

	Part I Machine Learning for Lithography and Physical Design
	2 Machine Learning for Compact Lithographic Process Models
	2.1 Introduction
	2.2 The Lithographic Patterning Process
	2.2.1 Importance of Lithographic Patterning Process to the Economics of Computing
	2.2.2 Representation of the Lithographic Patterning Process
	2.2.2.1 Mask Transfer Function
	2.2.2.2 Imaging Transfer Function
	2.2.2.3 Resist Transfer Function
	2.2.2.4 Etch Transfer Function

	2.2.3 Summary

	2.3 Machine Learning of Compact Process Models
	2.3.1 The Compact Process Model Machine Learning Problem Statement
	2.3.1.1 The Compact Process Model Task
	2.3.1.2 The CPM Training Experience
	2.3.1.3 CPM Performance Metrics
	2.3.1.4 Summary of CPM Problem Statement

	2.3.2 Supervised Learning of a CPM
	2.3.2.1 CPM Model Form
	2.3.2.2 CPM Supervised Learning Dataset
	2.3.2.3 CPM Supervised Learning Cost Function
	2.3.2.4 CPM Supervised Learning Optimization Algorithm

	2.4 Neural Network Compact Patterning Models
	2.4.1 Neural Network Mask Transfer Function
	2.4.2 Neural Network Image Transfer Function
	2.4.2.1 Neural Network Mask Diffraction Model
	2.4.2.2 Summary of Neural Network Image Transforms

	2.4.3 Neural Network Resist Transfer Function
	2.4.3.1 Motivation for Neural Network Resist Transfer Functions
	2.4.3.2 Earliest Neural Network Resist Model
	2.4.3.3 Neural Network Resist Model That Maps to a Contour
	2.4.3.4 Neural Networks of Two- and Three-Dimensional Resist Models
	2.4.3.5 Convolutional Neural Network Resist Model
	2.4.3.6 Summary of Neural Network Resist Transfer Functions

	2.4.4 Neural Network Etch Transfer Functions
	2.4.5 Summary of Neural Network Compact Patterning Models

	2.5 Conclusions
	References

	3 Machine Learning for Mask Synthesis
	3.1 Introduction
	3.2 Machine Learning-Guided OPC
	3.2.1 Prior Works
	3.2.2 ML-OPC with PFT Signals as Model Parameters
	3.2.2.1 PFT Signal
	3.2.2.2 MLP Construction

	3.2.3 Experiments

	3.3 Machine Learning-Guided EPC
	3.3.1 Preliminaries
	3.3.1.1 Etch Bias and EPC
	3.3.1.2 Rule- and Model-Based EPC

	3.3.2 ML-EPC
	3.3.2.1 Preparation of Training Segments
	3.3.2.2 Extracting Parameters
	3.3.2.3 Construction of Etch Bias Model
	3.3.2.4 EPC Algorithm

	3.3.3 Experiments
	3.3.3.1 Assessment of Accuracy
	3.3.3.2 Comparison of Two MLP Types
	3.3.3.3 Sampling of Training Segments
	3.3.3.4 Changing the Parameter Sets
	3.3.3.5 Effect of Cross-validation
	3.3.3.6 Assessment of ML-EPC

	3.4 Conclusions
	References

	4 Machine Learning in Physical Verification, Mask Synthesis, and Physical Design
	4.1 Introduction
	4.2 Machine Learning in Physical Verification
	4.2.1 Layout Feature Extraction and Encoding
	4.2.2 Machine Learning Models for Hotspot Detection

	4.3 Machine Learning in Mask Synthesis
	4.3.1 Mask Synthesis Flow
	4.3.2 Machine Learning for Sub-resolution Assist Features
	4.3.3 Machine Learning for Optical Proximity Correction

	4.4 Machine Learning in Physical Design
	4.4.1 Machine Learning for Datapath Placement
	4.4.2 Machine Learning for Routability-Driven Placement
	4.4.3 Machine Learning for Clock Optimization
	4.4.4 Machine Learning for Lithography Friendly Routing

	4.5 Conclusions
	References

	Part II Machine Learning for Manufacturing, Yield, and Reliability
	5 Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications
	5.1 Introduction
	5.1.1 Types of Wafer-Level Test Measurements
	5.1.2 Wafer-Level Statistical Correlations

	5.2 Gaussian Process-Based Regression Models
	5.2.1 Modeling Covariance with Kernel Functions
	5.2.2 Training and Prediction
	5.2.3 Regularization
	5.2.4 Modeling Radial Variation
	5.2.5 Model Selection and Adaptation of Hyperparameters
	5.2.6 Handling Discontinuous Effect in GP Modeling
	5.2.7 Progressive Sampling (GP-PS)
	5.2.8 Spatiotemporal Feature Inclusion (GP-ST)
	5.2.9 Spatiotemporal GP w. Progressive Sampling (GP-ST-PS)
	5.2.10 Considerations for Production Test Deployment
	5.2.11 High-Volume Manufacturing Yield Estimation
	5.2.11.1 Histogram with Random Sampling
	5.2.11.2 Histogram with GP-ST-PS
	5.2.11.3 Kernel Density Estimation

	5.2.12 Prediction Evaluation

	5.3 Applications
	5.3.1 Spatial Correlation Modeling of E-Test Measurement
	5.3.1.1 Virtual Probe
	5.3.1.2 Proposed Method: Gaussian Process Models
	5.3.1.3 Comparison to Virtual Probe

	5.3.2 Spatial Correlation Modeling of Probe-Test Specification Measurements
	5.3.2.1 Stationarity Verification of Discontinuous Spatial Patterns
	5.3.2.2 Prediction Errors Using the Proposed Approach
	5.3.2.3 Comparison to Existing Approaches
	5.3.2.4 Test Escape and Yield Loss Improvement

	5.3.3 IC Laser Trimming Speedup Through Spatial Correlation Modeling
	5.3.3.1 Length-Based, Original Target Prediction
	5.3.3.2 Rate-Based, Optimized Target Prediction

	5.3.4 HVM Yield Estimation
	5.3.4.1 Accuracy Improvement of Enhanced Model
	5.3.4.2 Yield Estimation Results

	5.4 Conclusions
	Appendix 1: Proof of Positive Semi-Definite for Covariance Matrix
	Appendix 2: Marginal and Conditional Distribution of Multivariate Normal Distribution
	Appendix 3: Summary of Commonly Used Kernel Functions
	References

	6 Machine Learning Approaches for IC Manufacturing Yield Enhancement
	6.1 Introduction
	6.1.1 Challenge One: Imbalanced Classification
	6.1.2 Challenge Two: Concept Drift
	6.1.3 Application

	6.2 Background of the Manufacturing Process
	6.3 Preliminaries
	6.3.1 Evaluation Metric: Confusion Matrix
	6.3.2 Evaluation Metric: ROC Curves
	6.3.3 Mathematical Formulation

	6.4 Learning Models
	6.4.1 Imbalanced Classification and Batch RUSBoost Learning
	6.4.2 Online RUSBoost Learning
	6.4.3 Incremental Learning for Concept Drift and Class Imbalance

	6.5 Experimental Results
	6.5.1 RUSBoost on Imbalanced Dataset
	6.5.2 The Effectiveness of Online Learning
	6.5.3 Incremental Learning with Concept Drift

	6.6 Conclusions
	References

	7 Efficient Process Variation Characterization by Virtual Probe
	7.1 Introduction
	7.2 Virtual Probe
	7.2.1 Mathematical Formulation
	7.2.2 Maximum A Posteriori (MAP) Estimation
	7.2.3 Accuracy of MAP Estimation

	7.3 Implementation Details
	7.3.1 Normalization
	7.3.2 Linear Programming
	7.3.3 Latin Hypercube Sampling
	7.3.4 DCT Coefficient Preselection
	7.3.5 Summary

	7.4 Applications of Virtual Probe
	7.4.1 Wafer-Level Silicon Characterization
	7.4.2 Chip-Level Silicon Characterization
	7.4.3 Beyond Silicon Characterization

	7.5 Numerical Experiments
	7.5.1 Flush Delay Measurement Data
	7.5.1.1 Spatial Sample Generation
	7.5.1.2 Spatial Variation Prediction

	7.5.2 Leakage Current Measurement Data
	7.5.3 Ring Oscillator Period Measurement Data

	7.6 Conclusions
	References

	8 Machine Learning for VLSI Chip Testing and Semiconductor Manufacturing Process Monitoring and Improvement
	8.1 Introduction
	8.2 Background
	8.3 Machine Learning for Chip Testing and Yield Optimization
	8.3.1 Robust Spatial Correlation Extraction
	8.3.1.1 Problem Formulations
	8.3.1.2 Extraction Algorithms
	8.3.1.3 Experimental Results

	8.3.2 Statistical Chip Testing and Yield Optimization
	8.3.2.1 Statistical Test Margin Computation

	8.4 Hierarchical Multitask Learning for Wafer Quality Prediction
	8.4.1 Problem Formulation
	8.4.2 HEAR Algorithm
	8.4.3 Experimental Results

	8.5 Co-clustering Structural Temporal Data from Semiconductor Manufacturing
	8.5.1 Problem Formulation
	8.5.2 C-Struts Algorithm
	8.5.3 Experimental Results

	8.6 Conclusions
	References

	9 Machine Learning-Based Aging Analysis
	9.1 Introduction
	9.2 Negative Bias Temperature Instability
	9.3 Related Prior Work
	9.4 Proposed Technique
	9.5 Offline Correlation Analysis and Prediction Model Generation
	9.5.1 Aging-Induced Delay Degradation and SP Extraction
	9.5.2 Predictor Training Using Support-Vector Machines
	9.5.3 Representative Flip-Flop Selection (Space Sampling)
	9.5.3.1 Correlation-Based Flip-Flop Selection
	9.5.3.2 Fan-In Cone-Based Flip-Flop Selection

	9.5.4 Time Complexity of Flip-Flop Selection Methods
	9.5.5 Time Sampling

	9.6 Runtime Stress Monitoring
	9.7 Results
	9.7.1 Experimental Setup
	9.7.2 SVM Training and Validation
	9.7.3 Evaluation of Prediction Accuracy
	9.7.3.1 Joint Space–Time Sampling
	9.7.3.2 Step-by-Step Correlation

	9.7.4 Validation of Time-Sampling Hardware Design
	9.7.5 Overheads
	9.7.5.1 Performance Overhead
	9.7.5.2 Area and Power Overhead
	9.7.5.3 Overhead at Design Time

	9.8 Conclusions
	References

	Part III Machine Learning for Failure Modeling
	10 Extreme Statistics in Memories
	10.1 Cell Failure Probability: An Extreme Statistic
	10.1.1 Units of Failure Probability
	10.1.2 An Example of Extreme Statistics in Memories
	10.1.3 Incorporating Redundancy

	10.2 Extremes: Tails and maxima
	10.2.1 Sample Maximum: Limiting Distributions
	10.2.2 Distribution Tail: Limiting Distributions

	10.3 Analysis of Tails and Extreme Values
	10.3.1 Order Statistics and Quantiles
	10.3.1.1 Mean Excess Plot

	10.4 Estimating the Tail: Learning the GPD Parameters from Data
	10.4.1 Maximum Likelihood Estimation
	10.4.2 Probability-Weighted Moment Matching

	10.5 Statistical Blockade: Sampling Rare Events
	10.5.1 Conditionals and Disjoint Tail Regions
	10.5.2 Extremely Rare Events and Their Statistics
	10.5.3 A Recursive Formulation of Statistical Blockade

	10.6 Conclusions
	References

	11 Fast Statistical Analysis Using Machine Learning
	11.1 Introduction: Logistic Regression-Based Importance Sampling Methodology for Statistical Analysis of Memory Design
	11.2 Monte Carlo, Importance Sampling, and Variance Reduction Methods
	11.2.1 Monte Carlo
	11.2.1.1 Estimating the Fail Probability of a Circuit Design

	11.2.2 Variance Reduction
	11.2.3 Importance Sampling

	11.3 Logistic Regression
	11.3.1 Simple Linear Regression Review
	11.3.2 Logistic Regression Overview
	11.3.2.1 Logistic Regression: Numerical Optimization Techniques

	11.4 Proposed Methodology
	11.4.1 Methodology Overview
	11.4.1.1 Terminology and Definitions
	11.4.1.2 Methodology Flow Diagram
	11.4.1.3 Regularization Framework
	11.4.1.4 Cross-validation

	11.5 Application to State-of-the-Art FinFET SRAM Design
	11.5.1 Selective Boosting and Write-Assist Circuitry
	11.5.2 Experimental Setup
	11.5.3 Analysis and Results
	11.5.3.1 Phase 1 Model Building: Uniform Sampling Stage
	11.5.3.2 Phase 2 Model Prediction: Importance Sampling Stage
	11.5.3.3 Yield Estimation and Convergence Analysis

	11.6 Conclusions
	References

	12 Fast Statistical Analysis of Rare Circuit Failure Events
	12.1 Introduction
	12.2 Subset Simulation
	12.3 Scaled-Sigma Sampling
	12.4 Conclusions
	References

	13 Learning from Limited Data in VLSI CAD
	13.1 Introduction
	13.2 Iterative Feature Search
	13.2.1 The Need for Domain Knowledge
	13.2.2 The Model Evaluation Step
	13.2.3 The Tool Requirement

	13.3 Assumptions in Machine Learning
	13.4 Traditional Machine Learning
	13.4.1 Occam's Razor
	13.4.2 Avoid Overfitting

	13.5 An Adjusted Machine Learning View
	13.5.1 Search for a Hypothesis Space Assumption

	13.6 A SAT-Based Implementation
	13.6.1 Boolean Learning
	13.6.2 Monomial Learning
	13.6.3 Hypothesis Space Pruning
	13.6.4 SAT Encoding
	13.6.5 Effect of the Uniqueness Requirement

	13.7 Incorporating Domain Knowledge
	13.8 Conclusions
	References

	Part IV Machine Learning for Analog Design
	14 Large-Scale Circuit Performance Modeling by BayesianModel Fusion
	14.1 Introduction
	14.2 Pre-silicon Validation
	14.2.1 Moment Estimation
	14.2.2 Distribution Estimation

	14.3 Post-silicon Tuning
	14.4 Conclusions
	References

	15 Sparse Relevance Kernel Machine-Based Performance Dependency Analysis of Analog and Mixed-Signal Circuits
	15.1 Introduction
	15.2 Feature Kernel Weighting
	15.2.1 Kernel Methods
	15.2.2 Weighting via Atomized Kernel
	15.2.3 Learning Model with Feature Kernels

	15.3 Sparse Relevance Kernel Machine
	15.3.1 Relevance Vector Machine
	15.3.2 Bayesian Learning Model for SRKM
	15.3.3 Efficient Training Algorithm

	15.4 Experiments
	15.4.1 Variability Analysis of an LDO
	15.4.2 PLL BIST Scheme Optimization
	15.4.3 Binary Classification for Functional Check

	15.5 Conclusions
	References

	16 SiLVR: Projection Pursuit for Response Surface Modeling
	16.1 Motivation
	16.2 Prevailing Response Surface Models
	16.2.1 Linear Model
	16.2.2 Quadratic Model
	16.2.3 PROjection Based Extraction (PROBE)

	16.3 Latent Variables and Ridge Functions
	16.3.1 Latent Variable Regression
	16.3.2 Ridge Functions and Projection Pursuit Regression

	16.4 Approximation using ridge functions
	16.4.1 Density: What Can Ridge Functions Approximate?
	16.4.2 Degree of approximation: how good are they?

	16.5 Projection Pursuit Regression
	16.5.1 Smoothing and the Bias-Variance Trade-off
	16.5.2 Convergence of Projection Pursuit Regression

	16.6 SiLVR
	16.6.1 The Model
	16.6.1.1 Model Complexity

	16.6.2 On the Convergence of SiLVR
	16.6.3 Interpreting the SiLVR Model
	16.6.3.1 Relative Global Sensitivity
	16.6.3.2 Input-Referred Correlation

	16.6.4 Training SiLVR
	16.6.4.1 Initialization Using Spearman's Rank Correlation
	16.6.4.2 The Levenberg–Marquardt Algorithm
	16.6.4.3 Bayesian Regularization
	16.6.4.4 Modified Fivefold Cross-Validation

	16.7 Experimental Results
	16.7.1 Master–Slave Flip-Flop with Scan Chain
	16.7.2 Two-Stage RC-Compensated Opamp
	16.7.3 Sub-1V CMOS Bandgap Voltage Reference
	16.7.3.1 Training Time

	16.8 Conclusions
	References

	17 Machine Learning-Based System Optimization and Uncertainty Quantification for Integrated Systems
	17.1 Introduction
	17.2 Optimization Oriented Design Flow
	17.3 Black-Box Optimization
	17.3.1 Why Machine Learning for Optimization?
	17.3.2 Bayesian Optimization Based on Gaussian Process

	17.4 Two-Stage Bayesian Optimization
	17.4.1 Fast Exploration and Pure Exploitation Stages
	17.4.2 Hierarchical Partitioning Scheme
	17.4.3 Learning Acquisition Functions
	17.4.4 Experiments on Challenge Functions

	17.5 Co-optimization of Embedded Inductor and Integrated Voltage Regulator
	17.5.1 Buck Converter Efficiency Model
	17.5.2 Embedded Inductor Characterization
	17.5.3 Optimization Setup
	17.5.4 Results

	17.6 Uncertainty Quantification
	17.6.1 Introduction
	17.6.2 Polynomial Chaos Expansion
	17.6.2.1 Introduction
	17.6.2.2 From Standard to Sparse PC Expansion
	17.6.2.3 Post-Processing

	17.7 Uncertainty Quantification of the IVR Efficiency
	17.7.1 Surrogate Model of the Model Response
	17.7.2 Sensitivity Analysis of the Model Response

	17.8 Conclusions
	References

	Part V Machine Learning for System Design and Optimization
	18 SynTunSys: A Synthesis Parameter Autotuning System for Optimizing High-Performance Processors
	18.1 Introduction
	18.2 SynTunSys Architecture
	18.2.1 Human Design Time vs. Compute Time
	18.2.2 Scenario Composition and Initial Design Space Reduction
	18.2.3 SynTunSys Components
	18.2.4 Decision Engine Algorithms

	18.3 The SynTunSys Decision Engine
	18.3.1 The Base Decision Algorithm
	18.3.2 The Learning Algorithm

	18.4 SynTunSys Results
	18.4.1 z13 Case Study Results
	18.4.2 14nm Data Mining Results
	18.4.3 Decision Algorithm Comparisons

	18.5 SynTunSys Enhancements and Future Work
	18.5.1 Opportunities for History-Based Enhancements
	18.5.1.1 The Jump-Start Algorithm
	18.5.1.2 The Recommender System

	18.5.2 Improving Compute Footprint Efficiency
	18.5.3 A Scheduling System for Multi-Macro Tuning
	18.5.3.1 STSS Priority Ranking
	18.5.3.2 Second Pass SynTunSys Runs
	18.5.3.3 STSS Results

	18.6 Related Work
	18.7 Conclusions
	References

	19 Multicore Power and Thermal Proxies Using Least-Angle Regression
	19.1 Introduction
	19.2 Preliminaries
	19.3 Data Collection Platform
	19.4 Power Proxies
	19.4.1 The Single-Core Case
	19.4.2 The Multicore Case

	19.5 Temperature Proxies
	19.5.1 The Single-Core Case
	19.5.2 The Multicore Case

	19.6 Proxies Incorporating Sleep States
	19.7 Workload Signature
	19.8 Core Scaling and Thread Assignment
	19.8.1 The Relation of PCs with Power Consumption
	19.8.2 Energy-Aware Workload Execution
	19.8.3 Autoscaling for Separate Workloads
	19.8.4 Autoscaling for Multiple Workloads
	19.8.4.1 Scaling Down
	19.8.4.2 Scaling Up

	19.9 Conclusions
	References

	20 A Comparative Study of Assertion Mining Algorithmsin GoldMine
	20.1 Introduction
	20.1.1 Related Work

	20.2 Summary of Comparison of Assertion Generation Algorithms in GoldMine
	20.3 The GoldMine Principle: Statistics Meet Static
	20.4 Background on GoldMine
	20.4.1 GoldMine Assertions
	20.4.2 Static Analyzer
	20.4.3 Data Generator
	20.4.4 A-Miner
	20.4.5 Formal Verifier
	20.4.6 Assertion Evaluator

	20.5 Decision Tree-Based Learning
	20.6 Best-Gain Decision Forest Algorithm
	20.6.1 Algorithm
	20.6.2 Example
	20.6.3 Analysis

	20.7 Coverage Guided Mining Algorithm
	20.7.1 Overview of the Algorithm

	20.8 PRISM Algorithm
	20.9 Experimental Results
	20.9.1 Number of Generated Assertions
	20.9.2 Sequential Depth of Generated Assertions
	20.9.3 Input Space Coverage and Hit Rate of Generated Assertions
	20.9.4 Runtime and Memory Usage
	20.9.5 RTL Statement Coverage of Generated Assertions
	20.9.6 Expectedness Analysis of Generated Assertions
	20.9.7 Complexity Analysis of Generated Assertions
	20.9.8 Importance Analysis of Generated Assertions
	20.9.9 Qualitative Analysis of Sample Assertions
	20.9.9.1 Qualitative Comparison of Assertions Generated by Different Algorithms
	20.9.9.2 Qualitative Comparison of Automatically Generated Assertions with Manually Written Assertions

	20.9.10 Scalability of GoldMine

	20.10 Conclusions
	References

	21 Energy-Efficient Design of Advanced Machine LearningHardware
	21.1 Artificial Intelligence and Machine Learning
	21.1.1 Neural Networks
	21.1.2 Resource Requirements of State-of-the-Art Neural Networks

	21.2 Software and Co-design Optimizations
	21.2.1 Pruning
	21.2.2 Weight Sharing
	21.2.3 Compact Network Architectures
	21.2.4 Hardware–Software Co-design

	21.3 Hardware-Level Techniques
	21.3.1 Dataflows and Architectures for Accelerators
	21.3.2 Hardware Friendly Strategies for Deep CNN Accelerators
	21.3.3 Memory-Efficient Architectures
	21.3.4 Hardware Architectural Techniques for Leveraging Sparsity in Neural Networks

	21.4 Error Resilience Analysis: DNN-Specific Approximations for Low-Power Accelerators
	21.5 Energy-Efficient Hardware Accelerator Design Methodology for Neural Networks
	21.6 Efficient Machine Learning Architectures: Challenges and the Way Forward
	21.6.1 Optimizing Memory vs. Computations
	21.6.2 Neuromorphic Computing
	21.6.3 Accuracy vs. Energy Trade-off
	21.6.4 Adaptability, (Re-)configurability, and Scalability
	21.6.5 Run-Time Evolutionary Algorithms for Designing and Optimizing DNN Architectures
	21.6.6 Correct Benchmarking with Fairness and High Fidelity
	21.6.7 Open-Source Contributions

	References

	Index

